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a b s t r a c t 

In this study, a GPU-accelerated improved mixed Lagrangian–Eulerian (IMLE) method is proposed to solve 

the three-dimensional incompressible Navier–Stokes equations. To improve the prediction accuracy, the 

proposed IMLE method approximates the total derivative term in Lagragian sense, and the spatial deriva- 

tive terms are approximated on Eulerian coordinates. Transfer of data from Lagrangian particles to data on 

Eulerian grids is accurately carried out by adopting moving least squares (MLS) interpolation method. The 

velocity-pressure decoupling issue is overcome by adopting pressure-free projection method in which the 

pressure field is calculated by solving a pressure Poisson equation (PPE). It is noted that the MLS inter- 

polation is time consuming since this procedure belongs to a pointwise scheme in which a local matrix 

equation shall be solved on each grid point. In addition, the discretized PPE forms a large sparse ma- 

trix and it is computationally intensive to solve by using the conjugate gradient (CG) method. Therefore, 

we are aimed to resort to CUDA- and OpenMP-programming means to accelerate the computation. In 

this study, the performance of the multiple GPUs code can reach up to 27 times faster with respect to 

multi-threads CPU performance. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

It has been well known that there are two major classes of nu-

erical methods to solve the incompressible Navier–Stokes equa-

ions: density and pressure based methods [1] . For the density-

ased method, the mass conservation equation is solved for the

ensity field and the pressure field is calculated by the equation

f state for ideal fluid. This class of methods is usually used for

ompressible flows, namely high Mach ( Ma ) number flows. On the

ther hand, for incompressible (low Ma number) fluid flows, a

ressure-based method is adopted such as the SIMPLE-family [2–

] , PISO [5] , or projection [6] algorithms. In these segregated solu-

ion algorithms, elliptic pressure Poisson equation (PPE) for pres-

ure or pressure correction of different sorts shall be invoked. It

s quite time consuming and becomes sometimes a bottle-neck to

olve the discretized PPE, thereby posing a great computational
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hallenge. Thanks to the ever-improving hardware technology, par-

llel programming technique nowadays plays an important role in

olving the incompressible Navier–Stokes equations efficiently in a

arge physical domain for many industrial flow simulations. 

In this study, a GPU-based improved mixed Lagrangian–Eulerian

IMLE) method [7] is proposed. The IMLE method is the refined

ersion of the previously proposed MLE method [8] . In the MLE

8] and IMLE [7] methods, the total and spatial derivative terms in

he governing equations are discretized within the Lagrangian and

he Eulerian frameworks, respectively. The key contribution of the

MLE method is that a particle reinitialization procedure is adopted

n each time step such that the spatial accuracy order can be im-

roved from second (MLE method [8] ) to fourth (IMLE method

7] ). By adopting the IMLE method, one can then theoretically get

id of the problematic convective instability and retain higher ac-

uracy order at the same time and can effectively transfer data

rom Lagrangian particles to Eulerian grids by employing the third

rder accurate moving least squares (MLS) interpolation method

7] . The velocity and pressure variables are separately solved by

dopting pressure-free projection method [6] in which a PPE is

olved for the primitive pressure variable. It is noted that the MLS
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Fig. 1. Cell-centered collocated grids in a two-dimensional case. (Cell-centered 

point stores variables u and p ; Boundary point stores boundary values of u and 

p ; Corner point stores boundary values of u .). 
interpolation procedure involves solving a large number of smaller

local linear systems. The number of local linear systems is equal

to the number of mesh cells and the size of local linear sys-

tem is 5 × 5 and 10 × 10 for two- and three-dimensional cases, re-

spectively. On the other hand, the procedure of discretizing the

PPE leads to a sparse symmetric and positive definite (SPD) ma-

trix. Even though the use of the conjugate gradient (CG) iterative

method can guarantee us to get a convergent solution of a SPD

matrix, it is still quite computationally intensive, because the CG

method consists of a series of matrix-vector multiplications and in-

ner product operations. The fact that the MLS interpolation and CG

methods take over 90% of the computation time (cross-reference to

Tables 2, 7 and 8 listed in [7] ) motivates us to adopt parallel pro-

gramming technique to improve the computational performance. 

