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Abstract

In this paper, a Crank–Nicolson Fourier spectral Galerkin method is proposed for solving the cubic fractional Schrödinger
equation. Firstly, we discuss the mass and energy conservation laws for the nonlinear system and its corresponding fully
discrete scheme. Secondly, the convergence with the spectral order accuracy in space and the second order of accuracy
in time is exhibited. We perform one-dimensional calculation of the fractional derivative differential equation to verify our
theoretical findings. Moreover, the proposed scheme is successfully applied to study two- and three-dimensional fractional
quantum mechanics. Numerical results clearly exhibit that the fractional order can affect the shapes of soliton and rogue
waves. The evolution of ground state solution can be clearly seen to be non-symmetrically configured when the fractional
order becomes smaller.
c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

As is well known, the Schrödinger equation is one of the most important partial differential equations in
mathematical physics, which is capable of effectively describing the change of the quantum behavior in some
physical systems [3]. During the past few decades, there has been a significant effort dedicated to the numerical
analysis and scientific computing for the Schrödinger equation [1,6,11,20,23,24,28].

In a sequence of papers [13–15], Nick Laskin developed the fundamental equation of fractional quantum
mechanics as a result of extending the Feynman path integral from the Brownian motion to Lévy-like paths.
The consequence is that the linear space-fractional Schrödinger equation has been derived. Hu and Kallianpur [8]
investigated the Schrödinger equation with fractional Laplacian and constructed solution in a form of probability.
Guo and Xu [7] studied the fundamental solution of fractional Schrödinger equation involving the Green’s function.
Dong and Xu [4] gave some solutions to the space fractional Schrödinger equation using momentum representation
method. Bayln [2] presented a free particle solution in terms of Fox’s H-functions for the fractional Schrödinger
equation in general coordinates. However, it is hard to compute the special functions in the above referred works.
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Furthermore, derivation of the exact solutions to the fractional Schrödinger equations is very difficult in nonlinear
cases. Hence, application of numerical techniques becomes essential to study the behaviors of the fractional quantum
systems. Zhao et al. [30] presented a fourth-order compact ADI scheme to solve the two-dimensional nonlinear
space-fractional Schrödinger equation. Finite difference methods for the nonlinear space-fractional Schrödinger
equation with Riesz space fractional derivative were proposed and analyzed in [19,25–27]. Li et al. [16,17] proposed
the finite element model for solving the space-fractional Schrödinger equation. Recently, Kirkpatrick and Zhang [12]
applied a split-step Fourier spectral method to study the decoherence of solitons in fractional Schrödinger equation
without detailing the numerical properties of this method. Mass-conservation Fourier spectral method for the
fractional nonlinear Schrödinger equations was investigated by Duo and Zhang [5]. However, the convergence of
this method was not discussed.

The novelty of our paper is to develop a Crank–Nicolson Fourier spectral Galerkin method for cubic nonlinear
fractional Schrödinger equation. The superiority of this method is based on the weak formulation and Galerkin
approximation so that it can be easily extended to other spatial discretizations, such as the Galerkin finite element
method. The fast Fourier transform (FFT) is used to find the Fourier coefficients in our spatial computation. Analysis
on the conservation laws and error estimates is performed for the proposed scheme, which is proved to preserve
both the mass and energy. Also the proposed method can achieve the desired computational efficiency in the sense
that the accuracy order of our method is higher than some recently studied methods.

The rest of this paper is organized as follows. In Section 2, the fractional Schrödinger equations are presented
and the existence of the conservation laws for the nonlinear systems is proved. In Section 3, we apply the
proposed Crank–Nicolson Fourier spectral Galerkin method to solve the fractional Schrödinger equation. Both of the
conservation laws and the error estimates of the proposed scheme are detailed. In Section 4, we perform numerical
study to confirm the effectiveness of the proposed method. Finally, some concluding remarks are drawn in Section 5.

