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a b s t r a c t 

In this paper a multi-GPU-based finite element flow solver is developed to solve the three-dimensional 

incompressible Navier–Stokes equations at steady-state. To circumvent the convective instability prob- 

lem at high Reynolds numbers, the proposed streamline upwinding finite element model minimizes the 

wavenumber error for the convection terms. Mixed finite element formulation is adopted and the result- 

ing nearly ill-conditioned finite element equations are solved iteratively. To avoid the Lanczos or pivoting 

breakdown, the finite element equations are first normalized. The computationally efficient precondi- 

tioned conjugate gradient (PCG) solver can then be applied to get the unconditionally convergent solu- 

tion. The developed finite element code implemented on multi-GPU cards will be verified and validated 

by solving the problem amenable to analytical solution and the benchmark lid-driven cavity problem, 

respectively. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The finite element method (FEM) has long been regarded as an

mportant tool to predict the incompressible flow equations be-

ause of its appealing advantages in handling complex geometry

nd easy treatment of the natural boundary condition. FEM is also

athematically rich in providing analysis of convergence proof [1] .

owever, the cost of solving the resulting finite element equations

or three-dimensional problem is very often prohibitive. For the

ake of efficiency, the parallel computing technique is often used

o accelerate the calculation [2] . 

Recently, graphic processing unit (GPU), originally designed for

endering high resolution graphics, now has drawn more atten-

ion for scientific computing application due to its tremendous

oating-points peak performance, multicore design and high mem-

ry bandwidth compared to CPU [3,4] . Moreover, the introduction

f the compute unified device architecture (CUDA) programming

odel proposed by Nvidia in 2007 [5] makes the GPU become
∗ Corresponding author at: Department of Engineering Science and Ocean Engi- 

eering, National Taiwan University, Taipei, Taiwan. 
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 high performance accelerator for data-parallel and compute-

ntensive tasks. 

Based on the above facts, the objective of this study is to de-

elop a fast and robust finite element flow solver to solve the

hree-dimensional incompressible Navier-Stokes equations. The fi- 

ite element equations will be solved iteratively on a multi-GPU

rchitecture. 

This paper is organized as follows: In Section 2 , the incom-

ressible Navier-Stokes equation cast in primitive variables is in-

roduced. The developed Petrov–Galerkin finite element model and

he elementary matrix modification procedure are described in

ection 3 . In Section 4 , the multi-GPU-based iterative solver is in-

roduced. In Section 5 , the developed GPU finite element code is

erified and validated by solving the problem amenable to the an-

lytical solution and investigating the benchmark lid-driven cavity

ow problem. The speedup performance is also investigated. Fi-

ally, some conclusions will be drawn in Section 7 . 

. Governing equations 

Let � ⊆ R 

3 be an open and bounded domain and � denote its

oundary. The steady, viscous and incompressible Navier–Stokes

quations, which describe the fluid flow driven by a pressure

radient ∇p and a force term f , are expressed in terms of the

https://doi.org/10.1016/j.compfluid.2018.03.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Fig. 1. Schematic of the primitive variable storage in a tri-quadratic element. 
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primitive-variable form ( u , p ) 

− 1 

Re 
∇ 

2 u + ( u · ∇) · u = −∇p + f (1)

∇ · u = 0 (2)

In Eq. (1) , the dimensionless Reynolds number Re comes out as the

direct result of the normalization of equations. The solution of the

above elliptic system of partial differential equations for the ve-

locity vector u = { u, v , w } is sought in a region that is enclosed by

the boundary. The condition applied at � with an outward normal

vector n = { n x , n y , n z } must satisfy the integral equation given by∫ 
� u · n d� = 0 

The mixed finite element formulation is employed to solve

Eqs. (1) and (2) because the divergence-free condition is uncon-

ditionally satisfied. The resulting finite element equations are, in

general, asymmetric, indefinite and are not diagonally dominant.

Application of some well known iterative solvers (e.g. BICGSTAB,

GMRES [6] ) may not yield convergent solutions for high Reynolds

number case. To get the unconditionally convergent solution, we

will employ the normalization strategy to resolve the convergent

problem [7] . 

