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Abstract

In the present paper, a three-step iterative algorithm for solving a two-component

Camassa-Holm (2CH) equation is presented. In the first step, the time-dependent

equation for the horizontal fluid velocity with nonlinear convection is solved. Then

an inhomogeneous Helmholtz equation is solved. Finally, the equation for modeling

the transport of density is solved in the third step. The differential order of 2CH

equation has been reduced in order to facilitate numerical scheme development in

a comparatively smaller grid stencil. In this study, a fifth-order spatially accurate

upwinding combined compact difference scheme (UCCD5) which differs from that

in [J. Comput. Phys. 230 (2011) 5399-5416] is developed in a four-point grid sten-

cil for approximating the first-order derivative term. For the purpose of retaining

long-time Hamiltonians in the 2CH equation, the time integrator (or time-stepping

scheme) chosen is symplectic. Various numerical experiments such as the single
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peakon, peakon-antipeakon interaction and dam-break problems are conducted to il-

lustrate the effectiveness of the the proposed numerical method. It is shown that both

the Hamiltonians and Casimir functions are conserved well for all problems.

Keywords: two-component Camassa-Holm equation; inhomogeneous Helmholtz equation; com-

bined compact difference scheme; peakon-antipeakon; dam-break; Hamiltonians; Casimir

function.

1 Introduction

We consider the following two-component Camassa-Holm (2CH) equation:

ut +κux−utxx +3uux−2uxuxx−uuxxx±σρρx = 0, (1)

ρt +(ρu)x = 0. (2)

In the context of shallow water theory, u can be interpreted as the horizontal fluid velocity and ρ is

related to the water elevation in the first approximation [1,2]. In this case, the system is physically

meaningful only when σ is positive [3]. It should be also pointed out that the CH equation is

reduced from the 2CH equation by taking σ→ 0 instead of ρ→ 0. The quantity of ρ still exists

implicitly in the CH equation and plays an important role in the construction of its integrable

discretization and self-adaptive moving mesh scheme [4, 5]. Therefore, the above system (1)-(2)

can be considered as a generalization of the CH equation [6, 7].

Similar to the CH equation, equation (1) can be written in terms of the momentum variable

m = u−uxx +κ. The resulting equation with the reduced spatial differential order takes the form

of

mt +2mxu+mux±σρρx = 0. (3)

The system (2)–(3) constitutes the so-called m-formulation of the 2CH equation. From the com-

putational point of view, it is preferable for us to adopt the m-formulation due to the reduction of

differential order by two.

Subsequent to original work by Olver and Rosenal [8], the 2CH equation for modeling shallow

water waves has been studied intensively [1,2,9,10], for example, on the well-posedness and blow-

up phenomenon [10] and the global existence of small-amplitude and large-amplitude traveling

wave solutions were also approved in [11]. Most recently, it was shown that the KdV, the CH and

the 2CH hierarchies all belong to a more general r-KdV-CH hierarchy [12].

Although many numerical methods have been proposed to the CH equation, the numerical

scheme for the 2CH equation is very rare. As far as we are concerned, only a multi-symplectic

method was proposed by Cohen et al. [3]. In [13], although some numerical examples were given

for generalized multi-component CH equation, the numerical scheme was not provided. The lack
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of numerical investigation of this physically important and computationally challenging problem

motivates the current study.

The aim of the present paper is to propose a three-step finite difference scheme to solve the

2CH equation. The strategies of the scheme development is as follows: after a brief review for

the 2CH equation in Section 2, we transform the 2CH equation which contains the third-order

dispersive term into its equivalent u−P− ρ form which contains the reduced differential order

terms and the inhomogeneous Helmholtz equation in Section 3. A sixth-order accurate symplectic

Runge-Kutta (SRK6) scheme is used to deal with the time evolution of the u solution. A fifth-

order spatially accurate upwinding combined compact difference scheme (UCCD5) is used in a

four-point grid stencil for approximating the first-order derivative term of u. A three-point sixth-

order accurate compact scheme is applied to solve the inhomogeneous Helmholtz equation. All

above details are presented in Section 4. Analysis of the proposed scheme is given in Section 5.

In Section 6, we illustrate various numerical examples to show the effectiveness of the proposed

numerical scheme. The paper is concluded by Section 7.