2. Mathematic model

In this study, we consider the time-dependent nonlinear Schrödinger equation with fractional Laplacian as follows

i h̄
∂ψ(x, t)
∂t

= h̄α(−∆)
α
2ψ(x, t) + V (x)ψ(x, t) + β|ψ(x, t)|2ψ(x, t), t > 0, (2.1)

where i =
√

−1. The solution of ψ is sought subject to the initial condition:

ψ(x, 0) = ψ0(x). (2.2)

In Eq. (2.1), h̄ is the reduced Planck constant, ψ(x, t) is a complex-valued wave function of x ∈ Rd (for
d = 1, 2, or 3) and t ≥ 0, V (x) denotes a potential energy. The parameter β represents the strength of short-range
nonlinear interaction. The fractional quantum derivative (−∆)

α
2 in (2.1) is defined by [9,10,18,21]

−(−∆)
α
2 u(x, t) =

∂α

∂|x |
α

u(x, t) = −
1

2 cos(πα/2)
[ −∞ Dα

x u(x, t) +x Dα
+∞

u(x, t)],

where −∞ Dα
x and x Dα

+∞
are left and right Riemann–Liouville fractional derivatives, respectively. With periodic

boundary conditions, the Riesz fractional derivative (−∆)
α
2 also can be defined by the Fourier transform, which

reads

F[−(−∆)
α
2 u(x)](ξ ) = −|ξ |αF[u(x)](ξ ),

where F is the Fourier transform.
Note that for α = 2, the fractional Laplacian in (2.1) is reduced to the standard Laplace operator. For the

case of α ∈ (1, 2), the effect of fractional Laplacian operator describing long-range interactions is no longer
local. For simplicity, numerical approximation of (2.1) in one dimensional domain will be considered, though the
generalization to higher dimension is straightforward. In this study, we will truncate (2.1) into a finite computational
domain Ω = (a, b) with periodic boundary condition.
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Let C∞
per be the set of all restrictions onto R, and denote by H q

per the closure of C∞
per with the usual Sobolev norm

∥ · ∥q . We denote the standard inner product and norm as follows

(u, v) =

∫
R

uvdx, ∥u∥ = (
∫
R

|u|
2dx)

1
2 ,

for any u, v ∈ L2(R).
Here, we focus on a finite (square) barrier potential V (x) = V0 that is restricted to the interval (a, b). The value

of V0 is zero elsewhere. The weak statement of (2.1)–(2.2) in one-dimensional case can be defined as follows.

Definition 2.1. A function ψ : Ω × R+
→ R is called a weak solution of (2.1), if ψ ∈ C2(Hα

per(Ω )∩ H q (Ω ); [0, T ])
for all T > 0, such that for all φ ∈ H 2

per(Ω ) the following equation holds

(i h̄
∂ψ

∂t
, ϕ) = (h̄α(−∆)

α
2ψ, ϕ) + (V0ψ, ϕ) + (β|ψ |

2ψ, ϕ), (2.3)

with the initial condition ψ(0) = ψ0.

In the following lemma, we shall give a useful characterization with respect to the fractional Laplacian.

Lemma 2.1. For any u, w ∈ L2(R), then one can have

((−∆)
α
2 u, w) = ((−∆)

α
4 u, (−∆)

α
4w).

Proof. For any w1, w2 ∈ L2(R), we recall the Parseval identity [29] as∫
R
w1(x)w2(x)dx =

1
2π

∫
R
F[w1(x)](ξ )F[w2(x)](ξ )dx .

Then, by using the identity F[(−∆)
α
4 u(x)](ξ ) = |ξ |α/2F[u(x)](ξ ), we have∫

R
(−∆)

α
4 u(x)(−∆)

α
4w(x)dx =

1
2π

∫
R
F[(−∆)

α
4 u(x)](ξ )F[(−∆)

α
4w(x)](ξ )dx

=
1

2π

∫
R

|ξ |αF[u(x)](ξ )F[w(x)](ξ )dx

=
1

2π

∫
R
F[(−∆)

α
2 u(x)](ξ )F[w(x)](ξ )dx

=

∫
R

[(−∆)
α
2 u(x)]w(x)dx .

The proof is completed.

Next, we will give two conservation laws with respect to the fractional Schrödinger equation (2.1) in one
dimensional domain.

Theorem 2.1. The fractional system of Schrödinger equations (2.1)–(2.2) permits the mass and energy conservation
laws as follows

Q(t) := ∥ψ(x, t)∥2
= ∥ψ0(x)∥2

= Q(0), (2.4)

and

E(t) :=
h̄α−1

2
∥(−∆)

α
4ψ(x, t)∥2

+
V0

2h̄
∥ψ(x, t)∥2

+
β

4h̄
∥ψ(x, t)∥4

L4 = E(0), (2.5)

where ∥ · ∥L4 denotes the L4-norm.