3. Streamline upwind finite element model 

We denote by L 

2 
0 (�) the constraint space for the pressure,

which consists of square integrable function having zero mean over

�. In addition, we introduce the space H 

1 
0 
(�) , which consists of

function and its derivative is square integrable over � and van-

ishes on the boundary. Given the above functional spaces, the so-

lutions for ( u , p) ∈ (H 

1 (�) × H 

1 (�)) × L 

2 (�) are sought from the

following variational formulation for (1) . ∫ 
�
( u · ∇ u ) · w d� + 

1 

Re 

∫ 
�

∇ u : ∇ w d� −
∫ 
�

p ∇ · w d�

= 

∫ 
�

f · w d�, (3)

∫ 
�
(∇ · u ) q d� = 0 (4)

The Eqs. (3) and (4) hold for all weighting functions w (≡ N i + B i ) ∈
H 

1 
0 
(�) × H 

1 
0 
(�) and q ∈ L 

2 
0 
(�) . 

When employing the mixed finite element formulation to solve

Eqs. (1) and (2) , the LBB (or inf-sup) condition is our guideline

for choosing the basis space for ( u , p ) [8,9] to avoid the even-

odd pressure oscillations. The LBB -satisfied element schematic in

Fig. 1 is employed in the present study. The primitive velocity vec-

tor and pressure are, therefore, approximated by the following tri-

quadratic N j ( j = 1 ∼ 27) and tri-linear M l (l = 1 ∼ 8) basis func-

tions, respectively. 

N j = 

(
3 

2 

ξ
2 + 

1 

2 

ξ + 1 + ξ 2 − ξ 2 
j 

)(
3 

2 

η2 + 

1 

2 

η + 1 + η2 − η2 
j 

)

×
(

3 

2 

ζ
2 + 

1 

2 

ζ + 1 + ζ 2 − ζ 2 
j 

)

M l = 

1 

8 

(1 + ξ )(1 + η)(1 + ζ ) 

In the above equations, ξ j , ηj and ζ j denote the normalized coor-

dinates for j -node in an element and ξ = ξξ j , η = ηη j , ζ = ζ ζ j . 

By substituting the finite element approximation u = 

∑ 27 
j=1 u j N j 

and p = 

∑ 8 
l=1 p l M l into Eqs. (3) and (4) , the resulting sparse, asym-

metric and indefinite finite element matrix equation A x = b for the
olution vector x = { u j , v j , w j , p l } T is given by 

 = 

∫ 
�

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

C i j 0 0 −M l 

∂N i 

∂x 

0 C i j 0 −M l 

∂N i 

∂y 

0 0 C i j −M l 

∂N i 

∂z 

M l 

∂N j 

∂x 
M l 

∂N j 

∂y 
M l 

∂N j 

∂z 
0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

d �, 

b = −
∫ 
�out 

N i 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

pn x − 1 

Re 

∂u j 

∂n 

pn y − 1 

Re 

∂v j 
∂n 

pn z − 1 

Re 

∂w j 

∂n 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

d �

Finite element simulation of the incompressible Navier–Stokes

quations normally encounters non-physical pressure and velocity

scillations. These oscillations can pollute the flow field and deteri-

rate the solution accuracy. In this study, the problem of pressure

scillations has been circumvented owing to the employed LBB -

ased basis functions. 

Velocity oscillations are due to an incorrect discretization of the

onlinear convection terms which dominated the diffusion terms.

o resolve this difficulty, the Petrov–Galerkin finite element model,

n which the trial and weighting functions are chosen from differ-

nt function spaces, is our recommended strategy. The finite ele-

ent model with minimal wavenumber error will be applied [7] . 
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Fig. 2. Illustration of the Dirichlet boundary condition implementation in an elementary matrix. 