2 Integrable properties of the 2CH equation

The 2CH equation has attracted considerable attention since it was initially appeared in [8] as

a tri-Hamiltonian system. The system of equations (1)–(2) ( or (2)–(3) ) is physically important

as well and is worthy to be investigated since it approximates the governing equations for shallow

water waves [2]. Besides its practical significance and scientific importance, the 2CH equation has

many rich mathematical structures. It is integrable, admitting a Lax lair of the form [1]

Ψxx =
(
−σλ2ρ2 +λm+

1
4

)
Ψ , (4)

Ψt =

(
1

2λ
−u
)

Ψx +
1
2

uxΨ . (5)

The compatibility condition Ψxxt = Ψtxx gives the 2CH equation (2)–(3).

The 2CH equation is bi-Hamiltonian, its first Poisson bracket

{F,G}1 =−
∫ [δF

δm
(m∂+∂m)

δG
δm

+
δF
δm

ρ∂
δG
δρ

+
δF
δρ

∂ρ
δG
δm

]
dx , (6)

corresponds to the existence of the following Hamiltonian

H1 =
1
2

∫ (
u2 +u2

x +σρ2)dx, (7)

while its second Poisson bracket

{F,G}2 =−
∫ [δF

δm
(∂−∂3)

δG
δm

+
δF
δρ

∂
δG
δρ

]
dx , (8)

3



corresponds to the Hamiltonian

H2 =
1
2

∫ (
u3 +uu2

x +σuρ2)dx. (9)

As shown in [9], by noting a fact that equation (2) represents a conservation law, thus a hodograph

(reciprocal) transformation (x, t)7→(y,s) can be defined as

dy = ρdx−ρudx, ds = dt, (10)

which converts the Lax pair of the 2CH equation into the first negative flow of the AKNS hierarchy.

Among the infinite number of Hamiltonian functions, two with the lowest spatial differential order

given in Eqs. (7) and (9) will be employed in Section 6 for the justification of the new finite

difference scheme for the 2CH equation detailed in Sections 3 and 4.

As for the dependent variable ρ(x, t) for Eq. (2), it possesses the Casimir functions defined as

C1 =
∫

ρ dx, (11)

C2 =
1
2

∫
(u−uxx) dx. (12)

The above two Casimir functions and the Hamiltonian functions defined in Eqs. (7) and (9) will

be considered in each test case in Section 6 to demonstrate that the employed difference scheme

can indeed conserve the Hamiltonian and Casimir functions.

The system of equations (1)-(2) is rewritten in its multi-symplectic form as a new system of

equations containing only the first-order derivatives in space and time. Such a reformation of

the equations enables us to extract multi-symplectic structure consisting of two skew-symmetric

matrices M and K and one scalar function S. Given the derived multi-symplectic formulation

M zt +K zx = ∇z S(z) for the vector z, the local multi-symplectic conservation laws, namely,
∂ w
∂ t +

∂ ξ
∂ x = 0, ∂ E

∂ t +
∂ F
∂ x = 0 and ∂ I

∂ t +
∂ G
∂ x = 0 have been derived with w, ξ, E, F, I and G being

detailed in [1]. Other global invariants have been also derived in [1]. These local conservation

laws and global invariants are useful for use in code validation if benchmark solutions are not

available for making a comparison of results.

3 Three-step iterative algorithm for solving the 2CH equa-

tion

When approximating the 2CH equation, it is essential to avoid dealing with the third-order

derivative term and the mixed space-time derivative term. To acquire a better predicted nonlinear

and dispersive natures of the shallow water with higher level of accuracy without invoking too

many stencil points, one can transform the original 2CH equation to a more appropriate equivalent
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formulation. To this end, the intermediate solution u will be firstly computed from the follow-

ing nonlinear system of equations, subject to the prescribed boundary conditions and the initial

conditions for u0 and ρ0:

ut +uux +Px = 0, (13)

P−Pxx = u2 +
1
2
(ux)

2 +κu+
1
2

ρ2, (14)

ρt +(uρ)x = 0. (15)

The above u−P−ρ reformulation of the 2CH equation has the measure µ defined by

µ = u2 +u2
x +ρ2. (16)

This quantity, which is nothing but the density of the Hamiltonian function H1, satisfies the trans-

port equation given by

µt +(uµ)x = (u3−2Pu)x. (17)

Note that Cohen et al. [3] have considered the above system of equations as the second multi-

symplectic formulation of the 2CH equation.

4 Numerical method

Presentation of our proposed high-order scheme is organized into the following six subsections.

4.1 Symplectic scheme for the temporal derivative term in Eq. (13)

When solving the bi-Hamiltonian system (1)–(2), a structure-preserving numerical integrator

should be adopted for conserving its symplecticity. A sixth-order symplectic Runge-Kutta scheme

[14] is used in this study to compute the 2CH solution.