Proof. Taking ϕ = ψ in (2.3), by Lemma 2.1, we get

(i
∂ψ

∂t
, ψ) = h̄α−1((−∆)

α
4ψ, (−∆)

α
4ψ) +

V0

h̄
(ψ,ψ) +

β

h̄
(|ψ |

2ψ,ψ).
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Taking the imaginary part of the above equation into account, we arrive at

I m{(i
∂ψ

∂t
, ψ)} = (

∂ψ

∂t
, ψ) = 0.

Therefore, we deduce that
d
dt

∥ψ∥
2

= 2(
∂ψ

∂t
, ψ) = 0,

implying the conservation of mass given in (2.4).
Similarly, setting ϕ =

∂ψ

∂t in (2.3), we obtain

(i
∂ψ

∂t
,
∂ψ

∂t
) = h̄α−1((−∆)

α
4ψ, (−∆)

α
4 (
∂ψ

∂t
)) +

V0

h̄
(ψ,

∂ψ

∂t
) +

β

h̄
(|ψ |

2ψ,
∂ψ

∂t
).

Taking the real part of the above equation, we immediately get

d
dt

[
h̄α−1

2
∥(−∆)

α
4ψ∥

2
+

V0

2h̄
∥ψ∥

2
+
β

4h̄
∥ψ∥

4
L4 ] = 0.

If we set E(t) =
h̄α−1

2 ∥(−∆)
α
4ψ∥

2
+

V0
2h̄ ∥ψ∥

2
+

β

4h̄ ∥ψ∥
4
L4 , then the conservation of energy given in (2.5) holds.

3. Fourier spectral Galerkin method

In this section, we shall present a Fourier spectral Galerkin method for solving the fractional Schrödinger
equation.

For each integer N ≥ 1, we introduce the following finite dimensional subspace

HN = span{eiµ·x , |µ| ≤ N }.

Denote by PN : L2(Ω ) → HN the L2(Ω )-projection onto HN , which is defined by

(PNψ − ψ, ϕ) = 0, ∀ϕ ∈ HN .

Let ψN (x, t) ∈ HN for t ≥ 0. By performing the Fourier spectral Galerkin approximation on (2.3) we have the
following equation for all ϕN ∈ HN

(i h̄
∂ψN

∂t
, ϕN ) = (h̄α(−∆)

α
2ψN , ϕN ) + (V0ψN , ϕN ) + (β|ψN |

2ψN , ϕN ), ∀ϕN ∈ HN , (3.1)

with

ψN (x, 0) = PNψ0(x).

The Fourier projection PN is defined as

PNφ(x) =

∑
|ξ |≤N

φ̂(ξ )eiξ ·x .

In the above equation, the Fourier coefficients are arranged as

φ̂(ξ ) =
1

2π

∫
Ω

φ(x)e−iξ ·x dx .

To establish the bound and convergence of the Fourier spectral Galerkin approximation, we shall recall the
following lemma and theorems.

Lemma 3.1 ([22]). For any φ ∈ H q
per(Ω ), the following estimates hold

∥PNφ∥p ≤ ∥φ∥p, ∥φ − PNφ∥p ≤ C N p−q
∥φ∥q ,

for all 0 ≤ p ≤ q.

Let τ = T/K > 0 be a time step, and denote tk = kτ for k = 0, 1, . . . , K . Defining the difference operators as

δtψ
k
N =

ψk+1
N − ψk

N

τ
, ψ

k+1/2
N =

ψk+1
N + ψk

N

2
.



126 G.-a. Zou, B. Wang and T.W.H. Sheu / Mathematics and Computers in Simulation 168 (2020) 122–134

At each time level k, the time derivative is discretized by the Crank–Nicolson scheme. The fully discrete Fourier
spectral Galerkin approximation can then be read as: for all ϕN ∈ HN , find ψk

N ∈ HN such that

(i h̄δtψ
k
N , ϕN ) = (h̄α(−∆)

α
2ψ

k+1/2
N , ϕN ) + (V0ψ

k+1/2
N , ϕN )

+
β

2
((|ψk+1

N |
2
+ |ψk

N |
2
)ψk+1/2

N , ϕN ), (3.2)

with ψ0
N = PNψ0.

Next, we will prove the existence of conservation laws and establish the error estimation for the Fourier spectral
Galerkin approximation.

