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Complex bioconvection patterns have been studied analytically, experimentally, and numerically pre-
viously only for a flat free-surface of a suspension of chemotaxis bacteria in a shallow/deep chamber.
In this paper, we have considered a two-dimensional chemotaxis-diffusion-convection system with a
deformed free-surface. The influence of aggregation of chemotactic cells on the deformed free-surface
of a shallow chamber is studied analytically. The aim of this paper is to investigate the nature of the
instability in the chemotaxis-diffusion-convection system. We performed a detailed linear stability
analysis of a steady-state cell and oxygen concentration distribution. The system becomes dominated
by nonlinear convection terms beyond a critical Rayleigh number Raτ , which also depends on the
critical wavenumber k as well as the other parameters. We have investigated that how the critical
Rayleigh number in this system varies with three different sets of parameters. A weakly nonlinear
analysis is carried out as well to determine the relative stability of the pattern formation at the onset of
instability. A reactance between rolls, squares, hexagons, and mixed mode pattern is investigated in
detail. Further research should link the weakly nonlinear analysis with the bifurcation analysis. Some
important direct numerical simulation results have been presented in the support of linear stability
analysis. Comparison of the analytical steady-state solution shows good agreement with the numerical
result. Published by AIP Publishing. https://doi.org/10.1063/1.5038613

NOMENCLATURE

c Concentration of oxygen (mol)
cair Concentration of oxygen in air (mol)
D Diffusivity of the bacterium (m2 s−1)
ε(≡h0/L) Aspect ratio
h0 Container height (m)
H Chemotaxis head
j Vertical unit vector upwards
L Length of the container (m)
Le Lewis number
n Density number of bacteria (m−3)
n Unit outward normal vector
n0 Initial density number of bacteria (m−3)
n̄0 Initial density number of bacteria (m−3)
p Pressure (kg m s−2)
Pr Prandtl number
Ra Rayleigh number
S Dimensionless chemotaxis sensitivity
Sdim Dimensional chemotaxis sensitivity (m5 s−1

mol−1)
t Time (s)
u = (u, v) Velocity vector (m s−1)
Vb Volume of the bacterium (m3)
x = (x, y) Coordinate axes (m)

a)Author to whom correspondence should be addressed: twhsheu@ntu.edu.tw

Greek symbols
κ Bacterium oxygen consumption rate (s−1)
µ Dynamic viscosity (kg m−1 s−1)
ν Kinematic viscosity (m2 s−1)
ρ Fluid density (kg m−3)
ρb Bacterium volumetric mass density (kg m−3)

Subscripts
·b Bacterium
·O Oxygen
·τ Taxis

I. INTRODUCTION

In the last few decades, many research groups have been
motivated to do a lot of studies experimentally, theoretically,
and numerically with the objective to understand the dynamics
of the pattern formation or emerging phenomena in suspen-
sions of bacterial motility due to its significant role in medical,
industrial, and geophysical areas. The phenomenon is known
as bioconvection. Bioconvection and different mechanisms of
up-swimming micro-organisms have been reviewed.1 Many
organisms or insects are interacted through the process of
chemotaxis. Moreover, chemotaxis-diffusion-convection has
been successfully illustrated by experiments2,3 and numeri-
cal simulations4,5 on suspensions of bacteria contained in a
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water container. Initially, in a stirred container, the oxygen
and cell concentrations are equal. Bacteria consume oxygen,
and the oxygen concentration starts to fall everywhere accord-
ingly except at the free-surface which is exposed to air, thereby
creating a vertical concentration difference. Bacteria begin to
move up to a higher concentration level of oxygen and accu-
mulate close to the air-water interface. Afterward buoyancy
induced instability appears near the interface. Then the bac-
teria start to fall into a fluid in the form of plumes due to
buoyancy instability.

A chemotaxis-diffusion-convection mathematical model
has been previously introduced.3,5,6 Most of the theoreti-
cal, experimental, and numerical studies have been focused
on the pattern formation of micro-organisms and blow-up
phenomena in finite time either for a flat free-surface or
the case that both top and bottom surfaces are rigid. Avra-
menko and Kuznetsov7 performed a linear stability analy-
sis to obtain a correlation between the critical value of the
bioconvection Rayleigh number and the traditional, “ther-
mal” Rayleigh number by heating from below and com-
pared for the rigid top surface and open flat free-surface,
whereas Kuznetsov8 compared the same for inclined temper-
ature gradient. Their results proved that heating from below
makes the system more unstable and helps the development of
bioconvection.

Formation and stability of plumes result from the balance
between chemotaxis, diffusion, and convection of bacteria. So
far the stability analyses of the chemotaxis system were per-
formed for the flat free-surface where chemotaxis is known to
bring instability to a nonlinear system and leads to aggrega-
tion.1–3,7–11 Kowalczyk et al.12 performed a detailed study of
linear stability analysis of two different models on a homo-
geneous cell solution with the aim of checking their poten-
tial for plume formation. The linear stability analysis of the
chemotaxis-diffusion-convection system showed that a condi-
tion for linear instability depends on the taxis Rayleigh number
Raτ .3 Metcalfe and Pedley13 and Ma et al.14 performed a
weakly nonlinear stability analysis to investigate the stabil-
ity of different patterns formed by the chemotaxis system. The
hydrodynamic vortices formed by convection strengthen the
circulation of fluid and enhance the intake of oxygen into the
solvent.15 Duan et al.16 proved the global existence of the
chemotaxis-Stokes system for a small initial bacterial popula-
tion density, whereas Liu and Lorz17 proved for a large initial
bacterial population density as well as global existence of 3D
weak solutions for the chemotaxis-Stokes equations. Chertock
et al.4 numerically studied the plume formation and merging
for the flat free-surface, whereas the number and the shape of
the plumes can be controlled by the initial bacterial population
density. Chertock et al.4 also revealed the convergence toward
numerically stable stationary plumes for low and high initial
cell densities.

Stability of cell pattern formation would be crucial to
study in this type of chemotaxis system. However, some cell
patterns were mentioned in the work of Chandrasekhar,18

while other cell patterns were redundantly discussed in the
work of Bestehorn.19 In bioconvection mainly three types of
patterns have been found such as rolls, rectangular/squares,
and hexagons. Buzano and Golubitsky20 and Golubitsky

et al.21 have found two types of hexagon, namely, up- and
down-hexagon. The up-hexagons are those which appear in
the flows up in the center and down at the edges. Those which
appear in the flows down in the center and up at the edges
are known as down-hexagons. They have simplified all the
calculations by considering both the patterns which fit on the
hexagonal lattice (rolls and hexagons) or those which fit on a
square lattice (rolls and squares). Their techniques made easy
to study the cell patterns. The relative stability of hexagons and
squares is not possible to compare since they do not fit on the
same lattice. The symmetries of the system restrict the possi-
ble solutions. Possibly one or more patterns may be stabilized
at a finite amplitude. Commonly hexagons are stabilized at the
lower value of the Rayleigh number than the rolls. The other
types of patterns may be stable near the bifurcation point in up-
down symmetric systems. The triangular type of cell pattern is
also mentioned by Chandrasekhar18 which can be considered,
equally, as hexagonal.

The novelty of the present study is that the deformed
free-surface of the chemotaxis instability in the system is con-
sidered for the first time to explore the linear and nonlinear
dynamics and stability of the system. Most of the previously
published studies have been devoted to the chemotactic system
with the flat free-surface and have successfully explained the
formation of patterns. However, the free-surface is normally
deformable in natural conditions. It would be more interesting
to study the formation of patterns on the deformed free-surface.
However, it was predicted previously that the chemotaxis sys-
tem is unstable in the inclined domain. To the best of the
authors’ knowledge, the stability analysis of the chemotaxis-
diffusion-convection system for the deformed free-surface has
not been performed yet. But it may be crucial to study as it has
geophysical applications.

The paper is organized as follows. The mathematical for-
mulation of the chemotaxis-convection-diffusion system is
presented in Sec. II. The linear stability analysis of the steady-
state solution, the analytical solution for shallow chambers,
and stability results have been discussed in Sec. III. Weakly
nonlinear stability analysis of the problem and reactance
between different patterns have been illustrated in Sec. IV.
Bifurcation to different patterns has been discussed in Sec. V.
In Sec. VI, some important numerical simulation results have
been shown and discussed. Finally, some conclusions are
summarized in Sec. VII.

II. MATHEMATICAL MODEL

A two-dimensional shallow water chamber with the
deformed free-surface is considered. A Cartesian coordinate
system (x, y) is used, with the x-axis along the stream-wise
direction and the y-axis pointing vertically upwards. The top
of the chamber is open to the air, and the motion of the fluid
in a rectangular chamber satisfies the tangential stress condi-
tion prescribed on the free-surface. The bottom and the side
walls are rigid and impermeable to bacteria and oxygen (see
Fig. 1).

The dimensional form of governing equations for the
chemotaxis-diffusion-convection system in an incompressible
viscous fluid is as follows:
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FIG. 1. A schematic diagram of a two-dimensional chemotaxis system with
the liquid-air interface Γs, where the oxygen concentration is equal to that of
air, not crossed by bacteria. A no-slip boundary condition is imposed at the
container walls Γw .