Having calculated the solution un at the time t = n∆t, the solution un+1 at the next time step

is obtained from the following iterative method. We start with an initial guess for a set of values

u( j) ( j=1,2, 3) by un, then calculate F( j). The computed values of F( j) are then substituted into the

following three implicit equations to compute the updated values of u( j) ( j= 1,2,3)

u(1) = un +∆t
[

5
36

F(1)+

(
2
9
+

2c̃
3

)
F(2)+

(
5
36

+
c̃
3

)
F(3)

]
, (18)

u(2) = un +∆t
[(

5
36
− 5c̃

12

)
F(1)+

2
9

F(2)+

(
5
36

+
5c̃
12

)
F(3)

]
, (19)
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u(3) = un +∆t
[(

5
36
− c̃

3

)
F(1)+

(
2
9
− 2c̃

3

)
F(2)+

5
36

F(3)
]
, (20)

where c̃= 1
2

√
3
5 . Note that F( j), j = 1, 2, 3, represent the values of F(≡−Px−uux) at t = n+(1

2 +

c̃)∆t, t = n+ 1
2 ∆t, and t = n+(1

2 − c̃)∆t, respectively. As the difference of u( j) computed from the

two consecutive iterations becomes negligibly small, calculation of the values F( j) from equations

(18-20) is terminated. Upon reaching our specified tolerance 10−8, the solution at t = (n+1)∆t is

computed as follows

un+1 = un +
∆t
9

[
5
2

F(1)+4F(2)+
5
2

F(3)
]
. (21)

4.2 Fifth-order upwinding combined compact difference (UCCD5)
scheme for the spatial derivative terms

An upwinding combined compact difference scheme possessing a better dispersion relation

has been developed to solve the first derivative term in Eq. (13). Our primary aim is to enhance

convective stability of the Eq. (13) by virtue of the increased dispersive accuracy. In the follow-

ing the combined compact difference scheme for approximating the spatial derivative term ∂u
∂x is

presented. Besides the nodal value of the first-order derivative term ∂u
∂x , the second derivative term

∂2u
∂x2 is also considered as the unknown variable at each grid point. Combining the first and second

order derivative terms enables us to get a solution with spectral-like resolution. In a four-point grid

stencil, the numerical scheme employed for calculating the nodal values ∂u
∂x and ∂2u

∂x2 in this study is

given below

a1
∂u
∂x

∣∣∣∣
i−1

+
∂u
∂x

∣∣∣∣
i
+a3

∂u
∂x

∣∣∣∣
i+1

=
1
h
(c1ui−2 + c2ui−1 + c3ui)−h

(
b1

∂2u
∂x2

∣∣∣∣
i−1

+b2
∂2u
∂x2

∣∣∣∣
i
+b3

∂2u
∂x2

∣∣∣∣
i+1

)
, (22)

−1
8

∂2u
∂x2

∣∣∣∣
i−1

+
∂2u
∂x2

∣∣∣∣
i
− 1

8
∂2u
∂x2

∣∣∣∣
i+1

=
3
h2 (ui−1−2ui +ui+1)−

9
8h

(
− ∂u

∂x

∣∣∣∣
i−1

+
∂u
∂x

∣∣∣∣
i+1

)
. (23)

The coefficients shown in Eq. (23) are derived solely by the method of Taylor series expansion,

from which the leading truncation error terms in the derived modified equation are eliminated. By

virtue of the modified equation analysis we can get the formal accuracy order of six [15].

Derivation of the undetermined coefficients in Eq. (22) is started as well by performing Taylor

series expansion on the terms ui−2, ui−1, ∂u
∂x

∣∣∣
i−1

, ∂u
∂x

∣∣∣
i
, ∂u

∂x

∣∣∣
i+1

, ∂2u
∂x2

∣∣∣
i−1

, ∂2u
∂x2

∣∣∣
i

and ∂2u
∂x2 |i+1 to get the

corresponding modified equation. The six leading truncation error terms in the modified equation
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are then eliminated. We can therefore obtain a set of algebraic equations

c1 + c2 + c3 = 0, (24)

−2c1− c2−a1−a3 = 1, (25)

4c1 + c2 +2a1−2a3−2b1−2b2−2b3 = 0, (26)

8c1 + c2 +3a1 +3a3−6b1 +6b3 = 0, (27)

16c1 + c2 +4a1−4a3−12b1−12b3 = 0, (28)

32c1 + c2 +5a1 +5a3−20b1 +20b3 = 0. (29)

At this moment, we are still short of two algebraic equations to uniquely determine all the intro-

duced coefficients shown in Eq. (22). Our underlying idea of deriving the necessary algebraic

equations so as to be able to get a better approximation of the term ∂u
∂x is to reduce the numeri-

cal error of an accumulative type. Having performed this error reduction derivation, we can then

expect to retain the theoretical dispersive property of ∂u
∂x .