Theorem 3.1 (Mass Conservation). Assume that ψk
N is the numerical solution of (2.1)–(2.2), then we have the

discrete mass

Qk
= ∥ψk

N ∥
2

= ∥ψ0
N ∥

2
= Q0. (3.3)

Proof. Setting ϕN = ψ
k+1/2
N in (3.2), then we have

(iδtψ
k
N , ψ

k+1/2
N ) = h̄α−1((−∆)

α
2ψ

k+1/2
N , ψ

k+1/2
N ) +

V0

h̄
(ψk+1/2

N , ψ
k+1/2
N )

+
β

2h̄
((|ψk+1

N |
2
+ |ψk

N |
2
)ψk+1/2

N , ψ
k+1/2
N ). (3.4)

Notice that

I m{(ψk+1/2
N , ψ

k+1/2
N )} = 0,

I m{((|ψk+1
N |

2
+ |ψk

N |
2
)ψk+1/2

N , ψ
k+1/2
N )} = 0,

I m{((−∆)
α
2ψ

k+1/2
N , ψ

k+1/2
N )} = I m{((−∆)

α
4ψ

k+1/2
N , (−∆)

α
4ψ

k+1/2
N )} = 0.

Taking the imaginary part of (3.4) into account, we obtain

Re{(δtψ
k
N , ψ

k+1/2
N )} =

1
2τ

(∥ψk+1
N ∥

2
− ∥ψk

N ∥
2) = 0.

The above equation implies that Qk+1
= Qk and thus the mass conservation in (3.3) holds for k ≥ 0.

Theorem 3.2 (Energy Conservation). Assume that ψk
N is the numerical solution of (2.1), then the discrete energy

given below can be derived

Ek
=

h̄α−1

2
∥(−∆)

α
4ψk

N ∥
2
+

V0

2h̄
∥ψk

N ∥
2
+
β

4h̄
∥ψk

N ∥
4
L4 = E0. (3.5)

Proof. Setting ϕN = δtψ
k
N , (3.2) can be rewritten as

(iδtψ
k
N , δtψ

k
N ) = h̄α−1((−∆)

α
2ψ

k+1/2
N , δtψ

k
N ) +

V0

h̄
(ψk+1/2

N , δtψ
k
N )

+
β

2h̄
((|ψk+1

N |
2
+ |ψk

N |
2
)ψk+1/2

N , δtψ
k
N ). (3.6)

Noticing that Re{(iδtψ
k
N , δtψ

k
N )} = 0 and considering the real part of (3.6), we are led to derive

0 = Re{(h̄α−1(−∆)
α
2ψ

k+1/2
N , δtψ

k
N )} +

V0

2τ h̄
(∥ψk+1

N ∥
2
− ∥ψk

N ∥
2)

+
β

4τ h̄
(∥ψk+1

N ∥
4
L4 − ∥ψk

N ∥
4
L4 ).

Owing to

Re{(h̄α−1(−∆)
α
2ψ

k+1/2
N , δtψ

k
N )} =

h̄α−1

2τ
(∥(−∆)

α
4ψk+1

N ∥
2
− ∥(−∆)

α
4ψk

N ∥
2),
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we can conclude that
h̄α−1

2
∥(−∆)

α
4ψk+1

N ∥
2
+

V0

2h̄
∥ψk+1

N ∥
2
+
β

4h̄
∥ψk+1

N ∥
4
L4

=
h̄α−1

2
∥(−∆)

α
4ψk

N ∥
2
+

V0

2h̄
∥ψk

N ∥
2
+
β

4h̄
∥ψk

N ∥
4
L4 ,

it is implied that Ek+1
= Ek for any k ≥ 0. As a result, the energy conservation law, or (3.5), holds.

Now, we will give the convergence analysis of the semi-discrete form.

Theorem 3.3. Let 1 < α ≤ 2 and q ≥ 1, assume that ψ ∈ C2(Hα
per(Ω ) ∩ H q (Ω ); [0, T ]) is the exact solution to

(2.1) and ψN is the solution of (3.1), respectively. Then, there exists a constant C > 0 such that

∥ψ − ψN ∥ ≤ C N−q
∥ψ∥q .