C

w  

c  

e  

t

τ

w  

s  

o

 

t  

g  

c  

g  

s  

m  

e  

o  

n

 

c  

s  

o  

w  

m

 

‘  

W  

s  

s  

t  

n  

g  

a  

S  

m  

n  

W  

n

 

w  

t

The component C ij shown in A is expressed as follows : 

 i j = (N i + B i )(N m ̃

 u m 

) 
∂N j 

∂x k 
+ 

1 

Re 

∂N i 

∂x k 

∂N j 

∂x k 
, (5) 

here B i = τ (N m ̃

 u m 

) 
∂N i 
∂x 

denotes the biased part. In practice, it is

ustomary to set the value of ˜ u m 

as a constant in order to lin-

arize the momentum equations. The stabilized parameter τ in

hree-dimensional problem is expressed as follows: 

= 

δξ u ξ h ξ + δη u η h η + δζ u ζ h ζ

2 | u i u j | , (6) 

here u Y i = ˆ e Y i · u and (Y 1 , Y 2 , Y 3 ) = (ξ , η, ζ ) . In the above expres-

ion, the upwinding coefficients ( δξ , δη , δζ ) are chosen depending

n the nodal classification in the chosen tri-quadratic element [7] . 

In the classical finite element analysis, all the elementary ma-

rices are calculated and assembled to form a global matrix. This

lobal matrix is then modified by including the Dirichlet boundary

ondition and is then solved by some suitable solvers. Since the

lobal matrix is sparse, only the non-zero entries can be stored by

ome specific sparse matrix formats in order to save the computer

emory. A discussion of these formats can be found in [6] . How-

ver, employment of these formats still suffers from large mem-

ry requirements in three-dimensional problem because the sig-

ificantly increased non-zero entries. 

In this finite element flow solver, all the elementary matrices

an be only stored in an element level. There is no need to as-

emble the global matrix and a large amount of computer mem-

ry can be reduced. To this end, the elementary matrix associated

ith element containing the Dirichlet boundary condition must be

odified to include the Dirichlet boundary condition. 

We denote by A 

(b) 
e the e th element matrix and the superscript

 b ’ means that this element contains the Dirichlet boundary node.

e also define the variable S (e ) 
k 

which represents the times of

hared Dirichlet boundary node k in element e . For the sake of

implicity, we take the tri-linear element as an example. In Fig. 2 ,

he shaded region represents the Dirichlet boundary condition. The

umber shown in the circle and the square symbol stands for the

lobal and local numbering, respectively. The global corner bound-

ry nodes 1,7,19,25 share only one element ( S (1) 
1 

= S (2) 
3 

= S (3) 
5 

=

 

(4) 
7 

= 1 ). The middle edge nodes 4,10,16,22 share with two ele-

ents ( S (1) 
3 

= S (1) 
5 

= S (2) 
1 

= S (2) 
7 

= S (3) 
1 

= S (3) 
7 

= S (4) 
3 

= S (4) 
5 

= 2 ). The

ode 13 is shared by four elements ( S (1) 
7 

= S (2) 
5 

= S (3) 
3 

= S (4) 
1 

= 4 ).

e denote by φbn the Dirichlet boundary value at the boundary

ode ’ bn ’. The modification procedure is stated in Algorithm 1 . 

Algorithm 1: The modification procedure for A 

(b) 
e . 

Input : 

Nel (b) ← The number of elements containing the Dirichlet 

boundary nodes; 

n L ← The degree of freedom of elementary matrix; 

e ← The ID of element containing the Dirichlet boundary 

node; 

S (e ) 
k 

← The number of shared boundary node k in the 

element e ; 

φbn ← The Dirichlet boundary value at the boundary node 

’bn’; 

A 

(b) 
e ← The boundary element matrix; 

b ← The global right hand side vector; 

Output : 

A 

(b) 
e ← The modified boundary element matrix; 

for e = 1 → Nel (b) do 

Find the local row r and global row index i for boundary 

node k in element e ; 

Set A 

(b) 
e | rr = 1 . 0 /S (e ) 

k 
; 

for j = 1 → n L , j 
 = r do 

A 

(b) 
e | r j = 0 

end 

b (i ) = φbn ; 

end 

This procedure can be easily extended to tri-quadratic element

hen solving the steady-state incompressible Navier–Stokes equa-

ions using the mixed finite element formulation. 
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Algorithm 2: multi-GPU-based PCG solver for ˜ A x = ̃

 b . 