∇ · u = 0, (1a)

ρ(ut + u · ∇u) + ∇p − µ∇2u = −nVbg(ρb − ρ)j, (1b)

nt + ∇ · [un − Db∇n + Sdimr(c)n∇c] = 0, (1c)

ct + ∇ · (uc − DO∇c) = −nκr(c). (1d)

In the above equations, u = (u, v) denotes the fluid velocity in
the (x, y)-direction, p is the hydrostatic pressure, ρ and µ are
the fluid density and viscosity, respectively, n is the number of
bacteria per unit area, Vb and ρb are the volume and volumetric
mass density of a cell, respectively, c is the oxygen concen-
tration, Vbg(ρb − ρ)j is the buoyancy force exerted by a cell
on the liquid in the vertical direction, j is the unit vector, Sdim

is the dimensional chemotaxis sensitivity, Db and DO are the
cell and oxygen diffusivities, κ is the rate of oxygen consump-
tion by a bacterium, and r(c) is the non-dimensional cut-off
function for oxygen concentration. The cut-off function r(c)
is defined by the step function

r(c) =

{
1, if c > c∗

0, if c 6 c∗
, (2)

where c∗ = 0.3.
Bacteria are slightly denser than water, such that ρb > ρ,

where bacteria are supposed to swim in the water during
the consumption of oxygen. As a result, we have considered
(ρb − ρ)/ρ � 1 and nVb � 1, respectively. The oxygen con-
sumption is proportional to the cell population density n. Both
bacteria (n) and oxygen (c) are advected by the liquid. When
the concentration of oxygen is higher than a threshold, the cell
becomes stable; i.e., cells neither consume oxygen nor swim
toward the higher oxygen concentration region.

The set of Eqs. (1a)–(1d) is closed with the boundary
conditions and will be solved in a two-dimensional rectan-
gular container (Ω). The dynamic and kinematic boundary
conditions at the interface (y = h(x, t)) are

n · τ · n = 0, t · τ · n = 0, Sdimnr(c)∇c · n = Db∇n · n,

c = cair , (3a)

ht = v − uhx, (3b)

where τ is the stress tensor for the liquid, n
(
=

(−hx ,1)
N

)
and

t
(
=

(1,hx)
N

)
are the unit outward normal and tangential vec-

tors on the interface, and N =
√

1 + hx
2. A no-slip boundary

condition is applied on the container walls (Γw); the fluxes of
bacteria and oxygen are equal to zero,

u = 0, v = 0, ∇n · n = 0, ∇c · n = 0. (3c)

The characteristic bacterial density is defined as the
average of the initial bacterial population

n̄0 =
1
|Ω|

∫
Ω

n0(x, t)dx. (4)

By the choice of this characteristic bacterial density, the total
number of bacteria can be measured easily in each simulation
for different initial distributions of bacteria.

Equations (1)–(3) can be expressed in terms of their
dimensionless forms by using the following variables:

x = Lx′, y = h0y′, h = h0h′, n = n̄0n′, c = cairc′,

t =
h0

2

εDb
t ′, p =

µDb

εh0
2

p′, u =
Db

h0
u′, v =

εDb

h0
v ′,

(5)
where h0 and L are the characteristic length scales in the hor-
izontal and vertical direction, respectively. ε = h0

L � 1 is an
aspect ratio. Finally, after dropping the prime from the dimen-
sionless quantities, the dimensionless Navier-Stokes equations
for the incompressible fluid flow along with the Keller-Segel
equation can be read as

∂u
∂x

+
∂v

∂y
= 0, (6a)

ε
(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
+ Prτ

∂p
∂x
= Prτ

(
ε2 ∂

2u

∂x2
+
∂2u

∂y2

)
,

(6b)

ε3
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
+ Prτ

∂p
∂y
= ε2Prτ

(
ε2 ∂

2v

∂x2
+
∂2v

∂y2

)
− εPrτRaτn, (6c)

ε
(
∂n
∂t

+ u
∂n
∂x

+ v
∂n
∂y

)
−

(
ε2 ∂

2n

∂x2
+
∂2n

∂y2

)
= −Sr(c)n

(
ε2 ∂

2c

∂x2
+
∂2c

∂y2

)
− Sr(c)

(
ε2 ∂c
∂x

∂n
∂x

+
∂c
∂y

∂n
∂y

)
,

(6d)

ε
(
∂c
∂t

+ u
∂c
∂x

+ v
∂c
∂y

)
= Leτ

(
ε2 ∂

2c

∂x2
+
∂2c

∂y2

)
− Hr(c)n. (6e)

The dimensionless parameters are defined as

Prτ =
ν

Db
, Raτ =

gVbn̄0(ρb − ρ)h0
3

Dbµ
, S =

Sdimcair

Db
,

H =
κn̄0h0

2

cairDb
, Leτ =

DO

Db
,

(7)

where Prτ is the taxis Prandtl number, Raτ is the taxis Rayleigh
number (buoyancy-driven flow), Leτ is the taxis Lewis num-
ber, S is the dimensionless chemotaxis sensitivity, and H is the
chemotaxis head. The chemotaxis head represents the con-
sumption of the chemo-attractant by the cell. The chemotaxis
system is characterized by the chemotaxis sensitivity (S) and
head (H). It can be seen from Eq. (7) that only Raτ and H
depend on the characteristic length L and the characteris-
tic bacterial density n̄0. The hydrodynamic and chemotaxis
transport equations are characterized by the above mentioned
five non-dimensional parameters. Raτ serves as the nonlin-
ear control parameter of the chemotaxis-diffusion-convection
system.
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The above set of dimensionless governing equations is
subjected to the dimensionless boundary conditions prescribed
on the deformed free-surface y = h(x, t),

− p + 2ε2
[
ε2 ∂u
∂x

(
∂h
∂x

)2
+
∂v

∂y
+

(
∂u
∂y

+ ε2 ∂v

∂x

)
∂h
∂x

]
= 0, (8a)

(
∂u
∂y

+ ε2 ∂v

∂x

) (
1 − ε2

(
∂h
∂x

)2)
+ 2ε2

(
∂u
∂x
−
∂v

∂y

)
∂h
∂x
= 0,

(8b)

Sr(c)n
(
∂c
∂y
− ε2 ∂c

∂x
∂h
∂x

)
−
∂n
∂y

+ ε2 ∂n
∂x

∂h
∂x
= 0, (8c)

c = 1, (8d)

and on the other boundaries,

u = 0, v = 0,
∂n
∂y
− ε2 ∂n

∂x
∂h
∂x
= 0,

∂c
∂y
− ε2 ∂c

∂x
∂h
∂x
= 0.

(8e)

The kinematic boundary condition is

∂h
∂t
= v − u

∂h
∂x

. (8f)

III. LINEAR STABILITY ANALYSIS
A. Steady-state solutions

In the steady-state flow, the fluid properties of the system
do not change over time. Pressure, velocity, cell, and oxygen
concentrations will change in the y-direction only. The solution
for p(y) is obtained as follows by integrating Eq. (6c) with the
boundary condition (8a):

p(y) = εRaτ(1 − y). (9)

The solutions for n(y) and c(y) will be obtained from Eqs. (6d)
and (6e),

S∇ · (r(c)n∇c) = ∇2n, (10a)

Leτ∇
2c − Hnr(c) = 0. (10b)

It is clear from Eq. (2) that if the cut-off function for oxygen
concentration r(c) is zero, then there will be no motion of
bacteria in the domain, whereas the presence of the oxygen
concentration, i.e., r(c) = 1 in the entire domain, activates the
bacteria. Let us set n(y) = n(x, y) and c(y) = c(x, y) (independent
of x). Then, from Eq. (10), we obtain

S
[
ncy

]
y
= nyy, (11a)

Leτcyy = Hn. (11b)

The procedure of integrating Eq. (11) and recalling the
boundary conditions yields first

Sncy = ny (12a)

and

cy(1) =
∫ 1

0
ndy. (12b)

Second, using Eq. (11), we obtain

Leτcyyy = Hny = HSncy = SLeτcyycy. (13)

Finally, the following ordinary differential equation can be
derived as

cyy =
S
2

(
(cy)2 + A∗

)
, (14)

where A∗ is a constant. From Eq. (12a), we would get the steady
solution as

c(y) = 1 −
2
S

ln

(
cos

( S
2 A∗y

)
cos

( S
2 A∗

) )
, (15a)

n(y) =
S
2

LeτA∗2

H
sec2

(S
2

A∗y
)
, (15b)

where the constant A∗ is determined from the transcendental
equation,3

tan
(S

2
A∗

)
=

H
Leτ

1
A∗

. (16)

Expanding the above equation yields the value of A∗ in the
order of O(H/Leτ). After substituting the value of A∗ into
Eq. (15), we will get the steady-state concentrations of cell
and oxygen. The expansion of Eq. (16) is only possible when
A∗ tan

(
S
2 A∗

)
= H

Leτ
� 1. It is necessary to expand the steady

state solutions (15) and (16) in powers of H/Leτ . The expansion
for A∗ in Eq. (16) can be read as

A∗ =

(
2H

SLeτ

)1/2 (
1 −

S
12

H
Leτ

+
7S2

288
H2

Le2
τ

+ O
( H
Leτ

)3
)
. (17)

Then Eq. (15b) gives

n = 1 +
S
6

(
3y2 − 1

) H
Leτ

+
S2

18

(
1 − 3y2 + 3y4

) H2

Le2
τ

+ O
( H
Leτ

)3
.