Proof. Let e = ψ − ψN = (ψ − PNψ) + (PNψ − ψN ) := ρ + θ . Setting ϕ = ϕN ∈ HN in (2.3) and subtracting
(3.1) from (2.3), one can arrive at

i(
∂e
∂t
, ϕN ) = h̄α−1((−∆)

α
2 e, ϕN ) +

V0

h̄
(e, ϕN )

+
β

h̄
(|ψ |

2ψ − |ψN |
2ψN , ϕN ). (3.7)

By exploiting the orthogonal property in the operator PN , we have

(e, ϕN ) = (ρ, ϕN ) + (θ, ϕN ) = (θ, ϕN ),

((−∆)
α
2 e, ϕN ) = ((−∆)

α
4 ρ, (−∆)

α
4 ϕN ) + ((−∆)

α
4 θ, (−∆)

α
4 ϕN ) = ((−∆)

α
4 θ, (−∆)

α
4 ϕN ).

Let ϕN = θ in (3.7). Owing to I m{((−∆)
α
4 θ, (−∆)

α
4 θ )} = 0, by taking the imaginary part of (3.7), we can

derive the following equation

(
∂θ

∂t
, θ) = I m{

β

h̄
(|ψ |

2ψ − |ψN |
2ψN , θ)}.

Making use of the Cauchy–Schwarz inequality, we have

1
2

d
dt

∥θ∥2
≤
βΨmax

h̄
(∥ρ∥ + ∥θ∥)∥θ∥, (3.8)

where Ψmax = max{|ψ |
2, |ψN |

2
}.

By means of Lemma 3.1, we get

∥ρ∥ ≤ C N−q
∥ψ∥q .

Therefore, application of inequality (3.8) yields
d
dt

∥θ∥ ≤ C(∥θ∥ + N−q
∥ψ∥q ). (3.9)

By integrating (3.9) from 0 to t , the following inequality equation holds

∥θ∥ ≤ C∥θ (0)∥ + C N−q
∥ψ∥q + C

∫ t

0
∥θ∥dσ.

Owing to θ (0) = 0 and by virtue of the Gronwall’s lemma, we get

∥θ∥ ≤ C N−q
∥ψ∥q .

By Lemma 3.1 and the triangle inequality, finally we obtain

∥e∥ ≤ ∥ρ∥ + ∥θ∥ ≤ C N−q
∥ψ∥q .

This completes the proof.
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Theorem 3.4. Let 1 < α ≤ 2 and q ≥ 1, assume that ψ ∈ C2(Hα
per(Ω ) ∩ H q (Ω ); [0, T ]) is the exact solution

of Eq. (2.1) and ψk
N is the solution of (3.2), respectively. Then, there exists a constant C > 0 such that

∥ψk
− ψk

N ∥ ≤ C(τ 2
+ N−q ).

Proof. The employed Crank–Nicolson scheme for (2.1) is given by

i h̄δtψ
k

= h̄α(−∆)
α
2ψk+1/2

+ V0ψ
k+1/2

+
β

2
(|ψk+1

|
2
+ |ψk

|
2
)ψk+1/2

+ T k, (3.10)

where T k
= O(τ 2) is the truncation error.

Let ek
= ψk

−ψk
N = (ψk

− PNψ
k) + (PNψ

k
−ψk

N ) := ρk
+ θ k . Taking the inner product of (3.10) with ϕN and

subtracting it from (3.2), we have

i(
ek+1

− ek

τ
, ϕN ) =

h̄α−1

2
((−∆)

α
2 (ek+1

+ ek), ϕN ) +
V0

2h̄
(ek+1

+ ek, ϕN )

+
β

2h̄
(|ψk+1

|
2
ψk+1/2

− |ψk+1
N |

2
ψ

k+1/2
N , ϕN )

+
β

2h̄
(|ψk

|
2
ψk+1/2

− |ψk
N |

2
ψ

k+1/2
N , ϕN ) + (T k, ϕN ). (3.11)

Similarly, by virtue of the orthogonality of the operator PN , we have

(ek+1
± ek, ϕN ) = (θ k+1

± θ k, ϕN ),

I m{((−∆)
α
2 (ek+1

+ ek), θ k+1
+ θ k)} = I m{((−∆)

α
4 (θ k+1

+ θ k), (−∆)
α
4 (θ k+1

+ θ k))} = 0.

Setting ϕN = θ k+1
+ θ k . By taking into account the imaginary part of (3.11) the following equation can be

derived
∥θ k+1

∥
2
− ∥θ k

∥
2

τ
= I m{

β

2h̄
(|ψk+1

|
2
ψk+1/2

− |ψk+1
N |

2
ψ

k+1/2
N , θ k+1

+ θ k)}

+ I m{
β

2h̄
(|ψk

|
2
ψk+1/2

− |ψk
N |

2
ψ

k+1/2
N , θ k+1

+ θ k)}

+ I m{(T k, θ k+1
+ θ k)}.