Input : 

A ← All the elementary matrices ; A 

T ← All the transposed 

elementary matrices; 

b ← The global right-hand side vector ; M ← The Jacobi 

preconditioner; 

Output : 

x ← The solution vector; 

Starting from an initial guess solution x 0 ; 

Compute the normalized right hand side ˜ b = A 

T b ; 

Compute ̃  A x 0 // matrix-vector multiplication operation ; 

Compute the initial residual r 0 = ̃

 b −˜ A x 0 // vector operation ; 

Solve M z 0 = r 0 // preconditioner equation solving; 

Set p 0 = z 0 ; 

Compute q 0 = ̃

 A p 0 , s 0 = ̃

 A z 0 ; 

α = ( r 0 , z 0 ) / ( ̃  A z 0 , z 0 ) , β = 0 ; 

for j = 1, 2, …, do 

p ′ 
j 
= z ′ 

j 
+ β p ′ 

j−1 
// vector operation ; 

q ′ 
j 
= s ′ 

j−1 
+ β q ′ 

j−1 
// vector operation ; 

x ′ 
j 
= x ′ 

j−1 
+ α p ′ 

j 
// vector operation ; 

r ′ 
j 
= r ′ 

j−1 
− β q ′ 

j 
// vector operation ; 

check the convergence ; 

Solve M z j = r j // precondition operation ; 

Compute s j = ̃

 A z j // matrix-vector multiplication operation; 

β = ( z j , r j ) / ( z j−1 , r j−1 ) // inner product 

operation ; 

α = ( z j , r j ) / 
[
( s j , z j ) − ( βα )( s j , r j ) 

]
// inner product 

operation 

end 

4

 

t  

p  

d  

s  

T  

t  

s  

e  

t  

p

4

 

e  

t

 

d  

m  

[  

v

A  

w  

m  

n  

m  

e  

t  
4. Iterative solver on multi-GPUs 

4.1. Introduction of CPU/GPU platform 

CUDA is a heterogeneous computing model developed to ex-

ploit the computing power of Nvidia’s GPU based on a scalable

programming model on an instruction set architecture. With the

advent of CUDA, the parallel computing on GPUs for non-graphic

applications becomes available. The CUDA programming model is

an extension of the programming language (C/C++ or Fortran). In

CUDA model, GPU (device) is a co-processor to the CPU (host).

The host solely controls function calls for device memory alloca-

tion and memory transfer. The device is responsible for the most

time-consuming computation tasks. Since the data in host must be

copied to device, the investigated problem size is limited by the

memory size in GPU. In order to investigate a larger sized problem

and get a better speedup performance, one can utilize the multiple

GPU cards. In this case, the communication between different GPU

cards may be necessary. 

4.2. Multi-GPU-based PCG solver 

In the employed mixed finite element formulation, asymme-

try and indefiniteness pose a grand challenge [7] . Employment of

a Gaussian-elimination-based direct solver with scaling pivoting

technique has long been considered as a means of solving this kind

of finite element equations. However, the memory demand of di-

rect solver in three-dimensional problem is prohibitive even using

the state-of-the-art storage technology. Thus, we have no choice

but turn to employing an iterative solver. Among them, a class of

Krylov subspace iterative solvers was regarded to be effective to

solve the three-dimensional finite element equations. Moreover, it

is suitably implemented in parallel on GPU. 

To get unconditionally convergent solution, our strategy is to

transform the asymmetric and indefinite matrix equations into an

equivalent symmetric and positive definite (SPD) counterpart by

multiplying its transpose A 

T on the matrix equation A under in-

vestigation, leading to the normal matrix equations ˜ A x = 

˜ b where˜ A = A 

T A , ̃  b = A 

T b 

Since the normal matrix equations become SPD, the computa-

tionally effective conjugate-gradient (CG) iterative solver [6] can be

applied to get the unconditionally convergent solution. Use of this

approach, however, increases the condition number and makes the

convergence of CG very slow. A suitable preconditioner can be cho-

sen to accelerate the convergence. 

