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A time marching strategy for solving parabolic and elliptic
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bInstitute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan; cCenter for Advanced
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ABSTRACT
In the community of computational fluid dynamics, pressure Poisson equa-
tion with Neumann boundary condition is usually encountered when solving
the incompressible Navier–Stokes equations in a segregated approach such
as SIMPLE, PISO, and projection methods. To deal with Neumann boundary
conditions more naturally and to retain high order spatial accuracy as well, a
sixth-order accurate combined compact difference scheme developed on
staggered grids (NSCCD6) is adopted to solve the parabolic and elliptic equa-
tions subject to Neumann boundary conditions. The staggered grid system is
usually used when solving the incompressible Navier–Stokes equations. By
adopting the combined compact difference concept, there is no need to dis-
cretize Neumann boundary conditions with one-sided discretization scheme
which is of lower accuracy order. The conventional Crank–Nicolson scheme
is applied in this study for temporal discretization. For two-dimensional
cases, D’yakonov alternating direction implicit scheme is adopted. A newly
proposed time step changing strategy is adopted to improve convergence
rate when solving the steady state solutions of the parabolic equation. High
accuracy order of the currently proposed NSCCD6 scheme for one- and two-
dimensional cases are shown in this article.
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1. Introduction

In this research article, we are aiming at developing a sixth-order combined compact difference
scheme (NSCCD6) on staggered grid to solve for the solutions of the parabolic and elliptic equa-
tion with Neumann boundary conditions. The elliptic Poisson equation can be regarded as
the steady parabolic equation. The Poisson equation is usually shown in the computational
electrostatics [1], potential flow [2], and ion-channel flow [3]. In the computation of incompressi-
ble flow with viscous fluid, the governing equations are the continuity equation and the momen-
tum equation which form a velocity–pressure coupled system. Several segregated numerical
algorithms are developed to solve the coupled system in a sequential manner such as SIMPLE
[4], PISO [5], SOLA [6], and projection method [7] and [8]. In these algorithms, Poisson equa-
tion is solved for the pressure or pressure correction [9]–[11].

Numerical solution for the pressure Poisson equation (PPE) is of great importance in solving
the incompressible Navier–Stokes equations to guarantee the divergence-free constraint on the
velocity field [12]. The most difficult part is solving for the solution of the PPE with Neumann
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boundary condition. It is noted that Zhang [13] proposed a high order finite difference scheme
with a compact correction term to solve the Poisson equation, but this scheme is applicable to
Dirichlet boundary condition only. The resulting matrix from directly discretizing the governing
equation and the Neumann boundary conditions with finite difference method is singular [14]
and [15]. Furthermore, if high order combined compact difference (CCD) scheme [16] is
adopted, a wider bandwidth and asymmetric matrix is constructed because the variable and its
first- and second-order derivatives are treated as unknowns. Therefore, it is not easy to imple-
ment conventional linear system solvers such as the conjugate gradient (CG) method [17], Bi-
CGSTAB method [18], or GMRES method [19]. One way to deal with this problem is to adopt
truncated singular value decomposition (TSVD) method [20]–[22]. TSVD method computes the
Moore–Penrose pseudo-inverse of the original matrix and is multiplied by the right-hand side
vector to get the solutions. However, it is time consuming to perform the singular value decom-
position when the matrix size is large. Therefore, it is not suitable to use TSVD method in multi-
dimensional problems. An alternative is to solve the transient parabolic equation to steady state
[23]–[26]. Since the resulting matrix by discretizing the parabolic equation with Neumann boun-
dary conditions is not singular, general matrix solver can be adopted. More specifically, the
resulting matrix is banded if the CCD scheme [16] is adopted, and an efficient direct matrix
solver can be used to solve the linear system. On the other hand, alternating direction implicit
(ADI) method is adopted to reduce matrix size to one-dimensional problem. However, it is time
consuming to solve for the steady state solution of the parabolic equation. Several numerical
treatments were proposed in [23], [25], and [26]. A time step changing strategy is proposed in
this study to get rid of this problem.

This paper is organized as follows. Section 2 shows the governing equations and the staggered
grid storage profile. The numerical schemes and the fundamental analysis including the proposed
NSCCD6 scheme, ADI scheme for multidimensional problems, von Neumann linear stability
analysis and the spectral analysis are detailed in Section 3. Several verification cases are conducted
and the resulting results will be shown in Section 4. Finally, Section 5 draws some conclusions.

2. Governing equations

The elliptic Poisson equation in Eq. (1) and the parabolic heat equation in Eq. (2) will be investi-
gated in the domain ðx; yÞ 2 ½0; 1�.

0 ¼ r2/þ f (1)

Nomenclature

f source term
h grid spacing along each direction
i; j nonstaggered grid indices
N grid number along each direction
NLevel number of time increments
Si staggered grid index
Lii second-order spatial derivative operator

along i -direction
t time (s)
Dt time increment
Greek Symbols
f amplification factor
n amplitude of /

li amplitude of /ii
gi amplitude of /i
/ variable of the governing equation
/x;/y first derivative of / along x - and

y -direction
/xx;/yy second derivative of / along x - and

y -direction
xi phase angle in i -direction
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@/
@t

¼ r2/þ f (2)

The solution / is sought subjected to the following Neumann boundary conditions prescribed
on the domain boundary @X.