By virtue of the Hölder inequality and Theorem 3.3, we have

∥θ k+1
∥

2
− ∥θ k

∥
2

≤ C(N−2q
∥ψ∥

2
q + τ 4

+ ∥θ k+1
∥

2
+ ∥θ k

∥
2), (3.12)

where C depends on Ψmax = max{|ψk
|
2
, |ψk+1

|
2
, |ψk

N |
2
, |ψk+1

N |
2
}.

Summing up the above inequality, or (3.12), for k = 0, 1, . . . , n, we find

∥θn+1
∥

2
≤ ∥θ0

∥
2
+ C(N−2q

∥ψk
∥

2
q + τ 4) + C

n∑
k=0

(∥θ k+1
∥

2
+ ∥θ k

∥
2).

Based on θ0
= 0, by virtue of the discrete version of the Gronwall’s lemma, we have

∥θn+1
∥

2
≤ C(N−2q

∥ψ∥
2
q + τ 4).

Using Theorem 3.3 and the triangle inequality we are led to get

∥en
∥ ≤ ∥ρn

∥ + ∥θn
∥ ≤ C(τ 2

+ N−q
∥ψ∥q ).

The proof is completed.

4. Numerical examples

For a positive integer J , define the spatial grid points x j = 2π j/J with j = 0, 1, . . . , J −1. The discrete Fourier
coefficients of function ψ(x) with respect to the points x j are defined as

ψ̂l =
1
J

J−1∑
j=0

ψ(x j )eiξl x j , l = −J/2, . . . , J/2 − 1.
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Table 1
The errors and convergence orders obtained under different values of α when N = 128 for example 1.

τ α = 1.2 α = 1.6 α = 2.0

Error Order Error Order Error Order

0.1 7.3864e−02 – 7.1036e−02 – 7.0035e−02 –
0.05 1.8592e−02 1.9903 1.7820e−02 1.9952 1.7509e−03 2.0001
0.025 4.6085e−03 2.0010 4.4370e−03 2.0004 4.3772e−03 1.9997
0.0125 1.1531e−03 2.0005 1.1073e−03 2.0012 1.0919e−03 2.0011
0.00625 2.8870e−04 1.9998 2.7679e−04 2.0009 2.7335e−04 2.0003

The inversion formula is expressed as

ψ(x j ) =

J/2−1∑
l=J/2

ψ̂leiξl x j , j = 0, 1, . . . , J − 1.

Based on the above notations, the fully discrete Fourier spectral Galerkin equation, or (3.2), can be rewritten as

(1 +
iτ h̄α−1

2
(−∆)

α
2 +

iτV0

2h̄
)ψk+1

N (x j )

= (1 −
iτ h̄α−1

2
(−∆)

α
2 −

iτV0

2h̄
)ψk

N (x j ) −
iτβ
2h̄

Qk
N (x j ), (4.1)

where Qk
N (x j ) = (|ψk+1

N (x j )|
2
+ |ψk

N (x j )|
2)ψk+1/2

N (x j ) with ψ0
N (x j ) = PNψ0(x j ).

Applying the Fourier transformation on both hand sides of (4.1) yields

(1 +
iτ h̄α−1

|ξl |
α

2
+

iτV0

2h̄
)ψ̂k+1

N = (1 −
iτ h̄α−1

|ξl |
α

2
−

iτV0

2h̄
)ψ̂k

N −
iτβ
2h̄

Q̂k
N , (4.2)

with ψ̂0
N = PN ψ̂0. It should be noted that the fast Fourier transform (FFT) is used to find the Fourier coefficients

in our computation. The following three numerical examples are presented to demonstrate the effectiveness of our
proposed method.

4.1. Example 1

In the first example, we consider the following one-dimensional fractional Schrödinger equation

i
∂ψ(x, t)
∂t

= (−∆)
α
2ψ(x, t) + ψ(x, t) − |ψ(x, t)|2ψ(x, t), x ∈ [−π, π], t ∈ [0, T ],

subject to the initial condition

ψ(x, 0) = sech(x) · exp(−x2).