(18)

Similarly, the oxygen concentration at the steady-state,
which also appears in the governing equations, is given
by

c = 1 +
1
2

(
y2 − 1

) H
Leτ

+
S
24

(
y2 − 1

)2 H2

Le2
τ

+ O
( H
Leτ

)3
. (19)

It would be noteworthy to mention here that this shallow cham-
ber instability problem depends on H and Leτ and Leτ � H.
It is also noticed from Eqs. (17)–(19) that c(y) and n(y) can be
written as a function of two variables y and SH/Leτ . In gen-
eral, the above system of governing equations (21) and (22)
cannot be solved analytically, but it has been possible to find
an analytical expression only for a very shallow chamber, i.e.,

H
Leτ

1
A∗ � 1.
The aim of linear stability analysis is to investigate the

onset of the buoyancy-driven instability. The instability starts
to exist if the Rayleigh number, which is the ratio of buoy-
ancy and viscous forces, reaches a certain critical value. In
this section, we seek to obtain the critical Rayleigh number
which is a function of the physical parameters of the sys-
tem. We first linearize the governing equations in Eq. (6) for
small perturbations from the steady-state. Then, the resulting
equations are solved for perturbations with a wavenumber k
which corresponds to the dimensionless wavelength λ = 2π/k.
Finally, we shall calculate the corresponding temporal growth
rateσ (which is a complex). We thus perturb the basic state and
introduce a stream function ψ. The velocity components u and
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v can be written as u = ψy and v = −ψx. Then, we proceed to
perform decomposition on normal modes,

u(x, t) = <
(
ψ ′(y)e(ikx+σt)

)
, (20a)

v(x, t) = <
(
−ikψ(y)e(ikx+σt)

)
, (20b)

p(x, t) = p(y) +<
(
P(y)e(ikx+σt)

)
, (20c)

n(x, t) = n(y) +<
(
N(y)e(ikx+σt)

)
, (20d)

c(x, t) = c(y) +<
(
C(y)e(ikx+σt)

)
, (20e)

h(x, t) = 1 +<
(
ηe(ikx+σt)

)
, (20f)

where < stands for the real value of the complex part and
x = (x, y). Thus, we obtain

[ d2

dy2
−

(
εσ

Prτ
+ ε2k2

)] ( d2

dy2
− ε2k2

)
ψ + iεkRaτN = 0, (21a)

d2N

dy2
− Sr(c)

dc
dy

dN
dy
−

[
εσ + ε2k2 + Sr(c)

(d2c

dy2
+ r(c)n

H
Leτ

)]
N

= Sr(c)
(dn

dy
dC
dy

+
εnσ
Leτ

C
)
− iεkψ

(dn
dy

+ r(c)n
S

Leτ

dc
dy

)
,

(21b)

d2C

dy2
−

(
εσ

Leτ
+ ε2k2

)
C + i

εk
Leτ

dc
dy
ψ −

H
Leτ

r(c)N = 0. (21c)

The solutions of the above system of equations (21) are
sought-out subject to the boundary conditions prescribed at
the interface and at the other boundaries,

d3ψ(1)

dy3
−

(
εσ

Prτ
+ 3ε2k2

) dψ(1)
dy

+
k2

σ

dp(1)
dy

ψ(1) = 0, (22a)

d2ψ(1)

dy2
+ ε2k2ψ(1) = 0, (22b)

Sr(c)
[
N(1)

dc(1)
dy

+ n(1)
dC(1)

dy

−
ik
σ

(dc(1)
dy

dn(1)
dy

+ n(1)
d2c(1)

dy2

)]

=
ik
σ

d2n(1)

dy2
ψ(1) +

dN(1)
dy

, (22c)

C(1) − i
k
σ

dc(1)
dy

ψ(1) = 0, (22d)

ψ(0) =
dψ(0)

dy
= 0, (22e)

dN(0)
dy

=
dC(0)

dy
= 0. (22f)

It is noteworthy to mention that the instability problem for
shallow chambers depends on the parameters S, H, and Leτ .
The above governing equations (21) where all the coefficients
are functions of y and can only be solved for shallow chambers
analytically.

B. Analytical solutions for shallow chambers

We would like to express C, N, and ψ as a series in pow-
ers of SH

Leτ
. Then the leading term (and higher orders if desired)

will be possible to obtain in each of the series. For the sake of
simplicity, we have considered the case with small wavenum-
ber k ∼ SH

Leτ
such that k = k̃ SH

Leτ
is of order O(1) (this is to keep

the dimensional wavenumber to be fixed as h→ 0). Both the
higher-order derivative and the right-hand side must hold in
Eq. (21a) at the leading order of ψ, which is the required con-
dition to get a non-trivial solution. Then, the reduced equation
will take the form( d2

dy2
−
εσ

Prτ

) d2ψ

dy2
= −iεk̃

SH
Leτ

NRaτ , (23)

i.e., the viscous force, d4ψ

dy4 , balances the buoyancy force on the
right-hand side, leaving aside the time dependence σ. Without
any loss of generality, we have also specified that N = 1 at
y = 1 and set C = H

Leτ
C̄. Now, we have the possibility of getting

leading-orders of C̄ and N in Eqs. (21b) and (21c), which
prospectively lead to the non-trivial solutions, as follows:
Case I:

Raτ ∼ O(1), σ ∼ O
( SH
Leτ

)
,

d2C̄

dy2
= N ,

d2N

dy2
= 0.

Case II:

Raτ ∼ O
(Leτ

SH

)
, σ ∼ O(

SH
Leτ

),
d2C̄

dy2
= N ,

d2N

dy2
= 0.

It turns out that case I leads to negative values of σ, i.e.,
stability, in all circumstances. Here, we perform the analysis
only for case II.

Now, we seek expansions of the form

N(y) =
∞∑

i=0

Ni(y)
( SH
Leτ

) i
, C̄(y) =

∞∑
i=0

C̄i(y)
( SH
Leτ

) i
,

ψ(y) =
∞∑

i=0

ψi(y)
( SH
Leτ

) i
,

and

σ(k̃) =
∞∑

i=1

σi(k̃)
( SH
Leτ

) i
, Raτ(k̃) =

∞∑
i=−1

Raτi (k̃)
( SH
Leτ

) i
.

(24)
So, at the leading order, the governing equations become

d4ψ0

dy4
= −iεk̃N0Raτ−1,

d2C̄0

dy2
= N0,

d2N0

dy2
= 0,

(25)
with the boundary conditions

d3ψ0(1)

dy3
= 0,

d2ψ0(1)

dy2
= 0, C̄0(1) = 0,

dN0(1)
dy

= 0,

dψ0(0)
dy

= 0, ψ0(0) = 0,
dN0(0)

dy
= 0,

dC̄0(0)
dy

= 0.

(26)
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In this study, we have arbitrarily set N0 = 1 at y = 1 and the
corresponding solutions are

ψ0(y) = −
ik̃εRaτ−1

24
y2(y2 − 4y + 6), (27a)

C̄0(y) =
1
2

(y2 − 1), (27b)

N0(y) = 1. (27c)

At the next order, the governing equations are

d4ψ1

dy4
=
εσ1

Prτ

d2ψ0

dy2
− ik̃ε

(
Raτ0 N0 + Raτ−1 N1

)
,

d2C̄1

dy2
= N1,

d2N1

dy2
=

(
2 + εσ1

)
N0 + y

dN0

dy
, (28)

with the boundary conditions

d3ψ1(1)

dy3
−
εσ1

Prτ

dψ0(1)
dy

= 0,
d2ψ1(1)

dy2
= 0,

dN1(1)
dy

−
dC̄0(1)

dy
− N0(1) = 0,

C̄1(1) = 0,
dψ1(0)

dy
= 0, ψ1(0) = 0,

dN1(0)
dy

= 0,
dC̄1(0)

dy
= 0. (29)

Then, we will solve the above system of equations with
the corresponding boundary condition to get the solution of
ψ1, C̄1, and N1 at the first-order. The solutions are given in
Appendix A.

Similarly, we will solve the system of equations at the
second-order using the zeroth and first order solutions which
are mentioned in Appendix A.

The first-order solution is the functions of N1, C̄1,
and ψ1 and we can obtain σ1 = 0; i.e., the instability is
stationary.

At the second-order solution, we have found σ2 as
follows:

σ2 = εk̃2
( 13

360
Raτ−1 − 1

)
. (30)

It can be noticed from (30) that the system is unstable to small
wavenumber disturbances if Raτ−1 > (360/13). The resul-
tant instability indicates that it is non-oscillatory. It would be
interesting to study the marginal stability in which σr = 0
and we will calculate σi. Marginal stability (σ = 0) occurs
when

Raτ(k̃) =
360

13(SH/Leτ)
+ O(1). (31)

The correction of Raτ0 to the value of Raτ(k̃) in (31) for
marginal stability can now be found in terms of Raτ−1 and
k̃2 using (30).

C. Linear stability results and discussions

We have studied three sets of parameters, Set 1: S = 1,
H = 1, Leτ = 0.5, Prτ = 500; Set 2: S = 5, H = 4, Leτ = 1,

Prτ = 7700; and Set 3: S = 10, H = 20, Leτ = 5,
Prτ = 500. The dimensionless parameters introduced in this
paper are renamed for better readability and are different from
the definition of parameters presented in the work of Hillesdon
and Pedley3 (see Nomenclature). The differences are S ∼ γHP,

H
Leτ
∼ βHP, Leτ ∼ δHP, Prτ ∼ ScHP, and Raτ ∼ ΓHP, where

HP refers to Hillesdon and Pedley.3 Figure 2 shows the ana-
lytically computed steady-state solutions for oxygen c(y) and
cell n(y) concentration density profiles at the variations of S,
H, and Leτ . In the steady-state, diffusion of cells (random cell
swimming) balances chemotaxis, while oxygen diffusion is
balanced by the consumption of oxygen. The steady-state cell
(n) and oxygen (c) distributions depend only on y. Here, two
distinct cases can appear. In a shallow chamber, provided that
the cutoff r(c) = 1, the cells are actively swimming upwards
and consuming oxygen. The system is unstable near the free-
surface for a certain range of parameters. In the deep chamber
case, the oxygen concentration starts to decrease below a cer-
tain depth. Under the circumstances, oxygen concentration c
becomes smaller than c∗, according to the definition given in
Eq. (2). At this moment, for r(c) = 0 cells in this oxygen-
depleted region (near the bottom) become inactive to swim or
to consume oxygen. We have affixed the present study for a
shallow chamber only. Here, the results of Hillesdon and Ped-
ley3 and Chertock et al.4 are considered to compare with our
steady-state results presented in Fig. 2. The expressions of the
cell concentration in Eq. (18) and the oxygen concentration
in Eq. (19) at steady-state in the present study are similar to
those of the work of Chertock et al.,4 whereas the steady-state
solution of oxygen is different from that of the work of Hilles-
don and Pedley.3 It can be seen that the present steady-state
results have good agreement with those of the work of Cher-
tock et al.4 as the authors also studied the two-dimensional
chemotaxis system. They numerically investigated the forma-
tion of plume patterns and their evolved shapes falling from
the flat free-surface, whereas we have performed our investi-
gation for the deformed free-surface. Hillesdon and Pedley3