/x 0; y; tð Þ ¼ /x;0 y; tð Þ /x 1; y; tð Þ ¼ /x;1 y; tð Þ
/y x; 0; tð Þ ¼ /y;0 x; tð Þ /y x; 1; tð Þ ¼ /y;1 x; tð Þ (3)

It is remarked that the source term f and the four Neumann boundary conditions are time-
dependent for the parabolic equation and are time-independent for the elliptic equation for which
t is the fictitious time. The above variable / is stored in the staggered grid system as shown in
Figure 1 that is usually used in solving the incompressible Navier–Stokes equations. It is noted
that /;/xx; and /yy are stored at the cell center (i.e. grid point ði; jÞ) while /x and/y are stored
at the cell faces (i.e. grid points ðiþ 1

2 ; jÞ and ði; jþ 1
2Þ, respectively).

The steady state solutions for Eq. (2) are seen as the solutions for Eq. (1) [23], [25], and [27].
Therefore, the proposed NSCCD6 scheme is capable of simulating both elliptic Poisson equation
and parabolic heat equation with Neumann boundary conditions within the same formulation.
When calculating the steady state solutions for Eq. (2), it usually takes a lot of computation time.
To overcome this problem, a time step changing strategy is proposed to quickly eliminate errors
relevant to different frequencies.

3. Numerical schemes

3.1. The sixth-order CCD scheme on staggered grids for spatial discretization

In this section, derivation of the adopted sixth-order CCD scheme (NSCCD6) will be detailed in
staggered grids. For simplicity, the storage strategy for /;/x; and/xx is schematically shown in

Figure 1. Staggered grid arrangement (red circle for /; /xx and /yy ; blue rightwards-arrow for /x ; green upwards-arrow for /y).
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Figure 2a for the proposed scheme involving N grids and N�1 staggered grids and the grid spac-
ing is h. It is worth noting that this staggered grid arrangement is different from that proposed
by Chu [28] as shown in Figure 2b. In both grid systems, grid indices 1 andN are boundary
points, S1 and SN�1 are near-boundary staggered points, i�1�N�1 are interior nonstaggered
points, and S2�SN�2 are interior staggered points. Our staggered grid arrangement is the same as
that normally used in solving the incompressible Navier–Stokes equations. In other words, the
function value and the second-order derivative are located at the cell center while the first deriva-
tive is located at the cell face. As a result, the NSCCD6 scheme is applicable to other
Navier–Stokes solvers.

First of all, the equation for calculating the first order derivative on node i is assumed to take
the form of

a�1 /xð Þi�1 þ /xð Þi þ a1 /xð Þiþ1

� �þ h b�1 /xxð ÞSi�1
þ b1 /xxð ÞSi

� � ¼ 1
h

c�1 /ð ÞSi�1
þ c1 /ð ÞSi

� �
(4)

In this formulation, the first derivative at grid point i is computed simultaneously with those
at the grids i�1 and iþ 1 and the second derivatives at the staggered grids Si�1 and Si. The R.H.S.
contains the known function values at staggered grids Si�1 and Si. By conducting the modified
equation analysis, we can get the following equation which contains six unknowns.

/xð Þi ¼ /i
1
h

c�1 þ c1ð Þ

þ /xð Þi �a�1 � a1 � 1
2
c�1 þ 1

2
c1

� �

þ /xxð Þih a�1 � a1 � b�1 � b1 þ 1
8
c�1 þ 1

8
c1

� �

þ /xxxð Þih2 � 1
2
a�1 � 1

2
a1 þ 1

2
b�1 � 1

2
b1 � 1

48
c�1 þ 1

48
c1

� �

þ /xxxxð Þih3
1
6
a�1 � 1

6
a1 � 1

8
b�1 � 1

8
b1 þ 1

384
c�1 þ 1

384
c1

� �

þ /xxxxxð Þih4 � 1
24

a�1 � 1
24

a1 þ 1
48

b�1 � 1
48

b1 � 1
3840

c�1 þ 1
3840

c1

� �

(5)

(a)

(b)

Figure 2. The staggered grids (a) used in this paper and (b) proposed in [28].
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These six unknowns can then be solved from the following linear system of algebraic equa-
tions.

c�1 þ c1 ¼ 0

�a�1�a1� 1
2
c�1 þ 1

2
c1 ¼ 1

a�1�a1�b�1�b1 þ 1
8
c�1 þ 1

8
c1 ¼ 0

� 1
2
a�1� 1

2
a1 þ 1

2
b�1� 1

2
b1� 1

48
c�1 þ 1

48
c1 ¼ 0

1
6
a�1� 1

6
a1� 1

8
b�1� 1

8
b1 þ 1

384
c�1 þ 1

384
c1 ¼ 0

� 1
24

a�1� 1
24

a1 þ 1
48

b�1� 1
48

b1� 1
3840

c�1 þ 1
3840

c1 ¼ 0

The six coefficients can then be uniquely derived as

a�1 ¼ a1 ¼ �7
254

b�1 ¼ �b1 ¼ �17
254

c�1 ¼ �c1 ¼ �120
127

(6)

The truncation error in Eq. (5) is obtained as 1
7!

457
2032 h

6/ð7Þ after substituting Eq. (6) into
Eq. (5).