Our strategy of achieving the goal of reducing the numerical dispersion error is to match the

exact and numerical wavenumbers. The effective wavenumbers α′ and α′′ are set to be equal to

those shown in the following two equations to get the expression of α′h given below [16]

iα
′
h (a1e−iαh +1+a3eiαh) = (c1e−2iαh + c2e−iαh + c3)− (iα

′′
h)2(b1e−iαh +b2 +b3eiαh), (30)

(iα
′′
h)2(−1

8
e−iαh +1− 1

8
eiαh) = (3e−iαh−6+3eiαh)− iα

′
h (−9

8
e−iαh +

9
8

eiαh). (31)

It is worthy to note here that the real and imaginary parts of the numerical modified (or scaled)

wavenumber α′h account for the numerically generated dispersion error (or phase error) and the

dissipation error (or amplitude error), respectively.

To improve the dispersive accuracy for α′, the exact value αh should be very close to ℜ[α′h],
where ℜ[α′h] denotes the real part of α′h. To achieve the goal of improving solution accuracy

we define a positive-valued error function E(α) over the integration interval 0 ≤ αh ≤ 7π
8 for the

modified wavenumber αh

E(α) =
∫ 7π

8

0

[
W ·
(
α h−ℜ[α′ h]

)]2 d(αh), , (32)

where the weight function W is chosen to be the denominator of (α h−ℜ[α′ h]) [17]. This choice

facilitates us to integrate E(α) exactly. Requiring the error function to be a minimum value leads

to two conditions

∂E
∂c2

= 0,
∂E
∂c3

= 0. (33)

The above condition, together with other six algebraic equations (24-29), uniquely determined

eight introduced unknown coefficients a1 = 0.8873686, a3 = 0.0491178, b1 = 0.1495320, b2 =
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−0.2507682, b3 = −0.0123598, c1 = 0.0163964, c2 = −1.9692791 and c3 = 1.9528828. The

upwinding scheme developed in four stencil points i− 2, i− 1, i and i+ 1 for ∂u
∂x has the spatial

accuracy of order fifth according to the derived modified equation given below

∂u
∂x

=
∂u
∂x

∣∣∣∣
exact

+0.0000077381655315119445 h5 ∂6u
∂x6 +H.O.T. . (34)

4.3 Discretization of Px

The three-point combined compact difference (CCD) scheme derived in [15] is applied to

approximate the gradient term Px in Eq. (13). The resulting equations are as follows:

h
16

∂2P
∂x2

∣∣∣∣
i−1
− h

16
∂2P
∂x2

∣∣∣∣
i+1

=
15

16h
(Pi+1−Pi−1)+

7
16

(
∂P
∂x

∣∣∣∣
i−1

+
16
7

∂P
∂x

∣∣∣∣
i
+

∂P
∂x

∣∣∣∣
i+1

)
, (35)

−1
8

∂2P
∂x2

∣∣∣∣
i−1

+
∂2P
∂x2

∣∣∣∣
i
− 1

8
∂2P
∂x2

∣∣∣∣
i+1

=
3
h2 (Pi−1−2Pi +Pi+1)+

9
8h

(
∂P
∂x

∣∣∣∣
i−1
− ∂P

∂x

∣∣∣∣
i+1

)
. (36)

The above center-type CCD scheme developed in a stencil of three grid points i−1, i and i+1 for
∂P
∂x has the sixth-order accuracy.

4.4 Three-point sixth-order scheme for the Helmholtz equation

The compact difference scheme developed in [18, 19] for solving the Helmholtz equation is

applied. This three-point implicit scheme uses only two adjacent nodes to relate f to the partial

derivative terms fxx and fxxxx. The Helmholtz equation (14) is approximated by

Pi+1−
(

2+ h2 +
1
12

h4 +
1

360
h6
)

Pi +Pi−1

= h2 fi +
1
12

h4
(

fi +
∂2 fi

∂x2

)
+

1
360

h6
(

fi +
∂2 fi

∂x2 +
∂4 fi

∂x4

)
, (37)

where fi = −(u2
i +

1
2(ux)