To parallelize the computer code and execute it on multiple

GPUs, the data will be firstly sliced into several blocks along the

z -direction and then these data block are properly distributed onto

GPUs. Once the data are evenly scattered onto multiple GPUs, ex-

ecution of the parallel code is similar to the execution on a sin-

gle GPU subject to some data synchronization barriers. This study

invokes three major numerical methods, namely, the cell-center

combined compact difference scheme (CC-CCD), the MLS inter-

polation method, and the CG iterative method, which consume

all together roughly 99% of the execution time. How to properly

make the aforementioned three methods parallelizable is indeed

an important issue. To solve the solution from the CC-CCD ma-

trix equation, the block-tridiagonal LU factorization with multiple

right-hand side method [9] will be utilized. For solving the dis-

cretized PPE, the CG method will be applied on multiple GPUs [10–

12] to solve the linear system. With the use of multiple GPUs, the

speedup ratio can reach up to 27x in our four GPUs platform based

on the fine tuned multi-threads CPU results. 

The rest of the paper is organized as following. Section 2 shows

the governing equations considered in this study, followed by a

review of the IMLE method. Section 3 details the implementa-

tion of CUDA programming. Section 4 verifies the proposed GPU-

accelerated IMLE method by conducting the three-dimensional lid-

driven cavity flow simulation and a comparison study with the

CPU version of the IMLE method will be made. Section 5 draws

some concluding remarks. 

2. Numerical methodology 

2.1. Governing equations 

In this study, the equations for viscous flow motion, namely,

the mass and momentum conservation equations for incompress-

ible fluid flow are considered in a three-dimensional space � with

a boundary ∂�. 

dr 

dt 
= u (1)

∇ · u = 0 (2)

du 

dt 
= − 1 

ρ
∇ p + ν∇ 

2 u (3)

In the above equations, r is the particle coordinate, u the particle

velocity, ρ the fluid density, p the pressure and ν the kinematic

viscosity of the fluid under investigation. 

2.2. The improved mixed Lagrangian–Eulerian (IMLE) method 

The most outstanding advantage of solving the momentum

equation in Lagrangian sense is that there is no need to discretize
he convection terms. As a result, there is no numerical disper-

ion [13,14] and false diffusion [15,16] errors generated owing to

he adoption of upwinding schemes. However, it is not easy to im-

lement high order schemes to approximate the pressure gradient

nd the velocity Laplacian (physical diffusion) terms on randomly

istributed particles [8] . In the IMLE method, the above mentioned

patial derivative terms are discretized by the following sixth or-

er accurate cell-centered combined compact difference (CC-CCD)

cheme on the Eulerian grids. 
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, 1 < i < nc (6)

n the above equations, φ can be one of the velocity components

r pressure in order to calculate the physical diffusion or pres-

ure gradient term. Eq. (4) is adopted to calculate the first and

he second derivative terms at the first mesh cell corresponding to

he Dirichlet boundary condition φL while Eq. (5) is for the Neu-

ann boundary condition. For interior mesh cells, in Eq. (6) , nc de-

otes the number of cells along each direction. The adopted cell-

entered collocated grid system and boundary point arrangement

re schematically shown in Fig. 1 . It is noted that in an uniform

artesian mesh, the CC-CCD matrix is the same for each grid line.

herefore, a CC-CCD linear system with 9 nc 2 right hand sides can

e solved in parallel to get the first and the second derivative val-

es for every function with respect to every direction at all mesh

ells simultaneously. In other words, the values of ( u x ) ijk , ( u xx ) ijk ,

��, ( w z ) ijk and ( w zz ) ijk , where i, j , k = 1 ∼ nc, can be obtained si-

ultaneously. 