By applying the same procedures, the second-order derivatives at near-boundary staggered
grids S1 and SN�1 and interior staggered grids Si can be derived as

1
h

1792
4307

/xð Þ1 �
62432
4307

/xð Þ2
� �

þ /xxð ÞS1 �
3551
4307

/xxð ÞS2
� �

¼ 1
h2

2449
177

/ð ÞS1 �
58533
4307

/ð ÞS2 �
1071
4307

/ð ÞS3 þ
35

12921
/ð ÞS4

� � (7)

1
h

62432
4307

/xð ÞN�1 �
1792
4307

/xð ÞN
� �

þ � 3551
4307

/xxð ÞSN�2
þ /xxð ÞSN�1

� �

¼ 1
h2

35
12921

/ð ÞSN�4
� 1071
4307

/ð ÞSN�3
� 58533

4307
/ð ÞSN�2

þ 2449
177

/ð ÞSN�1

� � (8)

144
47

1
h

/xð Þi � /xð Þiþ1

� �þ /xxð ÞSi�
5
94

/xxð ÞSi�1
þ /xxð ÞSiþ1

� �
¼ � 102

47
1
h2

/ð ÞSi�1
� 2 /xxð ÞSi þ /xxð ÞSiþ1

h i (9)

The truncation errors of the above three equations are 29
43925 h

5/ð7Þ and 1
20160 h

6/ð8Þ for the near-
boundary and the interior staggered grids, respectively. The purpose of deriving a fifth-order
accuracy scheme is to preserve the rate of convergence as sixth-order for solving the parabolic
equation with Neumann boundary conditions. For example, as documented in [29], a second-
order (two-order less) scheme along with a fourth-order scheme for the near-boundary and inte-
rior points leads to third-order numerical solutions for solving the parabolic equation with
Neumann boundary conditions. Finally, in order to compute the first and second-order deriva-
tives at nonstaggered and staggered grids, the following matrix equation shall be solved under
a1 ¼ �7

254 ; a2 ¼ 144
47h ; b1 ¼ 17h

254 ; b2 ¼ �5
94 ; c1 ¼ 1792

4307h ; c2 ¼ �62432
4307h ; c3 ¼ �3551

4307 .
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1
a1 1 a1 �b1 b1

. .
. . .

. . .
. . .

. . .
.

. .
. . .

. . .
. . .

. . .
.

a1 1 a1 �b1 b1
1

c1 c2 1 c3
a2 �a2 b2 1 b2

. .
. . .

. . .
. . .

. . .
.

a2 �a2 b2 1 b2
�c2 �c1 c3 1

2
66666666666666666664

3
77777777777777777775

/xð Þ1
/xð Þ2
..
.

..

.

/xð ÞN�1
/xð ÞN
/xxð ÞS1
/xxð ÞS2
..
.

/xxð ÞSN�2

/xxð ÞSN�1

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

¼ 1
h2

0�120h
127

120h
127
. .
. . .

. . .
.

. .
. . .

. . .
.

�120h
127

120h
127
0

2449
177

�58533
4307

�1071
4307

35
12921�102

47
204
47

�102
47

. .
. . .

.

�102
47

204
47

�102
47

35
12921

�1071
4307

�58533
4307

2449
177

2
6666666666666666666666666664

3
7777777777777777777777777775

/S1
/S2

..

.

/SN�2

/SN�1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

/xð Þ1
0
..
.

..

.

0
/xð ÞN
0
0
..
.

0
0

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(10)

The matrix shown in Eq. (10) is a penta-diagonal matrix and the computationally efficient
direct matrix solver can be applied to obtain the solution from the above linear system.

The key feature of the adopted NSCCD6 scheme is that there is no need of using any low-
order one-sided discretization scheme to discretize /x on the boundary points (i ¼ 1 and N)
when dealing with Neumann boundary condition for / as seen in Eq. (10). Because the first- and
second-order derivatives are computed simultaneously, Neumann boundary conditions for / are
just set as the known values for /x at the two boundary points.

3.2. Crank–Nicolson and D’yakonov ADI schemes for temporal discretization of two-
dimensional parabolic equation

When solving multidimensional Eq. (2), D’yakonov ADI scheme [30] and [31] is adopted. Here
the second-order accurate Crank–Nicolson scheme is applied first to Eq. (2), thereby leading to

/nþ1�/n

Dt
¼ 1

2
Lxx þ Lyyð Þ /nþ1 þ /n

� 	
þ f nþ

1
2 þ O Dt2ð Þ (11)

In the above, the superscript n is the time level such that t ¼ nDt, and Lxx and Lyy are the sec-
ond-order spatial differential operators with respect to x and y, respectively. Then, the terms at
the time levels nþ 1 and n are collected on the L.H.S. and R.H.S., respectively.

1� rLxx � rLyyð Þ/nþ1 ¼ 1þ rLxx þ rLyyð Þ/nþ1 þ Dtf nþ
1
2 þ O Dt3ð Þ (12)
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where r ¼ Dt=2. By adding the perturbation term r2LxxLyy/
nþ1 to both hand sides and

r2LxxLyy/
n�r2LxxLyy/

n to the R.H.S., respectively, the final equation can be obtained after some
algebraic manipulations.

1� rLxxð Þ 1� rLyyð Þ/nþ1 ¼ 1þ rLxxð Þ 1þ rLyyð Þ/n þ Dtf nþ
1
2 þ r2LxxLyy /nþ1 � /n

� 	
þ O Dt3ð Þ

(13)

The term ð/nþ1 � /nÞ on the R.H.S. of the above equation is of the order OðDtÞ, so the third
term r2LxxLyyð/nþ1 � /nÞ is of the order OðDt3Þ and can be absorbed into the fourth term as the
error term. To solve Eq. (13), the D’yakonov ADI procedure is first applied to solve for an inter-
mediate solution /� and, then, the solution /nþ1.

1� rLxxð Þ/� ¼ 1þ rLxxð Þ 1þ rLyyð Þ/n þ Dtf nþ
1
2 (14)

1� rLyyð Þ/nþ1 ¼ /� (15)

The differential operators on the L.H.S. of the above two equations take the same form.
Therefore, we can solve /� and/nþ1 by combining Eqs. (14) or (15) with Eq. (10). The resulting
matrix equation for solving Eqs. (10) and (14) or (15) is as follows.