4.3. GPU kernel functions 

4.3.1. Vector, precondition operation kernel 

For the given vector size N and the number of threads (de-

note by Nthread ) in each block, we can decide the number of

blocks (denote by Nblock ). Perfectly, Nthread should be the mul-

tiple of the warp size in order to meet alignment constraint of

global memory coalescing. The Nblock can be calculated by the for-

mula Nblock = 

N −(N thread−1) 
Nthread 

so that all the components of vector

will be processed. N is, in general, less than the product of Nblock

and Nthread . Note that in order to alleviate the discrepancy of cal-

culation of each block, the last block can be complemented with

zeros. 

The vector operations consist of the vector addi-

tion/substraction and the scalar multiplication of vector. In

this study, the Jacobi preconditioner is employed due to its easy

parallel implementation. The preconditioned equation M z j = r j is,

therefore, very easy to be solved and parallelized. To get a better

performance, we can combine all the four-vector operation kernel

functions into a single kernel function in Algorithm 2 . 
.3.2. Inner-product operation kernel 

The inner-product of the vector in CUDA is a special opera-

ion since the reduction operation is invoked. The proposed inner-

roduct kernel function is stated in Algorithm 3 . Since the re-

uction operation will be invoked, we declare a buffer of SM -sized

hared memory in each block in order to get a better performance.

he kernel-1 is implemented in two steps. Firstly, we compute the

emporal products of vec 1 and vec 2 and store the products in the

hared memory. The tree reduction algorithm is then performed in

ach block to calculate the partial sum of each block. Finally, all

he Nblock partial sums are accumulated to get the required inner-

roduct. 

.3.3. Element-by-element matrix-vector product kernel 

In Algorithm 2 , the matrix-vector product represents the most

xpensive operation. As a result, a good acceleration of this opera-

ion will significantly improve the speed performance. 

Since the global matrix in this study is never assembled, we

ecompose the matrix-vector product into a sum of element-level

atrix-vector product via the element-by-element (EBE) concept

10] . For the given global matrix A and the vector v , the matrix-

ector product can be reformulated in element-wise fashion as 

 v = 

Nel ∑ 

e =1 

( C e ) T A 

e C e v = 

Nel ∑ 

e =1 

( C e ) T ( A 

e v e ) (7)

here Nel is the number of elements. C e denotes the transition

atrix which represents the mapping between the local and global

ode numbering. In Eq. (7) , the product of an assembled global

atrix and a vector is equivalent to the assembled vector of the

lementary matrix-vector product. Kiss et al. [11] also presented

he similar concept, but the detailed algorithm is not given therein.
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Algorithm 3: Inner-product kernel function (kernel-1). 

Input : 

V ec1 , V ec2 , N ← Given vectors and their sizes; 

Nthread ← The number of threads in each block; 

Nblock ← The number of blocks in grid 

( Nblock = (N + (Nt hread − 1)) /Nt hread); 

Output : 

ps (Nblock ) ← partial sum vector; 

1: Allocate shared memory vector V SM 

(512) with 

double-precision type; 

2: tid ← local thread index in each block; 

3: bid ← global block index in grid; 

4: gid ← global thread index in grid; 

5: V SM 

(tid) = v ec1(gid) ∗ v ec2(gid) ; call syncthreads(); 

6: if ( t id ≤ 256 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 256) ; call 

syncthreads(); 

7: if ( t id ≤ 128 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 128) ; call 

syncthreads(); 

8: if ( t id ≤ 64 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 64) ; call 

syncthreads(); 

9: if ( t id ≤ 32 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 32) ; call 

syncthreads(); 

10: if ( t id ≤ 16 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 16) ; call 

syncthreads(); 

11: if ( t id ≤ 8 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 8) ; call 

syncthreads(); 

12: if ( t id ≤ 4 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 4) ; call 

syncthreads(); 

13: if ( t id ≤ 2 ) V SM 

(t id) = V SM 

(t id) + V SM 

(tid + 2) ; call 

syncthreads(); 

14: if ( tid = 1 ) ps (bid ) = V SM 

(tid ) + V SM 

(tid + 1) ; 

call syncthreads(); 

N  

o  

t  

n  

s  

n  

s
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c  

Algorithm 4: Element-by-element matrix-vector product ker- 

nel function (kernel-2). 