In order to solve the variables u and p in a decoupled way, the

ressure-free projection method in [6] is adopted. In the first step,

he intermediate particle velocity is calculated from Eq. (3) without
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Fig. 2. Schematic of the MLS interpolation process. (Circles denote Eulerian grids; 

Triangles denote Lagrangian particles; Solid symbols denote the points participat- 

ing in interpolation process; Hollow symbols denote the points not participating in 

interpolation process). 
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onsidering the pressure gradient term, followed by the calculation

f the intermediate particle coordinate. 

 

∗ = u 

n + �tν∇ 

2 u 

n (7)

 

∗ = r n + �tu 

∗ (8)

n the above equations, the superscripts n and ∗ denote the time

tep level and �t is the time step size. After performing the parti-

le movement step ( Eq. (8) ), the particles are no longer uniformly

ocated on the Cartesian grids but they are distributed slightly non-

niform. Therefore, a MLS interpolation step shall be taken to in-

erpolate the intermediate velocities from the Lagrangian particles

o the Eulerian grids, as shown in Fig. 2 . To perform MLS interpo-

ation, a local polynomial, taking the 2D case for an example, is

onstructed for each grid point as following. 

f ( x, y ) = a 0 + a 1 x + a 2 y + a 3 x 
2 + a 4 xy + a 5 y 

2 + O 

(
x 3 , y 3 

)
(9)

he above six introduced coefficients can be solved from the

ollowing derived equation underlying the moving least squares

ethod. 
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n the above equation, subscript i is the particle index, f i the in-

erpolated function ( u ∗, v ∗) on particle i, ω i the weighting function

hich is shown in [8] . It is noted that at each cell center, a local

atrix equation needs to be solved to get the intermediate veloci-

ies. Therefore, a total number of nc dim ( nc is the number of mesh

ells along each direction and dim is the dimension of the prob-

em) local matrix equations should be solved and it is a computa-

ionally intensive step. 
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(10) 

Since the intermediate velocity field is not divergence-free, the

ollowing modified step is adopted. 

 

n +1 = u 

∗
int erpolat ed −

�t 

ρ
∇p n +1 (11) 

t is noted that the value of p n +1 is needed to be calculated prior

o solving Eq. (11) . The PPE can be therefore derived by taking a

ivergence operation on Eq. (11) and, at the same time, setting ∇ ·
 

n +1 = 0 . 

 

2 p n +1 = 

ρ

�t 
∇ · u 

∗
int erpolat ed (12)

he above PPE can be discretized by the conventional second or-

er central difference scheme and the resulting matrix equation

an be solved by the CG solution solver. Since the resulting sparse

atrix is large in a three dimensional context, we are motivated

o conduct parallel programming calculation to increase computa-

ional performance. The numerical procedure of the IMLE method

s summarized in Algorithm 1 . 

lgorithm 1 Algorithm of the IMLE method. 

1: Read input file 

2: Calculate the computational parameters 

3: for time < MaxT ime do 

4: Calculate the diffusion terms on Eulerian grids. 

5: Calculate the intermediate velocities on Eulerian grids. 

6: Calculate the intermediate Lagrangian particle locations ac-

cording to the intermediate velocities. 

7: Interpolate the intermediate velocities from Lagrangian par-

ticles to Eulerian grids. 

8: Solve the PPE. 

9: Update the intermediate velocities on Eulerian grids. 

10: end for 

11: Output the results for post-processing 

. CUDA implmentation 

In our computing environment, there are four Nvidia Titan V

PUs and two Intel Xeon E5 CPUs. The GPU cards are connected

ith CPU by using PCIe Gen3 × 16 slots. The theoretical bandwidth

or each PCIe bus is 15.8 GB/s. In comparsion with the GPU theo-

etical computational performance, which is 7.8 TFLOPS for double

recision [17] , the PCIe bandwidth is extremely small. Therefore,

ow to properly distribute data to GPUs will affect the number of

ata movement between CPU and GPUs, which can significantly af-

ect the parallel performance. After the data distribution, the mul-

iple GPUs computation is similar to the computation executed on

 single GPU. The only difference lies in the requirements of addi-

ional synchronous barriers and data exchange. 