2
i +κui +

1
2(ρ

2
i )). The proposed three-point compact difference scheme

for equation (14) has been shown to be sixth-order accurate in space because the corresponding

modified equation has been derived as ∂2P
∂x2 − P = f + h6

20160
∂8P
∂x8 +

h8

1814400
∂10P
∂x10 + · · ·+H.O.T.. The

spatial derivatives ∂2 fi
∂x2 and ∂4 fi

∂x4 in Eq. (37) are discretized by

∂2 fi

∂x2 = f
′′
i =
−5

2 fi +
4
3( fi−1 + fi+1)− 1

12( fi−2 + fi+2)

h2 , (38)

and

∂4 fi

∂x4 =
−2 f

′′
i + f

′′
i−1 + f

′′
i+1

h2 , (39)

which have the spatial accuracy of order fourth and second, respectively.
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4.5 Discretization of (uρ)x and symplectic time discretization scheme
for Eq. (15)

We are aimed to conserve the flux term uρ across a cell of length h. This objective is achieved

by the approximation given by ∂ (uρ)
∂x

∣∣∣
i
= ∂g

∂x

∣∣∣
i
=

ĝi+ 1
2
−ĝi− 1

2
h . The flux values of g at two half nodal

points i± 1
2 are approximated as

ĝi+1/2 = γ1gi−1 + γ2gi− [(α1gi−1/2 +α2gi+3/2)+h(β1g
′
i−1/2 +β2g

′
i+1/2 +β3g

′
i+3/2)], (40)

and

ĝi−1/2 = γ1gi−2 + γ2gi−1− [(α1gi−3/2 +α2gi+1/2)+h(β1g
′
i−3/2 +β2g

′
i−1/2 +β3g

′
i+1/2)] (41)

The unknown coefficients shown in Eqs. (40) and (41) are then derived by comparing the co-

efficients derived in Eq. (22) for ∂g
∂x |i. After a term-by-term comparison of equations, all the

coefficients in Eq. (40) and Eq. (41) can be derived as α1 = 0.8873686, α2 = 0.0491178,

β1 = 0.1495320, β2 =−0.2507682, β3 =−0.0123598, γ1 =−0.0163964, γ2 = 1.9528828.

The sixth-order symplectic Runge-Kutta scheme is applied to compute solution of ρn+1. Hav-

ing calculated the solution ρn and un at the time t = n∆t, the solution ρn+1 at the next time step

is obtained from the following iterative method. We start the calculation of solutions by guessing

a set of values ρ[∗],( j) for ρn, where j=1 to 3, then calculate G( j)(≡ − ∂(unρ[∗],( j))
∂x ).The computed

values of G( j) ( j = 1 to 3) are then substituted into the three implicit equations given below to

compute the updated values of ρ( j) ( j= 1 to 3)

ρ(1) = ρn +∆t
[

5
36

G(1)+

(
2
9
+

2c̃
3

)
G(2)+

(
5
36

+
c̃
3

)
G(3)

]
, (42)

ρ(2) = ρn +∆t
[(

5
36
− 5c̃

12

)
G(1)+

2
9

G(2)+

(
5
36

+
5c̃
12

)
G(3)

]
, (43)

ρ(3) = ρn +∆t
[(

5
36
− c̃

3

)
G(1)+

(
2
9
− 2c̃

3

)
G(2)+

5
36

G(3)
]
. (44)

If the convergence criterion Maxi=1,N |ρ( j)
i − ρ[∗],( j)

i | ≤ 10−9 ( j = 1 to 3) is satisfied, ρn+1 is

computed by

ρn+1 = ρn +
∆t
9

[
5
2

G(1)+4G(2)+
5
2

G(3)
]
. (45)

Otherwise, we set ρ( j)
i = ρ[∗],( j)

i ( j = 1 to 3) and calculation is repeated until the convergence

criterion is satisfied.
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4.6 Steps of the proposed algorithm

For the sake of clarity, the procedure of calculating the solution un+1 from un is summarized

below:

Step 1: Calculation of the solution is started from the initial guess for ρ[∗],( j) = ρn for j =1, 2, 3.

Step 2: Discretize ∂(unρ[∗],( j))
∂x = ∂g( j)

∂x ≈
ĝ( j)

i+ 1
2
−ĝ( j)

i− 1
2

h in Eq. (15), where h is the grid size. The flux

values of g at two half nodal points ĝi+ 1
2

and ĝi− 1
2

can be approximated by Eqs. (40) and (41),

respectively.

Step 3: Set −
ĝ( j)

i+ 1
2
−ĝ( j)

i− 1
2

h = G( j) and substitute G( j), for j=1, 2, 3, into Eqs. (42)-(44) to calculate

ρ( j).