Firstly, we need to check the spatial and temporal convergence orders of the Fourier spectral Galerkin scheme
(3.2). Since the exact solution of this problem is not known explicitly, in order to quantify the approximation error,
we obtain the “true” solution ψ by performing computation in a sufficiently small time step and a very fine mesh
size. To examine the spatial and temporal convergence orders separately, the orders of convergence in time and
space shall be determined from the computed L2-error norms defined as:

Order =

{
ln(∥e(τ1,N )∥/∥e(τ2,N )∥)

ln(τ1/τ2) , in time,
ln(∥e(τ,N1)∥/∥e(τ,N2)∥)

ln(N2/N1) , in space,

where τ2 ̸= τ1 and N2 ̸= N1. The errors are measured by e(τ, N ) := ∥ψ − ψk
N ∥.

Tables 1 and 2 give the numerical results about the temporal and spatial convergence orders, from which we
know that the temporal order is O(τ 2), which is the theoretical order, and the spatial order is spectral accuracy.
All the convergence results are in agreement with the theoretical ones. Fig. 1 displays the time evolution of mass
Qn and energy En . It is clearly shown that the two conserved quantities are well preserved with respect to time.
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Table 2
The errors and convergence orders obtained under different values of α when τ = 0.0125 for example 1.

N α = 1.2 α = 1.6 α = 2.0

Error Order Error Order Error Order

16 9.8257e−01 – 9.5603e−01 – 9.4320e−01 –
32 4.8685e−01 1.0132 4.4558e−01 1.1015 4.5449e−01 1.0534
64 4.7927e−02 2.1788 4.5472e−02 2.1970 4.3418e−02 2.2206
128 2.3391e−04 4.0122 1.9829e−04 4.0785 1.9489e−04 4.0803
256 2.4089e−08 6.3204 2.7871e−08 6.2579 1.8493e−08 6.4010

Table 3
Comparison of CPU-time with those using the Crank–Nicolson finite difference method (CN-FDM), Crank–Nicolson finite element method
(CN-FEM) and Crank–Nicolson Fourier spectral Galerkin method (CN-FSGM) for α = 1.6 .

L2-norm CN-FDM CN-FEM CN-FSGM

τ h CPU-time τ hK CPU-time τ N CPU-time

O(10−1) 0.050 0.100 1.8319 s 0.050 0.200 1.8765 s 0.050 32 0.0955 s
O(10−2) 0.025 0.050 20.3285 s 0.025 0.100 25.6679 s 0.020 64 0.1673 s
O(10−3) 0.001 0.005 877.1152 s 0.010 0.050 160.4458 s 0.010 100 0.2887 s
O(10−4) – – – 0.005 0.010 725.7064 s 0.005 128 0.7564 s
O(10−5) – – – – – – 0.002 128 1.1225 s
O(10−6) – – – – – – 0.001 200 1.7899 s

Table 4
Comparison of CPU-time with those using the Crank–Nicolson finite difference method (CN-FDM), Crank–Nicolson finite element method
(CN-FEM) and Crank–Nicolson Fourier spectral Galerkin method (CN-FSGM) for α = 2.0.

L2-norm CN-FDM CN-FEM CN-FSGM

τ h CPU-time τ hK CPU-time τ N CPU-time

O(10−1) 0.050 0.100 1.5465 s 0.050 0.200 1.2711 s 0.050 32 0.0104 s
O(10−2) 0.025 0.050 12.6249 s 0.025 0.100 20.5576 s 0.025 64 0.0822 s
O(10−3) 0.010 0.010 30.1255 s 0.010 0.050 116.5846 s 0.015 80 0.1051 s
O(10−4) 0.001 0.005 240.5897 s 0.005 0.010 408.2305 s 0.010 128 0.4876 s
O(10−5) – – – – – – 0.005 128 0.8024 s
O(10−6) – – – – – – 0.002 168 1.2435 s

Fig. 2 presents the numerical solutions with different values of α. It is easy to see that the order α can affect the
shape of the soliton in the sense that when α becomes smaller, the shape of the soliton changes more quickly.
Moreover, the symmetry-breaking ground state solution occurs for the fractional Schrödinger equation investigated
under α ∈ (1, 2).