.1. Data decomposition 

In order to properly distribute data to GPUs and reduce the

umber of data transferring, the original particles and grids will
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Fig. 3. The original data will be sliced into several pieces. In each piece, there are 

inner data, boundary data and redundant data blocks. 
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be evenly divided into several blocks along the z -axis. Besides, ad-

ditional data blocks will be added into each GPU, which are the

boundary data blocks and the redundant data blocks. As shown in

Fig. 3 , these additional data blocks will be used to exchange the

data with their nearby GPUs. In our computational environment,

NVLink is not supported. Therefore, the boundary data of GPU will

be first copied to the main memory and, then, copied to the nearby

GPUs’ redundant data blocks. With the use of these redundant data

blocks, it is convenient for data accessing and is possible to reduce

the total amount of communication. It is worth to note that with

the use of redundant data blocks, CUDA streams can be utilized to

asynchronously copy the boundary data to the main memory. One

can also use another stream for computing the inner data. There-

fore, the communication cost can be hidden by another computa-

tion. 

3.2. Cell-centered combined compact difference scheme 

On uniform Cartesian mesh, the first and the second deriva-

tive terms can be computed by using the sixth-order accurate

combined compact difference scheme described in Section 2.2 . By

virtue of Eqs. (4) and (6) or Eqs. (5) and (6) , one can get the CC-

CCD matrix and the right hand side vector for the case with Dirich-

let or Neumann boundary condition, respectively. It is worthy to

note that the CC-CCD matrices are the same in the same direction.

As a result, the linear system can be solved with multiple right-

hand side (MRHS) vectors. 

By using one of the Eqs. (5) and (4) and Eq. (6) , the CC-CCD ma-

trix can be constructed. The size of the CC-CCD matrix is 2 nc × 2 nc ,

where nc denotes the number of mesh cells along one direction.

In addition, the CC-CCD matrix is a block-tridiagonal matrix. The

size of the submatrix is 2 × 2. As a result, the CC-CCD matrix can

be compactly stored as a 6 × 2 nc matrix. Besides, all the coeffi-

cients in the CC-CCD matrix are constants. Thus, the CC-CCD ma-

trix can be firstly factorized by the block-tridiagonal LU decom-

position method and the matrices L and U can be reused in the

subsequent computation. Since the CC-CCD matrix is banded and

will be computed only once in our algorithm, it is convenient to

use the CPU to factorize the CC-CCD matrix and copy the resulting

L and U matrices to GPUs. 
After the LU-factorized CC-CCD matrices are computed and

assed to GPUs, the MRHS vectors will be computed on GPU

hrough Eqs. (4) and (6) or Eqs. (5) and (6) for the cases subject to

irichlet or Neumann boundary condition, respectively. The size of

ach RHS column is 2 nc , and there are nc 2 independent RHS vec-

ors in one coordinate direction. To construct and then solve the

inear system, nc 2 CUDA threads will be launched and executed in

arallel. For three-dimensional problems, the CC-CCD scheme will

e applied to all three directions separately. 

.3. Moving-Least-Squares interpolation method 

After the calculations of the intermediate velocities and coor-

inates of the Lagrangian particles, the MLS interpolation method

ill be used to interpolate the three-dimensional velocities from

agrangian particles to Eulerian grids. In the MLS interpolation

ethod, a 10 by 10 matrix A (the three-dimensional version of

he matrix shown in (10) ) and a 10 by 3 RHS matrix will be con-

tructed for each grid to interpolate the intermediate velocities to

ulerian coordinates. To solve this 10 by 10 local matrix, Gaus-

ian elimination direct solver will be applied. In CPU computation,

he three nested loops will be utilized to compute the solution

or the three-dimensional problem. Also, since the constructions

f the matrix A and the RHS matrix are highly data independent,

he code can be easily parallelized for multi-threads CPU. Only the

penMP parallel do directive ($omp parallel do) needs to be

dded to the outermost loop and no synchronization barrier shall

e encountered. 