Step 4: Check for the convergence criterion: Maxi=1,N |ρ( j)
i −ρ[∗],( j)

i | ≤ 10−9, where N denotes the

number of grid points. If yes, go to step 5. Otherwise, set ρ( j)
i = ρ[∗],( j)

i and repeat the calculation

from Step 2 to Step 4. Note that we drop the subscript of i in the subsequent steps for the sake of

simplicity.

Step 5: Substitute the known values ρn and G( j), for j =1, 2, 3, into Eq.(45) to get the updated

value of ρn+1.

Step 6: Set the initial values u[∗],( j) = un, for j =1, 2, 3.

Step 7: Substitute the known values of ρn+1 and u[∗],( j) into discretization formulation of the

Helmholtz equation (37) to obtain P[∗],( j), for j=1, 2, 3.

Step 8: Based on the known values of u[∗],( j) and P[∗],( j), approximate u[∗],( j)
x and P[∗],( j)

x by the

upwinding CCD and center CCD schemes described respectively in Section 4.2 and Section 4.3.

Step 9: Make use of u[∗],( j), u[∗],(i)x and P[∗],(i)
x to evaluate F [∗],(i) for j=1, 2, 3, where F ≡−Px−uux.

Step 10: Set F [∗],( j)=F( j) and substitute F( j) into Eqs. (18)-(20) to derive u( j), for i =1, 2, 3.

Step 11: Check for the convergence criterion: Maxi=1,N |u( j)
i − u[∗],( j)

i | ≤ 10−9, where N denotes

the number of grid points. If yes, go to next step. If not, set u( j)
i = u[∗],( j)

i and repeat the calculation

from step 7 to step 11 until the convergence criterion is satisfied.

Step 12: Substitute the F( j) which is calculated by step 10 and the known values un into Eq. (21)

to get the updated value of un+1.

5 Fundamental analysis of the proposed scheme

The solution to the model equation ut + c ux = 0 is assumed to be of the form

u = ûα(t)eiαx, (46)

where ûα is the Fourier mode of the wave number α. Differentiation of the above equation leads

to

∂u
∂x

∣∣∣∣
exact

= iαh
ûα

h
eiαx. (47)
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The approximated derivative term ∂u
∂x can be similarly written as

∂u
∂x

∣∣∣∣
numerical

= iα
′
h

ûα

h
eiαx = (Kr + iKi)

ûα

h
eiαx. (48)

Here, Kr and Ki, denoting the real and imaginary parts of iα′h (cf. Eq. (30)), account for the

dissipation and dispersion errors, respectively.

Fig. 1 shows the dispersion and dissipation characteristics of the proposed eighth-order com-

bined compact difference (CCD8) scheme [20], eighth-order optimized compact difference (OCD8)

scheme [21] and the upwinding fifth-order combined compact difference (UCCD5) scheme chosen

in the present paper. It can be seen that the UCCD5 scheme has better dispersion properties than

other schemes owing to the improved dispersive accuracy. Furthermore, in the high-frequency

range, the UCCD5 scheme has larger dissipation in comparison with other schemes. which may

help to filter out high-frequency errors and to inhibit the numerical oscillations.

6 Numerical experiments

In this section, we justify the proposed numerical scheme by traveling wave solution, single

peakon solution, peakon-anitipeakon solution and breaking wave solution. Since all of them are

not analytic, we make an indirect verification of the predicted 2CH solution, both the Hamiltonians

and invariant functions defined in Eqs. (7), (9), (11) and (12) are computed and are plotted with

respect to time. We evaluate the discretised Hamiltonians and Casimir functions numerically as

follows H1,h = h
2 ΣN

i=1

(
u2

i +(ui)
2
x +σρ2

i
)
, H2,h = h

2 ΣN
i=1

(
u3

i +ui(ui)
2
x +σuiρ2

i
)
, C1,h = hΣN

i=1 ρi,

C2,h =
h
2 ΣN

i=1(ui− (ui)xx), where h is the grid size and N denotes the number of grid points.

6.1 Traveling wave problem

Assuming a traveling wave solution of the 2CH equation to be of the form

u(x, t) = φ(x− ct) (49)

with periodic boundary condition, we have the following second order differential equation

φxx =
A2

(φ− c)3 −
B2

(φ− c)2 +φ , (50)

and ρ = A
φ−c . Given initial conditions φ(0) = 0.5 and φx(0) = 1 and provided that A = B =−2 and

c = 2, the period of the resulting smooth traveling wave is approximately equal to 5.1475 [3].

The number of cells used in our simulation are N = 32 and N = 128 (i.e. ∆x = 5.1475
32 ≈ 0.16

and ∆x = 5.1475
128 ≈ 0.04) in the domain of [0, 5.1475]. The time step is ∆t = 0.05∆x. Fig. 2 and Fig.