1 a1
1 a1

. .
. . .

.

1 a1
1 a1

1
b2 �b2 b1 1 b1 �b3 b3

. .
. . .

. . .
. . .

. . .
. . .

. . .
.

. .
. . .

. . .
. . .

. . .
. . .

. . .
.

b2 �b2 b1 1 b1 �b3 b3
1

c2 c3 c4 c5 c6 c7 1 c1
d2 �2d2 d2 d3 �d3 d1 1 d1

. .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

.

d2 �2d2 d2 d3 �d3 d1 1 d1
c5 c4 c3 c2 �c7 �c6 c1 1

2
6666666666666666666666666666664

3
7777777777777777777777777777775

/S1
/S2

..

.

/SN�2

/SN�1

/0
1

/0
2

..

.

..

.

/0
N�1
/0
N

/S1
00

/S2
00

..

.

/SN�2

00

/SN�1

00

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼

SC1

SC2

..

.

SCN�2

SCN�1

/0
1
0
..
.

..

.

0
/0
N
0
0
..
.

0
0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(16)

where a1 ¼ � Dt
2 ; b1 ¼ �7

254 ; b2 ¼ 120
127

1
h ; b3 ¼ 17

254 h; c1 ¼ �3551
4307 ; c2 ¼ �2449

177
1
h2 ; c3 ¼ 58533

4307
1
h2 ; c4 ¼ 1071

4307
1
h2 ;

c5 ¼ �35
12921

1
h2 ; c6 ¼ 1792

4307
1
h ; c7 ¼ �62432

4307
1
h ; d1 ¼ �5

94 ; d2 ¼ 102
47

1
h ; d3 ¼ 144

47
1
h. It can be seen that the final

matrix is a banded matrix and the efficient direct solver can be applied to solve the linear system.
The source terms SC1�SCN�1 are calculated from the R.H.S. of Eqs. (14) or (15).

There are some additional efforts should be taken into account when using the proposed
NSCCD6 scheme. First of all, the Neumann boundary condition for /� is needed to be calculated
before solving Eq. (14). Differentiating Eq. (15) with respect to x, we can get the following equa-
tion to calculate the Neumann boundary condition for /�.

/�
x ¼ /nþ1

x �Dt
2

/nþ1
yy


 �
x

(17)

It is noted that ð/nþ1
yy Þx ¼ ð/nþ1

x Þyy where /nþ1
x is prescribed as the Neumann boundary condi-

tion for /nþ1. Therefore, the term ð/nþ1
x Þyy on the left and right boundaries ðx ¼ 0 and 1Þ can

be calculated with the high order CCD scheme given in [16] by differentiating ð/xÞnþ1 twice with
respect to y.

Second, there is a mixed derivative term LxxLyy/
n shown on the R.H.S. when solving Eq. (14).

Because Lyy/
n ¼ /n

yy has been calculated at the previous time step together with /n; LxxLyy/
n can

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 7



be calculated by taking the second derivative of /n
yy with respect to x. As shown in Eq. (10), the

NSCCD6 scheme calculates first and second derivatives simultaneously, implying that
ð/n

yyÞx and ð/n
yyÞxx will be calculated at the same moment. As a result, the boundary value for

ð/n
yyÞx should be calculated before calculating the interior values of ð/n

yyÞx and ð/n
yyÞxx. The

method for calculating ð/n
yyÞx on the left and right boundaries is the same used for calculating

ð/nþ1
yy Þx on the two boundaries mentioned above.

3.3. Von Neumann linear stability analysis of the proposed spatial discretization scheme

In this subsection, we investigate the stability of the proposed NSCCD6 scheme by von Neumann
linear stability analysis. Assuming that the variable / is periodic both in x- and y-direction and
the source term f is zero. At the grid ðj; kÞ, the variable / and its derivatives can be expressed as

/n
j;k ¼ nnei xxjþxykð Þ

/xð Þnj;k ¼ gnxe
i xxjþxykð Þ /xxð Þnj;k ¼ lnxe

i xxjþxykð Þ
/y
� 	n

j;k
¼ gnye

i xxjþxykð Þ /yy
� 	n

j;k
¼ lnye

i xxjþxykð Þ

where i � ffiffiffiffiffiffiffi�1
p

; nn; gnx ; l
n
x ; g

n
y ; l

n
y are the amplitudes and xx;xy are the phase angles in x- and

y-direction, respectively. The above relations can be substituted into Eqs. (4) and (9), thereby
leading to

� 7
254

gnxe
i xxjþxykð Þ eixx þ e�ixxð Þ þ gnxe

i xxjþxykð Þ þ 17h
254

lnxe
i xxjþxykð Þ ei

1
2xx � e�i12xxð Þ

¼ 120
127h

nnei xxjþxykð Þ ei
1
2xx � e�i12xxð Þ

(18)

� 144
47h

gnxe
i xxjþxykð Þ ei

1
2xx � e�i12xxð Þ þ lnxe

i xxjþxykð Þ� 5
94

lnxe
i xxjþxykð Þ eixx þ e�ixxð Þ

¼ � 102
47h2

nnei xxjþxykð Þ eixx � 2þ e�ixxð Þ
(19)

According to Euler’s formula, exp ðixÞ ¼ cosxþ i sinx, the following two equations are
obtained after doing some algebraic manipulations.