For GPU, it is, however, difficult to launch a thread block to con-

truct multiple 10 by 10 matrices and 10 by 3 RHS matrices and,

hen, store these matrices in shared memory. The sizes of the reg-

sters and the shared memory on GPU are limited. Also, the Gaus-

ian elimination solver is highly sequential, it’s difficult to solve

hese nc 3 linear systems in parallel. Instead of trying to store all

he data within shared memory and solve the linear system sep-

rately, all the matrices will be first computed and stored in the

lobal memory. The size of the memory is ( nc, nc , 10, 10, nc ) for

atrices A and the size is ( nc, nc , 10, 3, nc ) for RHS matrices. After

he matrix being obtained, the Gaussian elimination method will

e performed on these small matrices. To get the matrices and

ompute the solution, one thread will take responsibility for one

rid computation. In sum, ( nc, nc, nc ) threads will be launched in

ach iteration. 

As the problem becomes larger, the number of matrices A ,

hich is nc 3 , will increase dramatically. Once the size of matri-

es A exceeds 2 GB , it is impossible to index the memory by us-

ng the 4-byte signed integer. For three-dimensional problems, the

ssue of the indexing limitation will occur if more than 138 par-

icles are used ( nc 3 = 

2 31 bytes 
(8 bytes ×10 2 ) 

⇒ nc ≈ 138 ). By dividing these

articles into several batches along the z direction with the for-

ula nc×(100 ×8 ×nc 2 ) 

2 31 + 1 , the memory consumption will not exceed

 GB . Therefore, no matter how large the problem is, the MLS in-

erpolation method will never suffer from memory limitation issue.

.4. Pressure Poisson equation 

The PPE is discretized by the conventional second order central

ifference scheme expressed as 

p i +1 , j,k + p i −1 , j,k + p i, j+1 ,k + p i, j−1 ,k + p i, j,k +1 + p i, j,k −1 − 6 p i, j,k 

= 

ρh 

2�t 

(
u 

∗
i +1 , j,k − u 

∗
i −1 , j,k + v ∗i, j+1 ,k − v ∗i, j−1 ,k + w 

∗
i, j,k +1 − w 

∗
i, j,k −1 

)
(13)

n the above equation, u ∗, v ∗ and w 

∗ are the interpolated interme-

iate velocities and they are used to construct the RHS vector b .
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Fig. 4. Velocity profiles for the case of Re = 100 on the vertical and horizontal cen- 

trelines. 
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Fig. 5. Velocity profiles for the case of Re = 10 0 0 on the vertical and horizontal 

centrelines. 
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o  

v  

t  
o solve the pressure value p , the linear system will be solved by

sing the CG iterative method since the matrix A is symmetric and

ositive definite. 

The detailed CG method is shown in Algorithm 2 . For each it-

ration (lines 4–14), there are two dot products (lines 7 and 10),

hree vector operations (lines 8, 9, and 12) and one sparse matrix-

ector multiplication (line 6) operation. For the dot product opera-

ion, it is convenient to call the Nvidia’s cuBLAS library. 

lgorithm 2 Algorithm of the conjugate gradient solver on multi-

le GPUs. 

1: r = b − Ax 0 
2: v = r 

3: rs old = r · r 

4: for I ter < MaxI ter and 

√ 

rs old / size ( A ) > MaxErr do 

5: Synchronize boundary value of v with the nearby GPUs 

6: v 2 = Av 

7: α = v · v 2 /rs old 

8: x = x + αv 

9: r = r − αv 2 
10: rs new 

= r · r 

11: β = r s new 

/r s old 

12: v = r + βv 

13: r s old = r s new 

14: end for 

For the sparse matrix-vector multiplication operation (line 6),

ince the matrix coefficients are not stored in the CSR format but

n grids, it is impossible to use the SPMV library which was de-

eloped by Nvidia. Instead, the in-house kernel is utilized. With

he use of this in-house kernel, the memory consumption can be

ignificantly reduced because no additional memory is required to

tore the index array of matrix A . The size of the index array is

oughly equal to 6 × nc 3 + nc 3 , where nc denotes the number of

esh cells along three directions. For the largest case conducted in

his study, the number of mesh cells is 200 along three directions

nd the total amount of memory being used is roughly 448 MB (in

ouble precision). In CUDA programming, memory consumption is

 crucial issue since Nvidia Titan V GPU only has 12 GB memory

r even less in the previous version of GPU. The more memory one

an save, the larger problem one can solve. 