studied the 3D chemotaxis system for both deep and shallow
chambers with flat free-surface. There is a small difference in
the definitions of the parameters between the present study and
the study of Hillesdon and Pedley3 which has been previously
mentioned in this section. The discrepancy in curves appeared
in Fig. 2(a) due to this reason although the steady-state result
for n in Fig. 2(b) shows good agreement. The comparison of
steady-state results shown in Figs. 2(c) and 2(d) and Figs. 2(a)
and 2(b) are for the three sets of parameters, Set 1: S = 1, H = 1,
Leτ = 0.5, Prτ = 500; Set 2: S = 5, H = 4, Leτ = 1,
Prτ = 7700; and Set 3: S = 10, H = 20, Leτ = 5, Prτ = 500,
respectively. It is clear from the steady-state cell of Fig. 2(d)
that the number of cells increases in the direction moving
toward the free-surface of the chamber and the oxygen density,
shown in Fig. 2(c), is decreased, at the varying parametric val-
ues of S and H. The increased value of H leads to instability.
The steady-state distributions of cell and oxygen concentra-
tions depend on Leτ [see Figs. 2(e) and 2(f)], and this shows
that as Leτ increases, the basic flow becomes stabilized because
an increased value of DO corresponds to a more uniform
oxygen distribution throughout the system and a smaller gra-
dient of the oxygen concentration causes the micro-organisms
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FIG. 2. Dimensionless steady-state (a) oxygen and (b) cell concentration profiles of the present study with the parameters of Set 2. (c) and (d) show the variation
of three sets of parameters (Set 1: S = 1, H = 1, Leτ = 0.5, Prτ = 500; Set 2: S = 5, H = 4, Leτ = 1, Prτ = 7700; and Set 3: S = 10, H = 20, Leτ = 5, Prτ = 500).
In (e) and (f), Leτ is varied at parameter Set 2.

to move in the system less rigorously. The values of S and
H are fixed to 5 and 4, respectively, for Figs. 2(e) and 2(f).
The set of parameters is tested and the analytical results
are well compared with the results of Hillesdon and Ped-
ley3 where the linear stability analysis of (21a)–(21c) predicts
the loss of stability and the onset of the convection pattern
with a critical wavenumber kc ≈ 1.368, i.e., with wavelength
λc = 2π/kc ≈ 4.593 for the parameter Set 2.

The linear stability of the steady-state depends on the
value of the Rayleigh number Raτ . If Raτ is less than a crit-
ical value of Raτc , the steady-state is stable, whereas if the
value of Raτ is greater than Raτc , the steady-state is unstable.
Raτc depends on the wavenumber k of the shallow water wave
disturbance. Raτc has its minimum value at the most unstable
wavenumber kc. A further increment of Raτ leads to the first
bifurcation. Hillesdon and Pedley3 calculated the critical val-
ues of k and Γ, which depend on δ and βγ, whereas in the
present study, the critical values of k and Raτ depend on S and
H/Leτ . kc also depends on ε. Some critical values of Raτc and
kc, which vary with SH/Leτ , are presented in Table I. From
the first row of data in Table I, the values Raτc and kc are seen

to be 524.738 and 3.85 for Leτ = 1, SH = 0.05, whereas in
the work of Hillesdon and Pedley,3 the values of Raτc and
kc are calculated as 1.025 × 104 and 1.37 for δHP = 1,
βHPγHP = 0.05. It is concluded that our system subject to the
deformed free-surface reaches the criticality before Hillesdon
and Pedley’s3 system under the assumption of flat free-surface.

TABLE I. Values of Raτc , kc evaluated for the shallow chamber case. Here,
-HP represents the values from Hillesdon and Pedley3 and -Present represents
the values of the present study.

Leτ SH Raτc -HP kc-HP Raτc -Present kc-Present ε

1 0.05 1.02 × 104 1.37 524.738 3.853 95 0.1
1 0.05 524.738 1.926 97 0.2
1 0.05 524.738 0.770 79 0.5
1 1 625 1.58 12.613 0.721 76 0.1
1 10 200 1.90 120.596 0.072 54 0.1
1 50 328 1.94 709.072 0.014 51 0.1
1 100 522 1.91 1447.160 0.007 25 0.1
5 10 221 1.24 13.535 0.362 68 0.1
5 50 354 1.35 120.596 0.007 25 0.1
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FIG. 3. Parameter regions where the critical wavenum-
ber kc is zero or non-zero.

Especially the values of critical wavenumber kc have either
zero or non-zero value depending on the range of parameters
considered (shown in Fig. 3).

Some interesting results of C̄ and N profiles at kc , 0 and
kc = 0 have been shown in Figs. 4(a) and 4(b), respectively.
Figures 4(c) and 4(e) and Figs. 4(d) and 4(f) show C̄ and N
distributions, respectively, for the computed values of Raτc and
kc. It has been clear from Fig. 4, for the parametric values of

Leτ = 1, S = 5, H = 4, and Prτ = 7700, that the chemotaxis
system is always stable for kc = 0. However, for kc , 0, it sta-
bilizes close to the free-surface. The small deviation between
the computed values of Raτc and a significant deviation for
kc occur when the value of H increases. A possible source of
differences originates from the fact that the shallow chamber
equations are not uniformly valid as the transition is reached.
Since in the transition region the steady-state value of C̄ is zero

FIG. 4. Different characteristics of N i(y) and C̄i(y) perturbation profiles correspond to the values of Raτc and kc, for the shallow chamber (a) and (b) at Set 2;
(c) and (d) for different sets of parameters (Set 1: S = 1, H = 1, Leτ = 0.5, Prτ = 500; Set 2: S = 5, H = 4, Leτ = 1, Prτ = 7700; and Set 3: S = 10, H = 20,
Leτ = 5, Prτ = 500) and (e) and (f) with the variation of ε at Set 2.
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so that the perturbation must be taken smaller to prevent the
occurrence of negative values of C̄. To illustrate this argument,
we have compared the real parts of the N, C̄ and the imaginary
part of ψ solutions (as the real part of ψ solution is always
stable) and another example of the transition curve (Leτ = 1,
S = 5, H/Leτ = 4) with the N, C̄. We have varied the length of the
shallow chamber in our study by controlling the parameter ε.
Figures 4(e) and 4(f) show the stabilizing nature as the length
of the chamber increases.

The comparison for kc = 0 and kc , 0 has been shown
in Fig. 5. Both the curves show the stability near the inter-
face, but unstable chemotaxis motion can be observed in
the main body of the chamber. Apart from the discontinu-
ous jump in the N distribution obtained at S = 5, H = 4,
and Leτ = 1, the most striking difference is encountered, as
expected, in the C̄ distributions. At y = 0, the zero-cell-flux
condition is satisfied for the case with S = 5. Therefore, a
noticeable difference can be observed between the profiles of
N, C̄, and ψ and, consequently, the values of Raτc and kc.
In Fig. 5(d), ψ profiles have been shown with the variation
of ε.

The results shown in Fig. 6 are the computed values of
Raτc with the corresponding values of kc which vary with SH

Leτ
.

Two interesting features are re-exhibited. In Fig. 6(a), we can
see that the neutral curves for different values of Leτ diverge as
the wavenumber increases, in spite of the fact that the steady-
state is homogeneous. The value of Raτ , for a given k, is larger
for Leτ = 5 than for Leτ = 1; i.e., an increase in Leτ apparently
stabilizes the system. Second, a more important comparison is
made between the cases with different values of SH for steady-
state cell and oxygen distributions and the value of Leτ = 1 (can
be seen in Fig. 2). Moreover, from Table I, it can be seen that for

large values of SH
Leτ

, the system should be more unstable. Raτc

first falls as SH
Leτ

is increased and then rises again. Also, kc has
a maximum value, and Raτc has the minimum value, although
not at the same value of SH

Leτ
. The above mentioned behavior

is furthermore examined by plotting the values of Raτc and kc

against SH
Leτ

for different values of Leτ in Figs. 6(a) and 6(b)
and for different values of ε in Fig. 6(c). For each value of Leτ
and ε, the overall minimum values of Raτc and kc occur when
SH
Leτ
≈ 0.9636.
Figure 7(a) shows the curve of Raτ(k) for the shallow

chamber corresponding to S = 1, H/Leτ = 1; S = 1, H/Leτ = 4;
and S = 5, H/Leτ = 7. The curves are tantamount, except
for the wavenumbers smaller than 1, where Raτ has signif-
icantly different values, because it may be possible that for
this range of values the corresponding dimensional wave-
length, λ, is relatively large in comparison of the shallow
chamber height h. Therefore the disturbances will infiltrate
to the bottom of the shallow chamber and will affect the
stability of the region. The curves of Raτ(k) are shown for
the case H/Leτ > 7 in Fig. 7(a). The qualitative behavior
is tantamount in each case; as k increases from zero, the
Rayleigh number Raτ increases swiftly upwards from its min-
imum value and as H/Leτ increases so does the value of Raτc .
The dependence of σi on k for the values of Leτ = 0.5, 1,
and 5 is tested and shown in Fig. 7(b) for H = 1, S = 1,
and ε = 0.1. The frequency of oscillation corresponding to
a wavenumber is increasing as Leτ decreases. It can be seen
in Fig. 7(b) that the peak of temporal growth is increased as
Leτ is decreased, indicating the stabilizing effect. In Figs. 7(c)
and 7(d), ε is varied indicating that the wavenumber increases
with the length of the chamber as well as the peak of temporal
growth.