1� 7
127

cosxx

� �
gnx þ i

17h
127

sin
1
2
xx

� �
lnx ¼ i

240
127h

sin
1
2
xx

� �
nn (20)

i
�288
47h

sin
1
2
xx

� �
gnx þ 1� 5

47
cosxx

� �
lnx ¼

204
47h2

1� cosxxð Þnn (21)

By solving the above linear system, the amplitudes, gnx andl
n
x , can be obtained as

gnx ¼ i
nnBx

DxAx
¼ i

nn252 sin 1
2xx
� 	

9 cosxx þ 31ð Þ
Dx 35 cos 2xx þ 1484 cosxx þ 3521ð Þ (22)

lnx ¼
nnCx

Dx2Ax
¼ nn12 119 cos 2xx þ 602 cosxx � 721ð Þ

Dx2 35 cos 2xx þ 1484 cosxx þ 3521ð Þ (23)

Within the semi-discrete framework, the resulting equation without considering the source
term becomes

1� Dt
2
Lxx

� �
1� Dt

2
Lyy

� �
/nþ1
j;k ¼ 1þ Dt

2
Lxx

� �
1þ Dt

2
Lyy

� �
/n
j;k (24)
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The corresponding amplification factor f can be expressed as

f ¼
unþ1
j;k

unj;k
¼

1þ Dt
2
Lxx

1� Dt
2
Lxx

0
BB@

1
CCA 1þ Dt

2
Lyy

1� Dt
2
Lyy

0
BB@

1
CCA

¼
1þ Dt

2
Cx

Dx2Ax

1� Dt
2

Cx

Dx2Ax

0
BBB@

1
CCCA

1þ Dt
2

Cy

Dy2Ay

1� Dt
2

Cy

Dy2Ay

0
BBB@

1
CCCA

¼ gx xxð Þgy xyð Þ

(25)

The profiles of Ax andCx (defined in Eq. (23)) are shown in Figure 3 and it can be observed
that Ax is always positive while Cx is less than or equal to zero. Thus, the absolute values of func-
tions gx and gy are always equal to or lower than one from the following deductions.

1þ Dt
2

Cx

Dx2Ax
� 1�Dt

2
Cx

Dx2Axjgx xxð Þj � 1
jfj � jgx xxð Þjjgy xyð Þj � 1

Therefore, through the von Neumann linear stability analysis, the newly proposed NSCCD6
scheme is unconditionally stable under the periodic boundary conditions.

3.4. Spectral analysis of the proposed spatial discretization scheme

Because the von Neumann linear stability analysis considers periodic boundary conditions, the
interior schemes are considered excluding the near-boundary schemes. In order to check the
stability condition when taking both the interior and near-boundary schemes into account,
the spectral analysis is adopted in this study as well. Here, we first assume that there are two dif-
ferent solutions, ~/

n

1 and~/
n

2 , corresponding to two different initial conditions under the same
Neumann boundary conditions. The difference between these two solutions is denoted as
~h
n ¼ ~/

n

1�~/
n

2. The governing equation for ~h
n
can be derived from Eq. (2) as

Figure 3. Profiles of Ax (left) and Cx (right).
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hf gnþ1� hf gn
Dt

¼ 1
2
C1½ � hf gnþ1 þ hf gn

� 	
(26)

With a further deduction, we can get the solution of ~h
nþ1

in terms of its initial condition, ~h
0

given below

hf gnþ1 ¼ I½ � � r C1½ �� 	�1
I½ � þ r C1½ �� 	

hf gn

¼ D½ � hf gn

¼ D½ �nþ1
hf g0

(27)

The derivation of the matrices ½C1� and ½D� are shown in the Appendix. Thanks to the spectral
analysis, the numerical scheme is stable provided that the spectral radius or the maximum abso-
lute eigenvalue of the matrix ½D� is less than or equal to 1. Note that the computation of the
matrix ½D� is analytically infeasible, the maximum absolute eigenvalue of it cannot be computed
exactly. Therefore, eigenvalues can be obtained numerically for the four cases involving different
grid numbers. Table 1 shows the minimum and maximum eigenvalues of the matrix ½D� obtained
under different grid numbers. It can be observed that all the maximum eigenvalues are nominally
equal to 1 and the numerical scheme is said to be stable.

3.5. The newly proposed time step changing strategy for solving the steady state solutions

Since Peacemann and Rachford [23] who first proposed the pioneer work of the ADI scheme to
solve for the solutions of the parabolic and elliptic equations, few works have been done focusing
on calculating the steady state solutions of the parabolic equation. Some previous works are
shown in [24]–[27], and [32]. As stated in the previous work [23], a considerable computational
effort needs to be made to reach the steady state solutions when using a single time increment.
The errors corresponding to different frequencies cannot be eliminated efficiently. Peacemann
and Rachford [23] showed that errors corresponding to different wave numbers can be rapidly
eliminated when using different time step sizes which are derived from the amplification factors
by forcing them equal to zero. However, if every time step size was utilized only once, the error
could be reduced by a factor of 10�3 only. Still, it was far away from the steady state solution.
Therefore, we propose to solve the transient parabolic equation to get the steady state solutions
with a V-cycle time step changing strategy. The time increment is iteratively changed in the order
of Dtmin ¼ Dt1 ! Dt2 ! � � � ! DtNLevel�1 ! DtNLevel ¼ Dtmax ! � � � ! Dt1. The series of the time
increments, Dt1�DtNLevel, can be calculated from the amplification factors. According to [23], the
number of different time increments is NLevel which is the same as the cell number, say N�1.
However, for large number of grid points, most of the time increments are clustered closely as
shown in Figure 4. As can be seen, the time increment grows slowly between indices 1 and 300
but rapidly changes from 396 to 400 if the number of grid points is N ¼ 401. Peacemann and
Rachford also showed that for some clustered values of Dt, an average time increment could be
used. For example, Dt ¼ 0:003 could be used instead of using Dt ¼ 0:00229; 0:00287; 0:003809,
and 0:005451. The most important idea is that the range of the numerical time increments (time
increments used in numerical simulation) should cover the theoretical time increments (time
increments derived from the amplification factors).