To execute the code on multiple GPUs, additional synchroniza-

ion barrier is encountered since all the data are sliced into sev-

ral blocks along z -direction and so do the residual vector r and

he conjugate vector v . To synchronize the data of conjugate vector

 , line 5 will be added to Algorithm 2 for exchanging the bound-

ry data v with the nearby GPUs. In our computing environment,

VLink is not supported. As a result, to exchange these data, all

oundary data need to be copied to main memory first and then

opied back. This is time consuming in each iteration of employ-

ng CG method, since for 200 mesh cells, 312.5 KB (200 2 × 8 bytes)

ata need to be transferred back and forth between the main

emory and GPUs. It is possible to use CUDA streams to hide the

ata transferring process by computing the non-overlapping data.

ith the use of the overlapping technique, the overall performance

ecomes slightly better than those without the use of the overlap-

ing technique [10,11] . 

. Validation and speedup 

.1. Lid-driven cavity flow 

To validate the developed GPU code, the three-dimensional lid-

riven cavity problem in a unit cube domain will be considered.

he simulation setting for the characteristic velocity, length and
ensity are 1. Besides, the Reynolds numbers under consideration

re 100 and 10 0 0 while the simulation times are 50.0 and 200.0,

espectively. The u velocity data are obtained along the line which

s intersected by planes x = 0.5 and y = 0.5, while the w veloc-

ty data are collected along the line which is intersected by the

lanes y = 0.5 and z = 0.5. To properly calculate the diffusion

nd the convective effects, fine grids/particles are utilized. Thus,

ur validation studies are based on the results obtained from 100 3 

rids/particles. In Figs. 4 and 5 , the GPU simulated results are com-

ared with the reference data collected from [18,19] . For the cases

ith two Reynolds numbers 100 and 1,000, our results agree quite

ell with the reference data. According to Figs. 4 and 5 , we claim

hat our multiple GPU code is correct. 

.2. Speedup 

For the computational environment, the CPU code is executed

n a CPU server which is featured with two Intel Xeon E5-2630

2 CPUs. The performance of CPU code will then be assessed with

hat obtained from the multiple GPUs code which is executed on
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Table 1 

Specifications of CPU and GPU computing enviroments. 

Characteristics Dual Intel Xeon E5-2630 v2 Nvidia Titan V 

Number of cores 12 cores 5120 CUDA cores 

DP theoretical performance 297.8 GFlops 6900 GFlops 

Cache 30 MB for L3 cache 4.5 MB for L2 Cache 

Memory 128 GB 12 GB on chip memory 

Max memory bandwidth 102.4 GB/s 652.8 GB/s 
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four Nvidia Titan V GPUs. The specifications for both the CPU and

GPU are summarized in Table 1 . 

In the following performance assessment, since it is time con-

suming to simulate the lid-driven cavity flow problem in 101 3 

grids on a single CPU core, it is better to adopt multi-threads

CPU code for calculating the speedup of GPU calculation. There-

fore, the fine tuned multi-threads CPU code will be first juxta-

posed with the single thread version. By doing so, it is possible

to justify whether the multi-threads CPU code has been properly

parallelized. Later, the simulation in 101 3 grids will be chosen to

show the speedup of twelve threads CPU and multiple GPUs re-

sults where the speedup is calculated based on the single thread

CPU result. Finally, the multiple GPUs speedup will be evaluated

based on the twelve threads CPU result. For the sake of compari-

son, the grid points of 81 3 , 101 3 , 151 3 , 201 3 are adopted. 