FIG. 5. Different characteristics of ψ(y) perturbation profiles correspond to the values of Raτc and kc for the shallow chamber: (a) with kc = 0 and kc , 0 at
parameter Set 2; (b) with the variation of Leτ at parameter Set 2; (c) with the variation of sets of parameters (Set 1: S = 1, H = 1, Leτ = 0.5, Prτ = 500; Set 2:
S = 5, H = 4, Leτ = 1, Prτ = 7700; and Set 3: S = 10, H = 20, Leτ = 5, Prτ = 500); and (d) with the variation of ε at Set 2.
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FIG. 6. (a) Raτ c is computed for the varying values of Leτ ; (b) the corresponding values of kc for varying Leτ ; and (c) the variation of ε at Leτ = 1. The
minimum value of the curve is SH

Leτ
≈ 1.036.

FIG. 7. Raτi (k) and σi(k) curves for the shallow chamber at (a) the varying sets of parameters (Set 1: S = 1, H = 1, Leτ = 0.5, Prτ = 500; Set 2: S = 5, H = 4,
Leτ = 1, Prτ = 7700; and Set 3: S = 10, H = 20, Leτ = 5, Prτ = 500); (b) Leτ varied and S = 5, H = 4, ε = 0.1 are fixed; and [(c) and (d)] ε varied and S = 5,
H = 4, Leτ = 1 are fixed.

IV. WEAKLY NONLINEAR STABILITY ANALYSIS

The linear stability theory is an initial step in the under-
standing of the pattern formation. However, it provides only a
rough idea about the pattern formation. From linear stability
analysis, we can determine the conditions of the infinitesimal

disturbances at the onset of instability by the parameters on
the system and can choose the length scale of the pattern
formation. Additionally, a significant physical role of pattern
formation due to cross-diffusion can be explained. The non-
linear stability analysis would help us to predict the amplitude
and the types of pattern formation in the system. Therefore,
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we must perform a weakly nonlinear stability analysis based
on the method of multiple scales.

The objective of the weakly nonlinear stability analysis is
to predict the patterns formed near the critical Rayleigh num-
ber. From the linear stability analysis, we can only determine
the initial behavior of ψ, N, and C about the uniform steady-
state when the steady-state is driven unstable to spatially small
perturbations. At the onset of instability, the disturbances will
be expressed and characterized by a particular wavenumber.
However, the pattern formation through convection cells is
entirely unspecified.

In bioconvection, a density stratification appears because
of the difference in the densities of the bacteria and fluid
which surpass the threshold value controlled by the viscos-
ity and the diffusivity of the cell/oxygen. Then the various
forms of a regular pattern will appear in convection sets. Many
theoretical, experimental, and numerical investigations were
devoted to the study of buoyancy-driven instability after the
pioneering studies of Bénard in 1900 and Rayleigh in 1916.
Some studies are concerned about the development of differ-
ent pattern formation above the linear convective threshold.
It would be noteworthy to mention that under Boussinesq
approximation with the linear variation of the density, rolls
are found stable above the threshold onset. However, hexagons
are preferred over rolls when the Boussinesq approximation is
invalid.

In this problem, we will carry out a nonlinear asymptotic
analysis by expanding the 2D system into 3D (consider z as
the horizontal coordinate) and obtain the solutions to O(ε)
(and to higher orders) which are valid for all time. The frame-
work of the analytical procedure will be prepared, using a
multi-scale asymptotic analysis for determining the small per-
turbation solutions valid for all time of the three-dimensional
system. We have expanded the variables in terms of a small
parameter ε. At each order in ε, a solvability condition is
derived which gives rise to an equation suitable for depict-
ing the evolution of the pattern amplitude. A series expansion
with respect to ε and truncation of the series after a finite num-
ber of terms is the basic idea of the so-called weakly nonlinear
theory.

Stability analysis on the dynamical system of NS-KS
equations starts with perturbing u(=u, v , w) and p in terms
of small parameter ε in the form

u = u0 + εu1 + ε2u2 + · · · , (32a)

p = p0 + εp1 + ε2p2 + · · · . (32b)

By substituting the perturbed velocity field into the dimen-
sionless governing equation of the 3D system for n and c, by
virtue of the order analysis we are led to know that c and n take
the following perturbation forms provided that convection and
diffusion take the same order of O(ε):

n = n0 + εn1 + ε2n2 + · · · , (33a)

c = c0 + εc1 + ε2c2 + · · · . (33b)

Stability analysis is followed by substituting Eqs. (32) and
(33) into the y-momentum equation of the 3D system (after
eliminating u, v , and p), subject to the Boussinesq assumption,
to yield the resultant equation written in terms of ε, ε2, and

so on. The nonlinear control parameter Raτ can be perturbed
as

Raτ = Raτc + εRaτ1 + · · · . (34)

It is noted that the above equation holds true provided that the
terms (v , n, c) have the same order of ε.

We study the evolution of the system over a slow time
scale T, where T = εt. Then, substitute the expanded variables
(32)–(34) into Eq. (6). We obtain the steady-state equations for
n(y) and c(y) at O(1). At O(ε), we obtain the system of linear
equations where the variables n1, c1, and v1 are expressed as

v1 =V (y)<
(
A1(T )eikz + A2(T )eik(−

√
3

2 x− 1
2 z)

+ A3(T )eik(
√

3
2 x− 1

2 z)) , (35a)

n1 =N(y)<
(
A1(T )eikz + A2(T )eik(−

√
3

2 x− 1
2 z)

+ A3(T )eik(
√

3
2 x− 1

2 z)) , (35b)

c1 =C(y)<
(
A1(T )eikz + A2(T )eik(−

√
3

2 x− 1
2 z)

+ A3(T )eik(
√

3
2 x− 1

2 z)) . (35c)

The amplitudes Ai(i = 1, 2, 3) for rolls become A1 = A,
A2 = A3 = 0 and for hexagons A1 = A2 = A3 = A.

At O(ε2), the problem gives rise to a solvability condition
as follows:∫

θ · RHSdx +
∫ ∫ (

θ2n1
∂c1

∂y

) ����y=0
dxdz = 0, (36)

where the first-order adjoint θ = (θ1, θ2, θ3) denotes the vari-
ables (v1, n1, c1) and RHS is the right-hand side of the O(ε2)
equations, which consist of known first-order functions. In
Eq. (36), three solvability conditions can be obtained by setting

θ =ΘĀ1e−ikz, θ = Θ(y)Ā2eik(
√

3
2 x+ 1

2 z), and θ = ΘĀ3eik(−
√

3
2 x+ 1

2 z),
where Θ(y) = (Θ1, Θ2, Θ3) and an overbar “–” represents the
complex conjugate. After substituting these into the known
first-order functions and integrating from 0 to 4π/

√
3k with

respect to x and from 0 to 4π/k with respect to z, one can
derive

ξ1
dA1

dT
+ Raτ1ξ3 + ξ2Ā2Ā3 = 0. (37a)

Two more equations are also obtained for A2 and A3 as follows:

ξ1
dA2

dT
+ Raτ1ξ3 + ξ2Ā1Ā3 = 0, (37b)

ξ1
dA3

dT
+ Raτ1ξ3 + ξ2Ā1Ā2 = 0. (37c)

The ξ i denote the integrals of the known first-order functions
which are presented in Appendix B.

For steady rolls where A1 = A, A2 = A3 = 0, and dA/dT = 0,
the existing solvability conditions imply that Raτ1 = 0.
This indicates that for rolls we should have defined ε by
Raτ − Raτc = ε

2Raτ2 and rescaled time by T = ε2t.
For steady hexagons where A1 = A2 = A3 = A and dA/dT

= 0, we have

Raτ1 = −
ξ2

ξ3
A. (38)

A stability analysis of (37a) exhibits that both the branches
are unstable of this bifurcation. But at a higher order, one
among these branches may become stable. So, we rescale Raτ
and t to capture this behavior which includes the third-order
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cubic terms as well as the second-order quadratic terms in the
amplitude equations. Then, from Eq. (38), Raτ − Raτc is of
O(ε2).

We redefine Raτ = Raτc + ε2Raτ2 and consider T = ε2t.
In this process, we obtain the steady-state equation again at
O(1) and the linear equations at O(ε). Then we include both the
O(ε2) and O(ε3) terms in the amplitude equations. Therefore
having both the terms O(ε2) and O(ε3) together, we can derive
the following solvability condition:

ε3
∫
θ · RHSdx + ε2

∫
θ · R̃HSdx

= −ε3
∫ ∫ (

θ2n1
∂c2

∂y
+ θ2n2

∂c1

∂y

) ����y=0
dxdz

− ε2
∫ ∫ (

θ2n1
∂c1

∂y

) ����y=0
dxdz, (39)

where the terms RHS and R̃HS contain the known first- and
second-order functions. Then, we substitute these functions
into Eq. (39) to obtain the three amplitude equations. The first
one is

ε3ξ1
dA1

dT
+ ε3Raτ2ξ3A1 + ε3ξ6A2

1Ā1

+ ε3ξ5A1
(
A2Ā2 + A3Ā3

)
+ ε2ξ2Ā2Ā3 = 0, (40a)

and two more equations obtained for A2 and A3 are

ε3ξ1
dA2

dT
+ ε3Raτ2ξ3A2 + ε3ξ6A2

2Ā2

+ ε3ξ5A2
(
A1Ā1 + A3Ā3

)
+ ε2ξ2Ā1Ā3 = 0, (40b)

ε3ξ1
dA3

dT
+ ε3Raτ2ξ3A3 + ε3ξ6A2

3Ā3

+ ε3ξ5A3
(
A1Ā1 + A2Ā2

)
+ ε2ξ2Ā1Ā2 = 0. (40c)

In the above equations, ξ1, ξ2, and ξ3 are the same as before and
all ξ i’s (i = 1, 2, 3) including ξ5 and ξ6 are given in Appendix B.
If we assume that ξ1 , 0, then we can write ξ̃2 =

ξ2
ξ1

, ξ̃3 =
ξ3
ξ1

and the amplitude equation becomes

dA1

dT
+ Raτ2 ξ̃3A1 + ξ̃6A2

1Ā1

+ ξ̃5A1
(
A2Ā2 + A3Ā3

)
+
ξ̃2

ε
Ā2Ā3 = 0. (41a)