Table 1. Minimum and maximum eigenvalues of matrix ½D� for different grid numbers.

Grid no. Min. Max.

11 0.5232 1.0000
101 0.9327 1.0000
1001 0.9931 1.0000
10001 0.9993 1.0000
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According to Peacemann and Rachford, they only showed that the theoretical time increments
can be determined from the corresponding amplification factors. However, the procedure to do
sampling, for example, how to determine the averaged time increment Dt ¼ 0:003 shown above,
was not shown in the paper [23]. On the other hand, Douglas [33] showed that if the exact solu-
tion / is in the form of continued product, for example / ¼ exp ð�p2tÞ 	 cosðpxÞ 	 cosðpyÞ in
multidimensional problems, the perturbation terms (i.e. the third term on the R.H.S. of Eq. (13))
introduced in deriving ADI scheme could cause a larger numerical error. Because the perturba-
tion term can be approximated as the cross-derivative term shown below and is not zero, so that
the splitting error may make numerical solutions unable to converge when solving for steady state
solutions if larger time steps are utilized.

1
4
Dt3

@2

@x2
@2

@y2
@

@t
/ (28)

In our numerical tests, if the Peacemann and Rachford type [23] of time increments ðDtPRÞ is
adopted, we cannot get the steady state solutions. The criteria for obtaining a steady state solution
is that the root-mean-square of the difference between two consecutive time step solutions is less
than a tolerance �. Therefore, we need to provide a time increment series such that the smallest
time increment is small enough to avoid large splitting error in the first few iterations and the
largest time increment is large enough to get the steady state solution quickly. Also, a sampling
procedure is adopted to decrease the number of different time increments.

In our proposed time step series, the smallest time increment is calculated by the squares of
the stability constraint of the forward-time central-space scheme while the largest time step is set
to be equal to one.

Dtmin;1D ¼ h2

2

� �2

; Dtmin;2D ¼ h2

4

� �2

; Dtmax ¼ 1:0 (29)

Second, the value of NLevel is determined by a multigrid-like method. The value of h used to
calculate Dtmin is considered as the grid size corresponding to the finest mesh, say h1. The coars-
est mesh size, as a result, is hNLevel ¼ 2NLevel�1h1 if the mesh size hi is assumed to be twice of the
mesh size hi�1. By keeping hNLevel smaller than one, we can obtain the following relation to deter-
mine the value of NLevel, such that

NLevel � 1þ log N � 1ð Þ
log 2

(30)

(a) (b)

Figure 4. Theoretical time increment distribution for the case with the grid number of N ¼ 401. (a) Global view and
(b) Zoomed view.
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Thus, the NLevel used in our simulation is the largest integer that is smaller or equal to the
R.H.S. of the above equation. Finally, after getting Dtmin;Dtmax; andNLevel, we should decide the
distribution profile of the time increments between these two extreme values with a control
parameter. A simple way to achieve this goal is to make the time step series as a geometric
sequence. Therefore, the time increment series become

Dtmin ¼ Dt1<Dt2< � � �<DtNLevel�1<DtNLevel ¼ Dtmax (31)

where Dti=Dti�1 is a constant. Table 2 shows the minimum and the maximum time increments
of PR-type ðDtPRÞ as proposed in [23] and the newly proposed method for the one- and two-
dimensional cases. It is worth noting that even we have assumed there are several levels of grid
size, they are only used to determine the value of NLevel. In other words, under the cases
with different values of Dt, the mesh size used in our simulation is h1 in time marching to
steady state.

4. Verification study

In this section, several verification problems are conducted. Numerical results for heat equation
and Poisson equation with Neumann boundary conditions are shown for one- and two-dimen-
sional cases. The spatial rate of convergence (sroc) for each case is also calculated. In this section,
the spatial rate of convergence is calculated by the following equation.

sroci ¼
log L2 � errorNi�1=L2 � errorNi

� 	
log hi�1=hið Þ (32)

In the above, h is the grid size and it is assumed to be h ¼ Dx ¼ Dy and the error L2-norms
are calculated by the following two equations for one- and two-dimensional cases, respectively.

L2 � normð Þ1D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XSN�1

i¼S1

/numerical � /exactð Þ2
vuut (33)

L2 � normð Þ2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1ð Þ2
XSN�1

i¼S1

XSN�1

j¼S1

/numerical � /exactð Þ2
vuut (34)

4.1. One-dimensional heat equation

In this test case, the computational domain is x 2 ½0; 1�. The exact solution is
/exact ¼ exp ð� 1

2 p
2tÞ cos ðpxÞ þ x2 þ xt. In other words, the nonhomogeneous Neumann boun-

dary conditions are /xðx ¼ 0Þ ¼ tan d/xðx ¼ 1Þ ¼ t þ 2 and the source term is
f ¼ 1

2 p
2 exp ð� 1

2 p
2tÞ cos ðpxÞ þ x�2. To get the spatial rate of convergence, time increment is set

to 10�5 to decrease temporal discretization error. Three different grid numbers are chosen as
N ¼ 11; 21; 41. The simulation stops at T ¼ 1:0s. The numerical results computed by the scheme

Table 2. The minimum and maximum time increments of the PR-type and the newly proposed method for 1D and 2D cases.