4.2.1. Performance evaluation of multi-threads and single thread CPU 

code 

To validate whether the multi-threads CPU code is properly par-

allelized or not, the speedup of each subroutine is shown in Fig. 6 .

It is evident that the MLS interpolation can easily approach the

theoretical speedup while the CC-CCD and CG methods can not.

This is because the MLS interpolation method has a higher data in-

dependency and data locality in comparison with the CC-CCD and

CG methods. Owing to higher data independency and locality, the

performance will not be limited by the memory bandwidth or the

size of L1 to L3 caches. 

On the one hand, poor speedup of the CC-CCD method is owing

to the calculation of y - and z -directional first and second deriva-
Fig. 6. Speedup of the twelve threads setting compared to the single thread setting 

for calculations carried out in different grids. 
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ive terms. Since the data of u, v, w velocities and pressure p are

tored in three dimensional array, it is impossible to access the

 and z directional data in alignment. In order to access these

ata and compute the first and second derivative terms in paral-

el, the computation speedup will be limited by the size of mem-

ry bandwidth. In our computing environment, the memory band-

idth is 102.4 GB/s for two CPUs. In the twelve threads compu-

ational setting, each thread can only access 8.5 GB data per sec-

nd. For the single thread setting, however, one thread can access

1.2 GB data in each second. Relatively small memory bandwidth

an not completely satisfy the memory requirement for the multi-

hreads CPU execution. Therefore, it is evident that the speedup of

C-CCD method is limited by memory bandwidth. 

The limited speedup of the CG method is not due to memory

andwidth but is resulted from some dependent operations. For

he CG method, although most of the operations can be done in

arallel, the dot product operation is highly sequential. To conduct

he dot product operation, each element of a vector needs to be

ultiplied by its corresponding element of another vector. Then, a

eduction algorithm will be applied to sum up the multiplied data

ogether. Later, the synchronization barrier will be inserted to col-

ect the results. This synchronization barrier is, however, the bot-

leneck of achieving theoretical speedup. With the synchronization

arrier, all the threads need to wait for the slowest thread to finish

ts computation. In CG method, this synchronization barrier will be

aunched multiple times during the calculation of linear system.

fter all, the performance will be slowed down and can not reach

he theoretical speedup. 

As to the MLS interpolation method, unlike the CC-CCD and

G methods, this method has an extremely high data indepen-

ency and does not require large memory bandwidth. It is be-

ause the MLS interpolation method involves mainly the calcula-

ion of 10 by 10 local matrix A and 10 by 3 right hand side matrix

 . The matrices A and b take 960 bytes (in double precision) for

ach thread, which is relatively small in comparison with 30 MB

3 cache. Thanks to the nature of higher memory locality, the ex-

cution of MLS interpolation will not be limited by memory band-

idth. Therefore, the actual speedup for the MLS interpolation can

pproach almost the theoretical speedup. 

.2.2. Performance evaluation of multiple GPUs, multi-threads and 

ingle thread codes 

Since the speedup of twelve threads result becomes saturated

or the case involving 101 3 grid points, it is better to consider this

umber of grid points to verify the speedup of GPU result. In Fig. 7 ,

he single thread performance is used as the baseline, and the

peedup of the twelve CPU threads result and the multiple GPUs

esult are juxtaposed. 

In the single GPU version of the CC-CCD method, tremendous

peedup performance can be easily achieved. In contrast, in mul-

iple GPUs’ calculation, no apparent speedup can be gained due

o the additional data exchange needed between different GPUs.

n single GPU, all the data are stored inside GPU’s on-chip mem-

ry, with wider memory bandwidth and more execution cores. As

 result, it can easily approach larger speedup. For multiple GPUs
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Fig. 7. The speedup of twelve CPU threads and multiple GPUs based on single 

thread performance. 
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Fig. 8. Speedup of the multiple GPUs results in comparison with the twelve threads 