Two additional equations obtained for A2 and A3 are as follows:

dA2

dT
+ Raτ2 ξ̃3A2 + ξ̃6A2

2Ā2

+ ξ̃5A2
(
A1Ā1 + A3Ā3

)
+
ξ̃2

ε
Ā1Ā3 = 0, (41b)

dA3

dT
+ Raτ2 ξ̃3A3 + ξ̃6A2

3Ā3

+ ξ̃5A3
(
A1Ā1 + A2Ā2

)
+
ξ̃2

ε
Ā1Ā2 = 0. (41c)

For regular time-independent hexagons with A1 = A2 = A3

= A, the above amplitude equation gives

ε2Raτ2 = −
(2ξ̃5 + ξ̃6)

ξ̃3
ε2A2 −

ξ̃2

ξ̃3
εA. (42)

Then, Raτ will be obtained as

Raτ = Raτc − ε
(
ξ̃2

ξ̃3

)
A − ε2 (2ξ̃5 + ξ̃6)

ξ̃3
A2. (43)

Equation (43) justifies the mixing of the second- and third-
order terms only if the ratio ξ2/(2ξ5 + ξ6) is of O(ε). A stability
analysis of (41a) shows that the conditions for hexagons to be
stable only when

ξ̃2A < 0, −
ξ̃2

ε
A − 2ξ̃6A2 − 4ξ̃5A2 < 0,

2
ξ̃2

ε
A − 2ξ̃6A2 + 2ξ̃5A2 < 0. (44)

For steady rolls (A1 = A, A2 = A3 = 0), the solvability condition
holds provided that

Raτ2 = −
ξ̃6

ξ̃3
A2. (45)

This is a pitchfork bifurcation which has the conditions for the
stable branches only if

ξ̃6 > 0,
ξ̃2

ε
A +

(
ξ̃6 − ξ̃5

)
A2 < 0, −

ξ̃2

ε
A +

(
ξ̃6 − ξ̃5

)
A2 < 0.

(46)
The mixed mode solution branches are obtained of the form
A1 = A, A2 = A3 = B and can link the roll and hexagon branches.
These mixed mode solution branches will turn to rolls when
B = 0 and regular hexagon when B = A. The stability analysis
revealed that these mixed mode solution branches are always
unstable.

V. BIFURCATION THEORY

In this section, we have thoroughly studied the bifurca-
tion diagram depending on the values of ξ̃2, ξ̃3, ξ̃5, and ξ̃6.
The shape, the amplitude, and the stability properties of the
bifurcation diagrams are drawn in Fig. 8 and discussed here.
It can be seen from the figures that there are changes in the
amplitude of the disturbances, A, as the Rayleigh number Raτ
is increased. For the sake of simplicity, the roll and hexagon
branches are drawn as both of them fit in the same lattice. More-
over, in reality, both the branches are placed in the different
planes and do not intersect each other, whereas the mixed mode
branches intersect the other branches at the points are marked
as dots in the figures. The hexagon branches with positive and
negative A represent the up- and down-hexagon, respectively.
But there is no difference between the rolls with positive or
negative A.

A. Pitchfork bifurcation

All the possible roll, hexagon, and mixed mode branches
are drawn in Fig. 8. It has been observed that if ξ̃2 < 0,
ξ̃3 < 0, ξ̃6 > ξ̃5 > 0, the bifurcation diagram will corre-
spond to Fig. 8(a). It can be easily seen in the figure that
the hexagon branch is stable with positive A. Therefore, the
first anticipated pattern can be an up-hexagon of finite ampli-
tude where the flows move upward in the center and down-
ward at the edges. The hexagon branch bifurcates supercriti-
cally. Initially, the hexagon branch is unstable and bifurcates
sub-critically to the roll branch. The portion of the unstable
hexagon branch with negative A indicates a down-hexagon in
which the flows move downward in the center and upward
at the edges. The rolls are supercritical and always unsta-
ble. A mixed mode branch intersects the unstable hexagon
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FIG. 8. Bifurcation diagrams. A graphical representa-
tion of the amplitude of the nonlinear perturbations
A versus the Rayleigh number Raτ where solid and
dashed lines correspond to the linearly stable and unsta-
ble branches, respectively. Bifurcation diagrams [using
Eq. (43)] according to third-order nonlinear theory
for rolls, hexagons, and mixed mode solutions. “Up”
hexagons have A > 0 and “down” hexagons have A < 0.
(a) ξ̃2 < 0, ξ̃3 < 0, ξ̃6 > ξ̃5 > 0; (b) ξ̃2 < 0, ξ̃3 < 0,
ξ̃5 > ξ̃6 > 0; (c) ξ̃2 > 0, ξ̃3 < 0, ξ̃5 > ξ̃6 > 0; and (d)
ξ̃2 < 0, ξ̃3 < 0, ξ̃5 < ξ̃6 < 0.

and roll branches at the points where their respective stability
changes.

If ξ̃2 < 0, ξ̃3 < 0, ξ̃5 > ξ̃6 > 0, the bifurcation dia-
gram will correspond to Fig. 8(b). The roll branch bifurcates
supercritically. Initially, the hexagon branch is stable, but it
loses stability as Raτ increases and bifurcates sub-critically to
the roll branch. The roll branch becomes stable. The portion
of the stable hexagon branch with positive A indicates an up-
hexagon in which the flows move upward in the center and
downward at the edges. The rolls are supercritical, and a por-
tion of the branch is stable at positive A. Again in this figure,
a mixed mode branch intersects the stable hexagon and unsta-
ble roll branches at the points where their respective stability
changes.

If ξ̃2 > 0, ξ̃3 < 0, ξ̃5 > ξ̃6 > 0, the bifurcation dia-
gram will correspond to Fig. 8(c), which is just the inverse
of Fig. 8(b). Here the first transition is to the down-hexagons
which lose stability to roll at higher values of Raτ . The roll
and hexagon branches are again intersected at the points
where the nature of the stability changes. The portion of
the stable hexagon branch with negative A indicates a down-
hexagon in which the flows move downward in the center and
upward at the edges. In all the above cases, the first notice-
able pattern of the hexagon branch would be either upward or
downward.

If ξ̃2 < 0, ξ̃3 < 0, and ξ̃5 < ξ̃6 < 0, the bifurcation dia-
gram will correspond to Fig. 8(d). In this figure, the mixed
mode pattern has been shown to be always unstable intersect-
ing at a point of unstable roll and hexagon branches. Here,

the branches led to a sub-critical pitchfork bifurcation. In this
case, both the hexagon and roll branches are unstable. Phys-
ically, a possibility of their transition to another steady-state
pattern or unsteady pattern may be expected. The nonlinear
stability analysis is also carried out for square lattice, and
a pitchfork bifurcation is found. The stability of bifurcation
branches (either sub- or supercritical) depends on the values
of ξ̃i.

This type of amplitude Eq. (41a) is the most commonly
used equation for the bioconvection problem and has been
widely studied. The hexagon patterns (either up or down)
found in this study depend on the values of ξ i which must
be solved numerically. We have taken the values of the param-
eters mentioned in Table I to calculate ξ i numerically. The
numerically computed values of ξ i are presented in Table II.
We have taken the values of the critical Rayleigh number Raτc

from the linear stability analysis (see Table I) as the initial
data for the numerical computation of nonlinear systems. In
Table II, RaτcP is the critical pitchfork Rayleigh number.

B. Numerically evaluated results of hexagon pattern

The bifurcation diagram depends on the values of
ξ i (i = 1, 2, 3, 5, 6) in Eq. (41a) which are found by solving
the O(ε) and O(ε2) equations numerically considering kc , 0.
Then we evaluated the integrals presented in Appendix B. The
values of kc, Raτ , and ξ i depend on S, H, Leτ , and Prτ .

Basically, the system of O(ε) equations is an eigenvalue
problem with Raτc as the eigenvalue. So, an extra arbitrary
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TABLE II. Numerically evaluated results of hexagon patterns in a pitchfork bifurcation.

Leτ SH Prτ Raτc kc ε RaτcP ξ1 ξ2 ξ3 ξ5 ξ6 Bifurcation Pattern

1 0.05 7700 524.738 3.853 95 0.1 1625.45 0.689 2.889 �1.98× 10�4 3575.8 3214.21 Super-critical Down hexagon
1 0.05 7700 524.738 1.926 97 0.2 1763.40 0.752 3.105 �2.01× 10�4 3982.5 3540.57 Super-critical Down hexagon
1 0.05 7700 524.738 0.770 79 0.5 1531.90 0.978 3.658 �2.56× 10�4 4521.7 3925.42 Super-critical Down hexagon
1 0.05 500 524.738 3.853 95 0.1 1620.70 0.715 2.971 �1.99× 10�4 3569.5 3221.51 Super-critical Down hexagon
1 1 7700 12.613 0.721 76 0.1 27.46 0.471 �0.515 �2.19× 10�3 5.925 6.015 Super-critical Up hexagon
1 1 500 12.613 0.721 76 0.1 27.48 0.475 �0.512 �2.19× 10�3 5.813 6.018 Super-critical Up hexagon
1 10 7700 120.596 0.072 54 0.1 1256.80 0.171 �1.91 × 10�3

�7.45× 10�3 5.19 × 10�2 9.45 × 10�3 Super-critical Up hexagon
1 10 500 120.596 0.072 54 0.1 1260.40 0.174 �1.89 × 10�3

�7.45× 10�3 5.16 × 10�2 9.43 × 10�3 Super-critical Up hexagon
1 50 7700 709.072 0.014 51 0.1 1846.20 0.095 �1.12 × 10�3

�9.85× 10�3 1.01 × 10�2 1.82 × 10�3 Sub-critical Unstable hexagon
1 50 500 709.072 0.014 51 0.1 1890.00 0.098 �1.11 × 10�3

�9.85× 10�3 1.0 × 10�2 1.85 × 10�3 Sub-critical Unstable hexagon
5 10 7700 13.535 0.362 68 0.1 529.82 0.257 �0.314 �1.18× 10�4

�0.579 �0.625 Sub-critical Unstable hexagon
5 50 7700 120.596 0.007 25 0.1 5787.7 0.112 �0.276 �0.79× 10�4

�0.422 �0.457 Sub-critical Unstable hexagon

boundary condition is needed to solve the system. There-
fore, we have imposed N(y) = 1 at y = 1. Then the system
is solved using the algorithm provided by Cash and Moore.22

The adjoint problem forΘ is also an eigenvalue problem. Then,
we solved the system using the same routine22 by imposing
the extra boundary condition Θ2 = 1 at y = 1. The eigenvalue
Raτc is the same in both cases. Now, we have found the first-
order functions and can calculate ξ1, ξ2, and ξ3 by numerical
integration.