Input : 

Nthread ← The number of threads in block; 

Nblock ← The number of blocks in grid 

( Nblock = (N + (Nt hread − 1)) /Nt hread); 

E k ← The k th subset of element containing the same color; 

Nel (k ) ← The number of elements in k th subset E k ; 
n L ← The local degree of freedom; n E 

L 
← The enlarged local 

degree of freedom; 

n G ← The global degree of freedom; 

N ← n E 
L 

∗ n L ∗ Nel (k ) ; 

A N×1 ← All the elementary matrices in subset E k ; 
v n G ×1 ← The global vector; 

C (e ) ← The e th transition matrix, e ∈ E k ; 
output : 

A v (n G ) ← The elementary matrix-vector product; 

1: Allocate the shared memory vector V SM 

(n E 
L 
) with 

double-precision type; 

2: tid ← local thread index in block; 

3: bid ← global block index in grid; 

4: gid ← global thread index in grid; 

5: msize ← n E 
L 

∗ n L ; 

6: if ( gid ≤ msize ∗ Nel (k ) ) then 

7: icr ← mod (gid , msize ) + int((msize - mod (gid , msize )) /msize ) ∗
msize ; 

8: e ← int(gid + (msize − 1) /msize ) ; 

9: col ← int((icr + (n E L − 1)) /n E L ) ; 

10: row ← mod (gid , n E L ) + int((n E L − mod (gid , n E L )) /n E L ) * n 
E 
L ; 

11: ptr ← (e − 1) ∗ msize + (col − 1) ∗ n E 
L 

+ row ; 

12: V SM 

(tid) = A (ptr) ∗ v ((e − 1) ∗ n E 
L 

+ row ) ; call syncthreads(); 

13: if (tid ≤ 48) V SM 

(tid) = V SM 

(tid) + V SM 

(tid + 48) ; call 

syncthreads(); 

14: if (tid ≤ 24) V SM 

(tid) = V SM 

(tid) + V SM 

(tid + 24) ; call 

syncthreads(); 

15: if (tid ≤ 12) V SM 

(tid) = V SM 

(tid) + V SM 

(tid + 12) ; call 

syncthreads(); 

16: if (tid ≤ 6) V SM 

(tid) = V SM 

(tid) + V SM 

(tid + 6) ; call 

syncthreads(); 

17: if (tid ≤ 3) V SM 

(tid) = V SM 

(tid) + V SM 

(tid + 3) ; call 

syncthreads(); 

18: if (tid = 1) A v ( C (e ) (bid)) + = V SM 

(tid) + V SM 

(tid + 1) + V SM 

(tid + 2) ; 

call syncthreads(); 

19: end if 

U  

c  

u
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t

ote that the implementation of Eq. (7) on GPU may fail because

f the race condition problem. The mesh coloring technique is used

o circumvent this problem. All the elements E are divided into the

umber of n disjoint subsets such that any two elements in a given

ubset are not allowed to share the same node. The proposed ker-

el function of the EBE matrix-vector product for a given subset is

tated in Algorithm 4 . Some notes are given below: 

• All the elementary matrices A e , e ∈ E are stored as the one-

dimensional vector A in global memory of GPU. If the elemen-

tary matrix is obtained from the element containing the Dirich-

let boundary node, the elementary matrix must be modified via

Algorithm 1 . 
• The local degree of freedom n L of A e , e ∈ E is equal to 89 due

to the chosen LBB basis functions. In order to meet alignment

constraint global memory coalescing, we enlarge the size of n L 
from 89 to few multiple warp size (e.g. 96). For n L numbering

from 90 to 96, they are set to have the values of zero. 