CPU results obtained in different grid points. 
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ode, however, the data of velocities u, v, w and pressure p have

een sliced into pieces along the z -direction and these data are

cattered to different GPUs. To compute the z -directional first and

econd derivative terms, all the data need to be patched together.

n our computing environment, without the support of NVLink, all

he data need to be copied to the main memory and then copied

ack to the GPUs’ memory. Although the execution overlapping

echnique with CUDA stream can be utilized, the speedup is still

imited due to a large amount of data needed to be transferred.

aking 101 3 grid points as an example, the amount of data that

eeds to be transferred between four GPUs is 8 × 100 2 × 25 bytes

 ≈ 2 MB) for a variable. Therefore, no furthermore speedup can be

ained any longer in multiple GPUs code. 

The speedup of the MLS interpolation method is, however, lim-

ted in single GPU but the speedup grows linearly as more GPUs

re available. For MLS interpolation method implemented in GPUs,

nstead of constructing and solving the linear system with a 10 by

0 matrix A and 10 by 3 matrix b , matrices of dimensions ( nc, nc ,

0, 10, nc ) and ( nc, nc , 10, 3, nc ) are constructed and used to solve

or the interpolation intermediate velocities. Since all the CUDA

ores will access these data in poor alignment, the computation re-

uires a wider memory bandwidth. The limited speedup is arisen

rom an extra need of memory bandwidth. However, the computa-

ion on each GPU is independent, a relatively linear speedup with

ultiple GPUs can be achieved. 

The CG method implemented in a single GPU encounters the

imilar speedup restriction as multi-threads CPU code that the

ot product operation will slow down the parallel computing. For

he application of CG method on multiple GPUs, additional syn-

hronous barrier is needed to exchange data as shown in line 5

f Algorithm 2 . As discussed in [10,11] , this additional synchro-

ization is used to exchange data between different GPUs and will

educe the performance of multi-GPUs algorithm. As more GPUs

re added, the speedup shall be grown in a linear fashion. It is

orth to note that the Titan V in our computational environment

s much better than the GPUs used in [10,11] . The speedup of our

G method is also much higher than those reported in [10,11] . 
.2.3. Speedup of multiple GPUs code based on multi-threads code 

Finally, the multi-threads performance will be used as the base-

ine to evaluate the speedup of multiple GPUs performance for the

ase with larger number of grid points. The simulations involving

1 3 , 101 3 , 151 3 and 201 3 grid points are performed. 

As shown in Fig. 8 , for the case of 201 3 grid points, the overall

peedup of single GPU simulation can reach up to 7x, as compared

o our multi-threads CPU results. Besides, as more GPUs are used,

he speedup for two, three and four GPUs can reach roughly to 15x,

1x, and 27x, respectively. In light of the fact that the communi-

ation cost becomes higher when more GPUs are used, the over-

ll performance in terms of speedup is quite satisfactory. In other

ords, the data decomposition method used together with the

xecution-communication overlapping technique can indeed accel- 

rate computation and improve the speedup while more GPUs are

tilized. 

. Concluding remarks 

The newly developed IMLE particle method involves three ma-

or numerical schemes, which are the cell-center combined com-

act difference scheme (CC-CCD), the moving least squares (MLS)

nterpolation scheme and the conjugate gradient (CG) iterative

olver. The block-tridiagonal LU decomposition method with mul-

iple right hand side vectors is used to solve the CC-CCD matrix

quation. For the MLS interpolation scheme, Gaussian elimination

ethod is used to solve the multiple local small matrices. Finally,

he classical CG method is used to solve the PPE. 

To parallelize the code and execute it on multiple GPUs, the

omputational domain is decomposed along the z -axis. For ren-

ering a convenient data accessing, redundant data blocks are uti-

ized for data exchange. By virtue of the CUDA stream, the data

xchange process can be overlapped by the computation on inner

ata. Through the GPU acceleration on the three time-consuming

umerical schemes, the speedup for one to four GPUs can reach 7x,

4x, 21x and 27x, respectively, with respect to the multi-threads

PU simulation carried out in 201 3 grid points. 
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