Similarly, we have found the second-order functions by
numerical solution of four sets of coupled ordinary differen-
tial equations using a finite difference technique and Newton
iteration method. The solvability condition appears in one of
these four sets of equations which require the computed value
of ξ2/ξ3. Having found the first- and second-order functions,
we can find ξ5 and ξ6 by numerical integration. The values of
kc, Raτc , and ξ i for various values of S, H, Leτ , and Prτ are
presented in Table II.

The first-order equations do not contain Prτ , hence the
values of kc, Raτc , and ξ3 depend only on S, H, and Leτ and are
independent of Prτ . The values of the other ξ i are more or less
independent of Prτ . We have solved the system numerically
for non-zero kc by considering the parameter values mentioned
in Table I. For Leτ = 1, we have computed the numerical values
of ξ i for SH = 0.05, 1, 10, and 50.

For SH = 0.05, ξ̃2 > 0, ξ̃3 < 0, and ξ̃5 > ξ̃6 > 0 lead to
the first stable transition to down-hexagons from the steady-
state [see Fig. 8(c)]. For SH = 1, ξ̃2 becomes negative and
ξ̃6 − ξ̃5 becomes positive. So, the first stable transition is to be
up-hexagons [Fig. 8(a)]. At SH = 10 and 50, ξ̃6 − ξ̃5 becomes
again negative, but the first stable transition is still up-hexagons
[Fig. 8(b)].

When the value of Leτ is increased to 5 or more and
SH = 10 and 50, ξ̃2 < 0, ξ̃3 < 0, and ξ̃5 < ξ̃6 < 0. In these
cases, both the roll and hexagon branches are sub-critical and
unstable [Fig. 8(d)].

VI. JUSTIFICATION OF THE LINEAR ANALYSIS
THROUGH FINITE ELEMENT FLOW SIMULATIONS

The governing equation (1) is solved by the finite ele-
ment method within the Arbitrary Lagrangian Eulerian (ALE)

framework in Freefem++ software.23,24 Taylor-Hood elements
known to satisfy Ladyzhenskaya-Babuška-Brezzi (LBB) con-
dition, ([P2, P2], P1), are chosen for velocity and pressure
in Navier-Stokes equations together with the penalization
approach for ensuring divergence-free constraint condition for
velocity, while for bacteria density n and oxygen concentra-
tion c, P2 elements are employed for spatial discretization.
A characteristic Galerkin formulation based on the material
derivative is used in order to stabilize the convection terms.
We use a monolithic, fully implicit approach to solve the cou-
pled system of Eq. (1). Let us take the superscript k, denotes
the quantity at the time instant tk ∈ [0, T ], and T is the
final time of the numerical simulation. Then, at the time
instant tk , we have (uk , pk , nk , ck) on Ωk in the numerical
solution of the system (1), and we will find the unknowns
(uk+1, pk+1, nk+1, ck+1,Ωk+1) at the next time instant tk+1.
Therefore, the employed algorithm is of iterative nature.

MeshΩk+1 is obtained by the physically moving meshΩk

so in each time step an additional set of equations has to be
solved to obtain grid velocity and iteratively adjust domain at a
current time. A domain of interest for the chemotaxis problem
is part of the container occupied by fluid. Therefore, if the
position of the free-surface is known, the current domain is
known as well.

Grid velocity is obtained as a harmonic extension of
boundary velocity,

−∇ · ∇v = 0, (47)

where v is the grid velocity, v = (v1, v2), subjected to boundary
conditions

v = u on Γs (48)

and
v · n = 0 and v · t = u · t on Γw . (49)

In the case of no-slip boundary conditions for Navier-Stokes
equations, the boundary condition on the walls for grid velocity
is simply v = 0.

We will present few selected direct numerical simulation
results of a system of Eq. (1) with the boundary conditions in
Eq. (3) prescribed in the rectangular domain of Ω = [−5, 5] ×
[0, 1]. The investigated physical domain responds to the case
ε = h/L = 0.1. The values of the non-dimensional parameters
are chosen as follows: Leτ = 1, S = 1, H = 10, Prτ = 7700,
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while Raτ = 115, 120.6, and 400. The constant initial data
are

n(x, y) =
1
2

1
{y≥0.5+cos( 2

5 πx)} + 1
{y<0.5+cos( 2

5 πx)},

c(x, y) = 1, u(x, y) = 0. (50)

The code is run until the numerical solution converges to its
steady-state and the result is compared with the analytical solu-
tion of Eq. (15b), for which it is easy to verify that c∗ > 0.3
and thus r(c) ≡ 1 (see Fig. 9).

Figure 10 shows the concentration of the bacteria at
(a) the initial stage, at time (b) t = 0.8, and at (c) t = 0.2.5
for Raτ = 120.6. It can be seen in the figure that the bacteria
have started to consume oxygen and swim toward the higher
concentration region which influences the fluid motion. At
t = 0.8, it can be seen that the domain occupied by the fluid
is deformed and that the highest concentration of bacteria is
accumulated near the free-surface open to the atmosphere.
The chemotaxis-convection process is nearly stabilized at
t = 2.5. Highest bacteria concentration is near the top where the
oxygen concentration is high enough to keep bacteria active
which allows them to swim on the free-surface. In the lower

layer, there are some bacteria diluted in the water. This means
that the bacteria that ran out of oxygen before they managed
to swim to the top (oxygen concentration in the green area
is precisely 0.3 which is the border below which bacteria
become inactive) and are uniformly distributed due to diffusion
effects.

Figures 11 and 12 show the velocity field (magnitude
and streamlines) at the beginning of the convection for
Raτ = 115, 120.6, and 400. When bacteria start consuming
oxygen and then start moving toward above to the free-surface
due to the lack of oxygen at the below surface, the motion
of the bacteria disturbed the static stage of the fluid (initially
at rest). We can observe this scenario in the velocity magni-
tude of the Rayleigh number presented in Figs. 11 and 12:
as the Rayleigh number is getting higher, the velocity magni-
tude increases. When chamber dimensions were chosen, and
the total bacteria concentration and the physical parameters
of fluid were prescribed, then increasing the Rayleigh number
means increasing the bacteria density. Therefore, the obtained
results agree with the physical intuition since the higher den-
sity of bacteria should disturb the fluid strongly than the lower
density bacteria (it needs to swim “harder” to reach the free-
surface).

FIG. 9. The n-component of (a) the numerical steady-
state solution and (b) the agreement of its vertical profile
with the analytically calculated one.

FIG. 10. Bacteria concentration for the case with the
Rayleigh number Raτ = 120.6. (a) t = 0.0. (b) t = 0.8.
(c) t = 2.5.
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FIG. 11. Velocity field (glyph) at the beginning of the
process for Rayleigh numbers: (a) Raτ = 115, (b) Raτ =
120.6, and (c) Raτ = 400.

FIG. 12. Velocity field (streamlines) at the beginning of
the process for Rayleigh numbers: (a) Raτ = 115, (b)
Raτ = 120.6, and (c) Raτ = 400.

Figures 13 and 14 show the velocity field (magnitude and
streamlines) at time t = 2.5 for Raτ = 115, 120.6, and 400. At
this time, bacteria that are still active (managed to swim to the
free-surface before the oxygen concentration dropped below
critical) are concentrated in a thin layer below the free-surface.
Since it is denser than the fluid, bacteria need to swim upwards
in order to stay in the region with a high oxygen concentration.

Again, the results agree with intuition. The denser bacteria
need to swim harder in order to stay on top free-surface and
more strongly influence the fluid motion. While in the cases
with a lower Rayleigh number, we can observe changes in
streamline patterns and lower velocity magnitude, the case
with a high Rayleigh number still has fully developed vortex-
like streamline patterns and a higher velocity magnitude.

FIG. 13. Velocity field (glyph) at time t = 2.5 for
Rayleigh numbers: (a) Raτ = 115, (b) Raτ = 120.6, and
(c) Raτ = 400.
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FIG. 14. Velocity field (streamlines) at time t = 2.5 for
Rayleigh numbers: (a) Raτ = 115, (b) Raτ = 120.6, and
(c) Raτ = 400.

VII. CONCLUSIONS

The present study is focused on the exploration of the
significant effect on the deformed free-surface of a shal-
low chamber due to chemotaxis-diffusion-convection of a
homogeneous cell system. We have carried out linear sta-
bility and weakly nonlinear stability analyses to predict the
pattern formed at the onset of instability in the chemotaxis-
diffusion-convection system. We have considered the same
model described in the work of Deleuze et al.5 for a shal-
low chamber problem but with a deformed free-surface. We
have performed a linear stability analysis by perturbing the
steady-state of oxygen and cell concentrations and the free-
surface.