It is clearly that the kernel-2 can be launched on different GPU

ards for different subsets. To launch the kernel-2 on multi-GPU,

e copy the elementary matrices of different subsets and global

ectors to the corresponding GPU device. As shown in Fig. 3 , the

ernel-2 is then performed in the all respective GPUs. The partial

lementary matrix-vector product stored in the GPU-2 to GPU-n is

hen copied back to GPU-1 to sum up the required global matrix-

ector product. 

. Code verification/validation 

The present finite element code is written in CUDA Fortran and

ompiled with the PGI (The Portland Group, Inc., Lake Oswego, OR,
SA) accelerator. Some features of the employed CPU and GPU ar-

hitectures are listed in Table 1 . All the calculations are performed

sing double-precision arithmetic. 

.1. Analytic verification 

In an unit cube, all the nodal boundary velocities are analyt-

cally prescribed by u = 

1 
2 (y 2 + z 2 ) , v = −z and w = y . The cor-

esponding exact pressure solution can be derived as p = 

1 
2 (y 2 +

 

2 ) + 

2 
Re x . In Table 2 , we tabulate the predicted L 2 -error norms and

he corresponding spatial rates of convergence based on the solu-

ions obtained at four different number of elements. Good agree-

ent between the exact and the predicted solution is demon-

trated. The predicted spatial rate of convergence is also very close

o its theoretical rate of convergence. 
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Fig. 3. Implementation of SpMV kernel function on multi-GPUs. 

Table 1 

Some key specifications of the employed CPU and the GPU architec- 

tures. 

CPU GPU 

Processor Intel E5-2690 V4 Nvidia Pascal P100 

Number of cores 14 3584 (SP) 

1792 (DP) 

Off-chip memory 1.54 TB 16 GB 

Peak flops 37.1 GB/s (DP) 10.6 TFlops/s (SP) 

5.3 TFlops/s (DP) 

Memory bandwidth 76.8 GFlops/s 732 GB/s (Nvlink) 

IEEE 754 single/double Yes / yes Yes / yes 

SP : Single precision . 

DP : Double precision . 
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5.2. Three-dimensional lid-driven cavity flow problem 

The benchmark three-dimensional lid-driven cavity flow prob-

lem schematic in Fig. 4 (a) is investigated due to its simple geome-

try, embedded rich flow physics and easy boundary condition im-

plementation. The predicted and reference [12] mid-plane velocity

profiles u ( x , 0.5, 0.5) and w (0.5, y , 0.5) are plotted in Fig. 4 (b) and

(c). The simulated good agreement demonstrates that the devel-

oped finite element GPU code can accurately predict the incom-

pressible flow behavior. 

6. Speedup performance 

In this section, a performance comparison between the devel-

oped CPU and GPU codes is discussed with the goal of demon-
Table 2 

The predicted L 2 error norms for the analytical verification

N elem u -velocity v -velocity 

L 2 -norms R.O.C. L 2 -norms R.O.C. 

10 3 6.80E-4 – 3.59E-3 –

20 3 1.08E-4 2.65 4.99E-4 2.84 

30 3 4.37E-5 2.17 1.39E-4 3.07 

40 3 2.42E-5 2.12 5.56E-5 3.30 
trating the benefit of running the code on GPUs. The lid-driven

avity problem with different element sizes and Reynolds numbers

re performed to assess the performance. The total computing time

 

GPU 
run , including the data preparation, elementary matrix calculation,

reconditioner calculation and matrix equation solver, is measured

y running the GPU code on 1-, 2- and 4-GPU cards. The T CPU 
run is

lso measured by running the equivalent OpenMP CPU code with

4-cores (28-threads). 