N 11 51 101 201

AF Dtmin 2.9032E–03 1.1478E–04 2.8686E–05 7.1708E–06
Dtmax 8.1057E–01 8.1057E–01 8.1057E–01 8.1057E–01

1D Dtmin 2.5000E–05 4.0000E–08 2.5000E–09 1.5625E–10
Dtmax 1.0000E–00 1.0000E–00 1.0000E–00 1.0000E–00

2D Dtmin 6.2500E–06 1.0000E–08 6.2500E–10 3.9063E–11
Dtmax 1.0000E–00 1.0000E–00 1.0000E–00 1.0000E–00
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reported in [34] are compared with our results as shown in Table 3. Higher accuracy order can
be seen for the cases using the proposed NSCCD6 scheme.

4.2. Two-dimensional heat equation

The computational domain is ðx; yÞ 2 ½0; 1� for the two-dimensional case. The exact solution is
/ ¼ exp ð�p2tÞ cos ðpxÞ cos ðpyÞ þ ðx2 þ y2Þ þ ðxþ yÞt and the Neumann boundary conditions
are /xð0; y; tÞ ¼ /yðx; 0; tÞ ¼ tan d/xð1; y; tÞ ¼ /yðx; 1; tÞ ¼ t þ 2. The source term in this case
is f ¼ p2 exp ð�p2tÞ cos ðpxÞ cos ðpyÞ þ xþ y�4. The time increment is 10�5 for decreasing
the temporal discretization error. Grid numbers, N2 ¼ 112; 212 and 412, are chosen to compute
the sroc. From the numerical results shown in Table 4, we can get much better spatial rates of
convergences (sroc) than those calculated from the reference numerical methods detailed in [35].

4.3. One-dimensional Poisson equation

The first steady state problem under investigation is the one-dimensional Poisson equation with
Neumann boundary conditions. The solution domain is x 2 ½0; 1� and the exact solution is
/ðxÞ ¼ � cos ð2pxÞ. The corresponding Neumann boundary condition is /x ¼ 2p sin ð2pxÞ which
is zero at x ¼ 0 and 1. The source term can be calculated from Eq. (1). For the steady state
problem, both sroc at small number of grid points and speed-up at large number of grid points
are calculated. It is worth noting that zero initial condition is usually used when utilizing iterative
methods, but the numerical solution calculated by CG method with the second-order central dif-
ference scheme is used as the initial condition for the proposed NSCCD6 scheme. The conver-
gence criterion for the time stepping NSCCD6 scheme is that the root-mean-squares of the
difference between two consecutive time step solutions is less than 10�14. First, for the cases of
calculating sroc, the minimum time increments calculated from Eq. (29) are used to decrease
temporal errors with the grid numbers N ¼ 11; 21, and 41. The numerical results are shown in
Table 5. Numerical solutions obtained by CG and NSCCD6 methods are shown. Here the super-
convergent solutions can be obtained from the proposed NSCCD6 scheme. An interesting phe-
nomenon can be observed that the larger the NLevel, the smaller the CPU time and the iteration
number. Even though NLevel can be enlarged to any larger number, but the calculation strategy
for NLevel shown in Eq. (30) was adopted here. Here, the computation times for CG and
NSCCD6 are monitored separately. Therefore, the total computation time is the sum of the com-
putation times of CG and NSCCD6. It is interesting that the computation times for NSCCD6 are
almost the same as those for the CG method, thus the NSCCD6 scheme with time increment
changing strategy is an efficient method for solving the Poisson equation with Neumann

Table 3. Sroc for solving the one-dimensional heat equation.

N
NSCCD6 Reference

Error L2-norm sroc Error L2-norm sroc

11 3.9189E–007 – 2.3385E–004 –
21 3.2868E–009 6.90 3.2681E–005 2.84
41 3.9269E–011 6.39 4.2533E–006 2.94

Table 4. Sroc for solving the two-dimensional heat equation.

N
NSCCD6 Reference

Error L2-norm sroc Error L2-norm sroc

112 1.0525E–006 – 1.5042E–006 –
212 8.3696E–009 6.97 2.2505E–007 2.74
412 6.6341E–011 6.98 3.0160E–008 2.90
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boundary conditions. By comparing L2-norms of error, NSCCD6 scheme can significantly
improve the solutions obtained from the CG method. In summary, NSCCD6 scheme can reduce
errors with a factor of 10�1�10�4 using only twice of the computation time of the CG method.

Secondly, for the cases with larger number of grid points, the efficiency of applying the pro-
posed method is clearly shown. Here the speed-up is defined as following.

speed�up ¼ total computation time for NLevel ¼ 1
total computation time for Nlevel calculated fromEq: 30ð Þ (35)

Grid numbers N ¼ 101; 201, and 401 are considered. From Table 6, we can observe that the com-
putation time and the iteration number for the cases using the time increment changing strategy can
be significantly reduced. The speed-up is more than two thousand for the case of N ¼ 401. It is
believed that the speed-up can be even higher for the cases involving a larger value of N.

4.4. Two-dimensional Poisson equation

The last test case is the two-dimensional Poisson equation with Neumann boundary conditions.
The solution domain is ðx; yÞ 2 ½0; 1� with the exact solution / ¼ � cos ð2pxÞ cos ð2pyÞ. The
Neumann boundary conditions are /x ¼ 2p sin ð2pxÞ cos ð2pyÞ and/y ¼ 2p cos ð2pxÞ sin ð2pyÞ
which are zero at the four boundaries. The source term can be calculated from Eq. (1). Grid
numbers N2 ¼ 212; 412, and 812 are used for calculating both sroc and speed-up. The sroc shows
super-convergent results as detailed in Table 7. The solution errors can be reduced by a factor of
10�3 to 10�6 from the CG solutions to the NSCCD6 solutions. It can be seen that the speed-up
for solving two-dimensional steady state Poisson equation with the proposed NSCCD6 scheme
and time increment changing strategy can be tremendously increased to the orders of 103 to 106

as shown in Table 8. The key to success is that for two-dimensional cases, errors of different fre-
quencies can be quickly damped under different time increments.