It has been found that the increase in Leτ stabilizes the
basic flow because of a uniform distribution of oxygen due to
the increment in oxygen diffusion, a smaller gradient of the
oxygen concentration, and less rigorously swimming micro-
organisms. The length of the shallow chamber also has an
impact on the free-surface stability. It is concluded that the
wavenumber increases with the length of the chamber as well
as the peak of temporal growth. During convection, unstable
chemotaxis motion is observed and the cell motion becomes
stabilized after reaching the free-surface. The instability gen-
erates as the values of H, S, and Leτ increase, although this
effect is reversed as the length of the chamber increases. An
increment in the chamber length does not have an impact
on cell and oxygen distribution profiles as they are moving
vertically. It has been observed that kc can be either zero or
non-zero. If kc is zero, the system becomes unstable. How-
ever, for non-zero kc, the chemotaxis system stabilizes near the
free-surface depending on the values of the parameters H, S,
and Leτ .

The values of H, S, and Leτ are independently varied,
and the corresponding values of Raτc and kc are determined.
The length of the chamber is also varied to study the nature
of instability in a shallow chamber. The linear stability of the
steady-state depends on the Rayleigh number Raτ . If the value
of Raτ is less than the critical value of Raτc , the steady-state is
stable, whereas if Raτ is greater than Raτc , the steady-state
is unstable. The value of Raτc depends on the wavenum-
ber k of the shallow water wave disturbance. Raτc has its

minimum value at the most unstable wavenumber kc. It is clear
from the analytical results of critical Raτ and k in comparison
with those of Hillesdon and Pedley.3 The comparison exhibits
that our investigated chemotaxis system in shallow chamber
reaches the criticality before their system.

The results of the linear stability analysis provide us
a useful qualitative perspective of unstable behavior of the
cell distribution at the onset of instability, but it is not able
to elucidate the initial formation of the bioconvection pat-
terns. Therefore we have carried out a weakly nonlinear sta-
bility analysis by expanding the 2D system into 3D (con-
sider z the horizontal coordinate) to investigate the patterns
formed at the onset of instability. Raτ is the nonlinear con-
trol parameter of the system. From our analysis of the steady
bifurcating branches, it can be concluded that either roll or
hexagonal convection patterns can be stable. It is also use-
ful to mention that either of the up- or down-hexagon can be
stable and stable hexagon branches bifurcate supercritically.
From bifurcation theory, it was also found that the unstable
hexagon branches bifurcate sub-critically for higher values
of Leτ .

Some direct numerical simulation results have been pre-
sented in support of our linear stability analyses. The compari-
son of the steady-state analytical result with the numerical one
shows good agreement. Below the critical Rayleigh number,
the system is stable. Increasing the Rayleigh number would
destabilize the system. It was found that at this position all the
bacteria are managed to swim up to the free-surface at a higher
oxygen concentration. These bacteria allow themselves to float
freely along the free-surface and they are not dense enough yet
to fall back to the bottom to form a plume shape. Due to this
reason, fully developed vortex-like streamline patterns can be
observed at a high Rayleigh number.

We have considered only the shallow chamber case in this
research work where all the bacteria have sufficient amount of
oxygen concentration to be active. The results may differ in
the deep chamber case. It may also be useful to consider a
more detailed model for the chemotaxis-diffusion-convection
system, which takes the details of the chemotaxis mechanism
into account. There is a lack of experiment conducted in this
type of problem, but it would be a good scope to explore the
study experimentally and numerically as well.
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APPENDIX A: SOLUTIONS OF N, C̄, AND ψ AT
O(SH/Leτ) AND O(SH/Leτ)2

The solutions of N1, C̄1, and ψ1 at the first-order
O(SH/Leτ) are

ψ1(y) = − ik̃εy2
[ Raτ0

4!
(y2 − 4y + 6)

+
Raτ−1

6!
(2y4 + 15y2 − 100y + 180)

]
, (A1a)

C̄1(y) =
1

12
(y4 + 3y2 − 4), (A1b)

N1(y) =
1
2

(2y2 + 1). (A1c)

At the second-order, the governing equations are

d4ψ2

dy4
=
εσ1

Prτ

d2ψ1

dy2
+

(
εσ2

Prτ
+ 2εk̃2

) d2ψ0

dy2

− iεk̃
(
Raτ1 N0 + Raτ0 N1 + Raτ−1 N2

)
,

d2C̄2

dy2
= εk̃2C̄0 + N2,

d2N2

dy2
=

(
εσ2 + ε2k̃2 + y2 −

1
3

)
N0 +

( y3

6
−

y
6

) dN0

dy

+
(
εσ1 + 2

)
N1 + y

dN1

dy
+ y

dC̄0

dy
− iεk̃yψ0, (A2)

with the boundary conditions

d3ψ2(1)

dy3
−
εσ1

Prτ

dψ1(1)
dy

−

(
3ε2k̃2 +

εσ2

Prτ

) dψ0(1)
dy

= 0,

d2ψ2(1)

dy2
+ ε2k̃2ψ0(1) = 0,

dN2(1)
dy

− N1(1) −
dC̄1(1)

dy
−

1
3

dC̄0(1)
dy

= 0, C̄2(1) = 0,

dψ2(0)
dy

= 0, ψ2(0) = 0,
dN2(0)

dy
= 0,

dC̄2(0)
dy

= 0.

(A3)

The corresponding solutions are

ψ2(y) =
ik̃3ε3y2Raτ−1

6!

[ 1
Prτ

(
1 −

2Raτ−1

6!

)
(y4 − 6y3 + 15y2 − 45) − (2y4 − 12y3 + 30y2

+ 20y − 195) +
6!Raτ−1

11!
(5y9 − 44y8 + 165y7 − 2002y4 + 16830y2 − 36685y + 34870)

]

−
ik̃εy2

4!

[ 4Raτ−1

7!
(9y6 + 28y4 + 630y2 − 3584y + 6300) + Raτ1 (y2 − 4y + 6)

+
4Raτ0

5!
(2y4 + 15y2 − 100y − 180)

]
, (A4a)

C̄2(y) =
4
6!

(3y6 + 5y4 + 45y2 − 53) +
εk̃2

4!
(y4 − 6y2 + 5)

−
ε2k̃2Raτ−1

9!
(5y9 − 36y8 + 108y7 − 546y4 + 1836y2 − 1367), (A4b)

N2(y) =
1
6

(3y4 + 2y2 + 3) −
ε2k̃2Raτ−1

7!
(5y7 − 28y6 + 63y5 − 91y2 + 51). (A4c)

APPENDIX B: EXPRESSION OF ξ i

The expressions for the ξ i appearing in the solvability conditions and evolution equations are presented here. The functions
J i, Gi, and Ei in ξ5 and ξ6 are the solutions to the second-order differential equations,

ξ1 =

∫ 1

0

1
Prτ
Θ1

(
V ′′ − k2V ′

)
+ Θ2N +

1
Leτ
Θ3Cdy, (B1a)

ξ2 =

∫ 1

0

[
Θ1

Prτ

(
V ′V ′′ +

1
2

VV ′′′ −
3
2

k2VV ′
)

+ Θ2

(
VN ′ +

1
2

V ′N −
1
2

Sk2CN

+ SN ′C ′ + SNC ′′
)

+
Θ3

Leτ

(
VC ′ +

1
2

V ′C ′
)]

dy +
(
Θ2SNC ′

) ��y=0, (B1b)
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ξ3 =

∫ 1

0
Θ1k2Ndy, (B1c)

ξ5 =

∫ 1

0

[
Θ1

Prτ
k2

(
−

3
4

k2VE ′6 −
9
4

k2VE ′7 −
3
4

k2V ′E6 −
15
4

k2V ′E ′7 +
1
2

V ′E ′′6 +
3
2

V ′E ′′7 +
1
2

V ′′E ′6 +
1
4

VE ′′′6 +
3
4

VE ′′′7

+
1
4

V ′′′E6 −
3
4

V ′′′E7

)
+ Θ2

(S
2

C ′J ′6 +
S
2

C ′′J6 −
S
4

k2CJ6 +
S
2

C ′J ′7 +
S
2

C ′′J7 +
S
4

k2CJ7 + SC ′J ′4 + SC ′′J4 − Sk2CJ4

−
S
4

k2NG6 −
3
4

Sk2NG7 +
1
2

k2NE ′6 +
3
4

k2NE ′7 +
1
2

k2N ′E6 +
3
2

k2N ′E7 + VJ ′4 +
1
4

VJ ′6 +
1
4

VJ ′7 +
1
4

V ′J6 +
3
4

V ′J7 + SN ′G′4

+
S
2

N ′G′6 +
S
2

N ′G′7 + SNG′′4 +
S
2

NG′′6 +
S
2

NG′′7

)
+
Θ3

Leτ

(1
2

k2C ′E6 +
3
2

k2C ′E7 +
1
4

k2CE ′6 +
3
4

k2CE ′7 + VG′4 +
1
2

VG′6

+
1
2

VG′7 +
1
4

V ′G6 +
3
4

V ′G7

)]
dy +

[
Θ2S

(
C ′J4 +

1
2

C ′J6 +
1
2

C ′J7 + NG′4 +
1
2

NG′6 +
1
2

NG′7

)] ����y=0
, (B1d)

ξ6 =

∫ 1

0

[
Θ1

Prτ
k2

(
−3k2VE ′8 − 6k2V ′E8 + 2V ′E ′′8 − V ′′E ′8 + VE ′′′8 − 2V ′′′E8

)
+ Θ2

(
SJ ′4C ′ + SJ4C ′′ − Sk2CJ4 +

S
2

J ′8C ′ +
S
2

J8C ′′ +
S
2

k2CJ8 + SN ′G′4

+ SNG′′4 +
S
2

N ′G′8 +
S
2

NG′′8 − Sk2NG8 + VJ ′4 +
1
2

VJ ′8 + V ′J8 + k2NE ′8

+ 2k2N ′E8

)
+
Θ3

Leτ

(
2k2C ′E8 + k2CE ′8 + VG′4 +

1
2

VG′8 + V ′G8

)]
dy

+
[
Θ2S

(
C ′J4 +

1
2

C ′J8 + NG′4 +
1
2

NG′8

)] ����y=0
. (B1e)
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