For the sake of comparison, the unit time T unit ( ≡ T run ×10 6 

N iter ×N elem 

) de-

ned in [13] is calculated. The N elem 

and N iter represent the num-

er of elements and the times of nonlinear iteration, respectively.

he unit time T unit at all studied cases are tabulated in Tables 3

nd 4 and the speedup ratios are obtained by comparing the unit

ime of GPU code against those obtained with the OpenMP CPU

ode. It is clearly seen from Tables 3 and 4 that some study cases

re not available because its memory requirements exceed the

uilt-in memory size in GPU. This is why we proposed the flow

olver on multiple GPU cards. Our solver can solve the problem

hose total degree of freedom is more than ten millions. More-

ver, the predicted speedup ratio is increased with respect to the

lement size. The results shown in Tables 3 and 4 justify the choice

f the proposed finite element flow solver for the solution of the

hree-dimensional incompressible Navier–Stokes equations. 

. Concluding remarks 

In this study, the LBB -based Petrov–Galerkin finite element

odel was used to solve the steady-state incompressible Navier–

tokes equations. This finite element model minimizes the error

f numerical wavenumber for the convection term so as to ef-
 problem in Section 5.1 . 

w -velocity p -pressure 

L 2 -norms R.O.C. L 2 -norms R.O.C. 

3.65E-3 – 2.75E-3 –

5.71E-4 2.67 7.04E-4 1.96 

1.53E-4 3.16 3.18E-4 1.91 

5.85E-5 3.46 1.94E-4 1.78 



N.S.-C. Kao, T.W.-H. Sheu / Computers and Fluids 167 (2018) 285–291 291 

Fig. 4. Schematic and comparison of the predicted velocity profiles of the three-dimensional lid-driven cavity flow problem. (a) Problem schematic; (b) Velocity profiles at 

Re = 400; (c) velocity profiles at Re = 10 0 0. 

Table 3 

Comparison of the computing time (microseconds) and speedup ratios for the three-dimensional lid-driven cavity flow 

problem investigated at Re = 400 . N DOF represents the number of total degree of freedom. The symbol “–” indicates 

that this calculation is not available. 

N elem N DOF T unit (microseconds) Speedup ratios 

1-CPU(A) 1-GPU(B) 2-GPUs(C) 4-GPUs(D) (A)/(B) (A)/(C) (A)/(D) 

40 3 1,663,244 124627.0 2206.0 1877.7 1662.7 56.4 × 66.3 × 74.9 ×
50 3 3,223,554 154976.9 2424.7 2030.0 1790.2 63.9 × 76.3 × 86.5 ×
64 3 6,714,692 178111.8 – 2339.9 2093.0 – 76.1 × 85.0 ×
75 3 10,767,829 259914.0 – – 2256.9 – – 115.1 ×

Table 4 

Comparison of the computing time (microseconds) and speedup ratios for the three-dimensional lid-driven cavity flow 

problem investigated at Re = 10 0 0 . N DOF represents the number of total degree of freedom. The symbol “–” indicates 

that this calculation is not available. 

N elem N DOF T unit (microseconds) Speedup ratios 

1-CPU(A) 1-GPU(B) 2-GPUs(C) 4-GPUs(D) (A)/(B) (A)/(C) (A)/(D) 

40 3 1,663,244 265879.9 3924.4 3215.1 2956.2 67.7 × 82.6 × 89.9 ×
50 3 3,223,554 389859.5 4581.8 3727.7 3421.7 85.0 × 104.5 × 113.9 ×
64 3 6,714,692 526862.8 – 4500.1 4158.7 – 117.0 × 126.6 ×
75 3 10,767,829 636523.9 – – 4734.0 – – 134.4 ×
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ectively suppress the non-physical velocity oscillations at high

eynolds number. To get unconditionally convergent solutions

rom the nearly ill-conditioned finite element equations, we solved

he equivalent normalization equations and applied the precondi-

ioner to accelerate the convergence [7] . To implement the PCG

olver on multiple GPU cards, the mesh coloring and EBE tech-

iques were adopted. From the numerical results, it was observed

hat this solver is accurate, reliable and can be used to solve very

arge-sized problems. Moreover, a considerable gain in speedup ra-

ios is obtained when compared to the CPU calculation using 4

ores. The results from this study demonstrate that one may solve

he three-dimensional flow equations on GPUs, reducing the com-

uting time and thus allowing the proposed solver to be applied

o investigate practical flow problems. 
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