Now, we compare our proposed Crank–Nicolson Fourier spectral Galerkin method (CN-FSGM) with some
existing methods, e.g. the Crank–Nicolson finite difference method (CN-FDM) [27] and Crank–Nicolson finite
element method (CN-FEM) [17]. The numerical solutions are carried out on the same hardware platform. The
comparison results for the three methods are described in Tables 3 and 4, where h is the space step-size of CN-
FDM and hK is the spatial mesh size of CN-FEM. The accuracy of the solutions with L2-norm is obtained at time
t = 1.0 and the requisite CPU-time for the three schemes is also listed. It can be seen that the CN-FDM cannot
achieve the error level O(10−4) for α = 1.6 and O(10−5) for α = 2.0, and the CN-FEM cannot achieve the error
level O(10−5). Moreover, the CN-FSGM takes less computing time than the other two methods. The efficiency of
CN-FSGM can be seen, in addition to the high order accuracy. In short, the CN-FSGM has a high convergence
order in space and demands less CPU-time for solving the cubic space-fractional Schrödinger equations.
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Fig. 1. The time evolution of the computed mass Qn (left) and energy En (right) with α = 1.2, 1.6, 2.0 in the example 1.

Fig. 2. Numerical solutions obtained at α = 1.4, 1.6, 1.8, 2.0 for example 1 at t = 2.0 when τ = 0.0125 and N = 128.
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Fig. 3. Numerical solutions, for example 2, predicted at time t = 1.0, 2.0, 4.0 when τ = 0.01 and N = 128 with (1) α = 1.2 (Top line) (2)
α = 1.6 (Middle line) (3) α = 2.0 (Bottom line).

4.2. Example 2

Two-dimensional fractional Schrödinger equation given below is also studied here

i
∂ψ(x, y, t)

∂t
= (−∆)

α
2ψ(x, y, t) + ψ(x, y, t) − |ψ(x, y, t)|2ψ(x, y, t), (x, y) ∈ Ω , t ∈ [0, T ],

where Ω = [−π, π] × [−π, π]. The solution of ψ is sought subject to the following initial condition

ψ(x, y, 0) = sin(x2
+ y2) · exp(−x2

− y2).

In this example for modeling rouge wave propagation, we set τ = 0.01 and N = 128. Fig. 3 displays the
numerical solutions obtained under different values of α. We can see that the order α indeed affects the shape of
rogue wave. When α becomes smaller, the height and the width of the rogue wave solution are changed, which are
not observed in the case of α = 2.0.

4.3. Example 3

In this example, we extend our method and solve the following three-dimensional fractional Schrödinger equation
in Ω = [−π, π] × [−π, π] × [−π, π]:

i
∂ψ(x, y, z, t)

∂t
= (−∆)

α
2ψ(x, y, z, t) + ψ(x, y, z, t) − |ψ(x, y, z, t)|2ψ(x, y, z, t), (x, y, z) ∈ Ω .
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Fig. 4. Numerical solutions, for example 3, predicted at time t = 1.0, 2.0, 4.0 when τ = 0.01 and N = 128 with (1) α = 1.2 (Top line) (2)
α = 1.6 (Middle line) (3) α = 2.0 (Bottom line).

The initial condition is taken as

ψ(x, y, z, 0) = sin(x2
+ y2

+ z2) · exp(−x2
− 2y2

− z2).

We take τ = 0.01 and N = 128. Fig. 4 plots the numerical solutions at t = 1.0, 2.0, 4.0 with α = 1.2 (Top
line), α = 1.6 (Middle line) and α = 2.0 (Bottom line). It can be found that the results are symmetric with respect
to the x, y, z axis for α = 2.0. However, when the value of α becomes smaller, the ground state solution, under
our expectation, will be evolved to exhibit non-symmetric solution.

5. Concluding remarks

In this study, we have developed a Fourier spectral Galerkin method for solving the space-fractional nonlinear
Schrödinger equation. The proposed numerical scheme is proved to be able to preserve both the mass and energy
conservations. The convergence of the discrete scheme is also rigorously analyzed to show the second order accuracy
in time and the convergence with the spectral order accuracy in space. The superiority of the proposed schemes is
rooted in the weak formulation so that it can be easily extended to other spatial discretizations. Numerical examples
are provided to demonstrate the effectiveness of our method, which is also applicable to solve the two- and three-
dimensional fractional Schrödinger equations. Numerical results show that the fractional quantum mechanics has
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some interesting properties which are not observed in the classical Schrödinger where α is equal to 2. One can
also clearly see that the fractional order α can affect the shapes of the soliton and rogue wave, in the sense that
symmetry breaking indeed occurs in the solutions. Our future work will discuss the physical mechanism leading to
the currently observed bifurcation in the nonlinear fractional quantum mechanics.
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