3 display the computed profiles of u(x, t) and ρ(x, t) at different times. Good agreement using

only N = 32 grids between the computed and exact solutions of u and ρ demonstrates that the

11



proposed high-order symplecticity-preserving combined compact difference scheme is applicable

to simulate 2CH equation. From the computed Hamiltonians H1 and H2 and Casimirs C1 and C2,

which are plotted in Fig. 4, it is obvious that they are all conserved very well.

6.2 A single peakon wave problem

A single peakon with u0 = e−|x| and ρ0 = 0.5 [3] is computed in the domain [0, 20], in which

the total numbers of uniformly distributed grid points are 128, 1024 and 16384, respectively.

In addition, the periodic boundary condition is employed. The wave profiles computed at t =

1,2,3,4,5 together with initial condition are plotted in Fig. 5. We can see clearly from Fig. 5

that the moving peakon is well calculated without generating any numerical oscillation using our

UCCD5 scheme. Moreover, the evolution of the peakon solution has the same form as the one

predicted in [3] (see Fig. 6). Computed profiles of ρ(x, t) are presented in Fig. 7 for three different

grids (i.e. 128, 1024 and 16384 grids) in order to ensure that the number of the employed grid

points is enough to capture the topological changes. Only a tiny difference is observed in Fig. 7.

Application of center compact difference scheme [15], which is also described in Section

4.3, may cause high frequency oscillation to occur in the smooth flow region since the central

compact difference schemes have no dissipation. In order to eliminate the oscillation, artificial

viscosity is often added. The upwinding compact difference scheme has an inherent artificial

viscosity and is more stable than the center compact difference scheme. To show the advantage of

the upwinding compact difference scheme, we present the numerical results using the center and

upwinding compact difference schemes to approximate the convective terms in Eq. (13). In Fig. 8,

we can see that the dynamics of a single peakon predicted at ∆x= 0.09 exhibits excellently without

generating any numerical oscillations by using the upwinding compact difference scheme. On the

contrary, oscillations for u are produced when the center compact difference scheme described in

Section 4.3 is used to approximate the first derivative terms in Eq. (13)

The conserved Hamiltonians given in Eq. (7) and Eq. (9) and Casimirs in Eq. (11) and Eq.

(12) are numerically confirmed to be decreased only by a negligible amount at all times in Fig.

9. We define Herror
1 = |H1(t)−H1(t=0)|

H1(t=0) and Herror
2 = |H2(t)−H2(t=0)|

H2(t=0) for measuring the computed

errors. Fig. 10 displays relative errors of Hamiltonians with Euler box scheme for ∆x = 0.1 [3]

and present numerical scheme for coarse grid spacing ∆x = 0.15625. We can see the relative errors

of Hamiltonians are smaller by using present numerical scheme rather than box scheme.
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6.3 Peakon-antipeakon interaction problem

The peakon-antipeakon interaction case was studied previously by D. Cohen et al. [3]. In the

domain [0,1], the initial condition of the 2CH equation is considered as follows at ρ0 = 1.5 and

u0 =





1/sinh(1/4)sinh(x); if x≥ 0 and x≤ 1/4,

1/sinh(x−1/2)sinh(−1/2); if x > 1/4 and x≤ 3/4,

1/sinh(1/4)sinh(x−1); if x > 3/4 and x < 1.

(51)

Here the periodic boundary condition is employed. The predicted solutions of u and ρ are plotted

in Fig. 11 and Fig. 12 respectively for the single right-running peakon and the single left-running

antipeakon for ∆x = 0.09. We can see that, same as the numerical experiment in [3], the dynamics

of the solution is numerically caught well. The computed Hamiltonians and Casimirs are plotted

against time as before for N = 1024. We can clearly see from Fig. 13(a) and Fig. 13(b) that the

calculated Hamiltonians and Casimir functions remain almost unchanged at all times.

6.4 Dam break problem

This dam break problem is solved subject to the initial condition given in [3, 13]

u(x,0) = 0, ρ(x,0) = 1+ tanh(x+0.1)− tanh(x−0.1). (52)

with a periodic boundary condition in a domain [−6,6]. Fig. 14 and Fig. 15 display the profiles

showing the evolution of u(x, t) and ρ(x, t) solutions using 128 grids and 1024 grids (i.e. ∆x =

0.09375 and ∆x = 0.01171875) within the time interval [0, 24]. The H1 and H2 values plotted

in Fig. 16(a) and the C1 and C2 values plotted in Fig. 16(b) confirm again that the proposed

scheme is applicable to simulate the time evolving dam break wave. The relative errors in Herror
1 =

|H1(t)−H1(t=0)|
H1(t=0) and Herror

2 = |H2(t)−H2(t=0)|
H2(t=0) are computed and plotted in Fig. 17 (a) by using our

scheme with ∆x = 0.09375 and in Fig. 17 (b) by using the multi-symplectic numerical integrator

scheme with ∆x = 0.09 [3].