5. Concluding remarks

In this paper, we are aiming at solving parabolic and elliptic equations with Neumann boundary
conditions with sixth-order accurate CCD schemes on staggered grids. First, the NSCCD6 scheme
is derived on the staggered grid system that is usually used in computational fluid dynamics soci-
ety. In doing so, Neumann boundary condition is not needed to be discretized with one-sided
scheme which is of lower accuracy order. On the other hand, this Poisson solver can be adopted
by any other Navier–Stokes solver. Second, when solving the transient parabolic equation to the

Table 5. Numerical results for calculating the sroc of the 1D Poisson equation.

N
NSCCD6 CG

Error L2-norm sroc NLevel CPU time (s) Iterative no. Error L2-norm CPU time (s)

11 1.5607E–003 – 4 2.2482E–002 331 2.3729E–002 1.7074E–002
21 1.7293E–005 6.50 5 1.8359E–002 193 5.8445E–003 1.7471E–002
41 1.4911E–007 6.86 6 1.7879E–002 91 1.6981E–003 1.7719E–002

Table 6. Numerical results for calculating the speed-up of the 1D Poisson equation.

N NLevel CPU time for CG (s) CPU time for NSCCD6 (s) Iterative no. total CPU time (s) Speed-up

101 1 1.6369E–002 1.1891E–000 6237 1.2055E–000 –
7 1.6369E–002 1.7267E–002 37 3.3636E–002 35.84

201 1 1.7499E–002 2.9637Eþ 001 21235 2.9654Eþ 001 –
8 1.7499E–002 7.3015E–002 42 9.0514E–002 327.61

401 1 1.7628E–002 4.2054Eþ 002 69923 4.2055Eþ 002 –
9 1.7628E–002 1.9804E–001 33 2.1567E–001 1949.97
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steady state, errors of different frequencies are hardly and slowly to be eliminated if only a single
time increment is utilized. Therefore, a time increment changing strategy is proposed to acceler-
ate convergence. The underlying idea is to provide a series of time increments which cover the
range of the amplification factors and reducing splitting errors introduced in the course of ADI
procedures when solving the two-dimensional equation. Through numerical verifications, super-
convergent property is seen and a huge computation time is saved by using the proposed
NSCCD6 scheme and time increment changing strategy.
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Appendix

A derivation of the matrices used for spectral analysis

For the deduction of the matrices ½C1� and ½D�, the Eq. (10) is first considered in the form of

A½ � 2N�1ð Þ	 2N�1ð Þ
/0

/00


 �
2N�1ð Þ

¼ B½ � 2N�1ð Þ	 N�1ð Þ /f g N�1ð Þ þ /0
1 ::: /0

N 0 ::: 0
� �T

where the superscript T denotes the transpose. Therefore, we know that the solution vector is

/0

/00


 �
¼ A½ ��1

B½ � /f g þ A½ ��1
af g

where the vector fag includes the Neumann boundary conditions for / only. With the aid of a transform matrix
½T�, we can calculate only the second-order derivatives from the following equation.

/00� �
N�1ð Þ ¼ T½ � N�1ð Þ	 2N�1ð Þ

/0

/00

( )
2N�1ð Þ

¼ T½ � A½ ��1
B½ � /f g þ T½ � A½ ��1

af g
¼ C1½ � /f g þ C2½ � af g

(A.36)

The form of the transformation matrix ½T� is shown below.

/0
10

/0
20
..
.

/0
N�20

/0
N�10

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0 0 ::: ::: 0 0 1 0 ::: 0 0
0 0 ::: ::: 0 0 0 1 ::: 0 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
.

0 0 ::: ::: 0 0 0 0 ::: 1 0
0 0 ::: ::: 0 0 0 0 ::: 0 1

2
666664

3
777775

/0
1

/0
2

..

.

..

.

/0
N�1
/0
N

/0
10

/0
20
..
.

/0
N�20

/0
N�10

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

Hereafter, the one-dimensional parabolic equation is discretized with the Crank–Nicolson scheme to get the
semi-discrete form.

/nþ1�r/nþ1
xx ¼ /n þ r/n

xx þ Dtf nþ
1
2

where r ¼ Dt=2. The second-order derivative terms can be replaced with the relation shown in Eq. (A.36), thereby
yielding

I½ � � r C1½ �� �
/f gnþ1�r C2½ � af gnþ1 ¼ I½ � þ r C1½ �� �

/f gn þ r C2½ � af gn þ Dt ff gnþ1
2

Here, we introduce two auxiliary matrices ½C�� and ½Cþ� to simplify the equation, thereby yielding

C�½ � /f gnþ1 ¼ Cþ½ � /f gn þ r C2½ � af gnþ1 þ af gn
� �

þ Dt ff gnþ1
2

We can get finally the matrix form for the solution vector f/gnþ1 as follows.

/f gnþ1 ¼ C�½ ��1 Cþ½ � /f gn þ r C�½ ��1 C2½ � af gnþ1 þ af gn
� �

þ Dt C�½ ��1 ff gnþ1
2

¼ D½ � /f gn þ r E½ � af gnþ1 þ af gn
� �

þ Dt C�½ ��1 ff gnþ1
2

¼ D½ � /f gn
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