7 Concluding remarks

In this paper, we have presented a three-step u−P− ρ algorithm to solve a two-component

Camassa-Holm equation subject to periodic boundary condition. To preserve the symplectic na-

ture existing in the equation for u, the sixth-order scheme for the time derivative terms and the

fifth-order upwinding combined compact scheme for the first-order spatial derivative term are ap-

plied. Sixth-order scheme is developed in a three-point grid stencil to solve the inhomogeneous

Helmholtz equation for P. To conserve the flux of the equation for ρ, a conservative compact

scheme with the accuracy order of fifth has been developed. The application of the developed

high-order symplecticity-preserving combined compact difference scheme to the traveling wave,

13



peakon, peakon-antipeakon solutions and the solution with a sharp initial profile has demonstrated

the effectiveness of the scheme, which can preserve both the Hamiltonians and Casimir functions

for a long-time.
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Figure 1: Comparison of the Ki(αh) and Kr(αh) distributions amongst the present CCD5

scheme, CCD8 scheme [20] and OCD8 scheme [21]. (a) Ki; (b) Kr.
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Figure 2: The predicted smooth traveling wave solution of u(x, t) at different times. (a)

t = 0.64343; (b) t = 1.28687; (c) t = 1.93029; (d) t = 2.57375.
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Figure 3: The predicted smooth traveling wave solutions of ρ(x, t) at different times. (a)

t = 0.64343; (b) t = 1.28687; (c) t = 1.93029; (d) t = 2.57375.
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Figure 5: The time evolving peakon wave solutions of u(x, t) predicted at different times.
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Figure 6: Three-dimensional plot of the peakon solution of u(x, t). (a) Present scheme;

(b) Multi-symplectic numerical integrator scheme [3].
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Figure 7: The time evolving peakon wave solutions of ρ(x, t) predicted at different times.
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23



x

u

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6 Present upwinding compact scheme

Center compact scheme [15]

Numerical oscillations

(a)

x

ρ

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

Present upwinding compact scheme

Center compact scheme [15]

Numerical oscillations

(b)

Figure 8: The peakon wave solutions of u(x, t) and ρ(x, t) predicted at t = 5 (a) Present

upwinding compact difference scheme; (b) Center compact difference scheme [15].

24



t

H
1

0 1 2 3 4 5
3.3

3.35

3.4

3.45

3.5

3.55

3.6

1024 grids

16384 grids

3.5038
3.4894

3.49813.5003

(a)

t

H
2

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1024 grids

16384 grids

0.9222
0.90710

0.9170
0.9148

(b)

t

C
1

0 1 2 3 4 5
9.7

9.8

9.9

10

10.1

1024 grids

16384 grids

10.0000
9.9999

10.0000
9.9999

(c)

t

C
2

0 1 2 3 4 5
1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

1024 grids

16384 grids

1.9999

1.9999

1.9999 1.9999

(d)

Figure 9: The computed values of Hamiltonians and Casimirs are plotted with respect to
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Figure 12: The time evolving peakon-antipeakon wave solutions of ρ(x, t) predicted at
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Figure 13: The computed values of Hamiltonians and Casimirs are plotted with respect to

time for the peakon-antipeakon wave problem in uniformly distributed 1024 grids. (a) H1

and H2; (b) C1 and C2.
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Figure 14: The predicted dam break solutions of u(x, t) at different times. (a) t = 6; (b)

t = 9; (c) t = 12; (d) t = 15; (e) t = 18; (f) t = 24.
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Figure 15: The predicted dam break solutions of ρ(x, t) at different times. (a) t = 6; (b)

t = 9; (c) t = 12; (d) t = 15; (e) t = 18; (f) t = 24.
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Figure 16: The computed values of Hamiltonians and Casimirs are plotted with respect to

time for the dam break problem in uniformly distributed 1024 grids. (a) H1 and H2; (b)

C1 and C2.

32



t

H
1e
rr
o
r
&
H

2e
rr
o
r

0 5 10 15 20

0

5E­06

1E­05

1.5E­05 H
1

error

H
2

error

(a)

(b)

Figure 17: The relative errors of Herror
1 and Herror

2 . (a) Present scheme; (b) Multi-

symplectic numerical integrator scheme [3].
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