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a b s t r a c t 

A double-precision numerical solver to describe the propagation of high-intensity ultrasound fluctuations 

using a novel finite-amplitude compressible acoustic model working in multiple processing units (GPUs) 

is presented. The present solver is based on a conservative hyperbolic formulation derived from a vari- 

ational analysis of the compressible Navier–Stokes equations and is implemented using an explicit high- 

order finite difference strategy. In this work, a WENO–Z reconstruction scheme along with a high-order 

finite-difference stencil are used to approximate the contributions of convective and diffusive spatial op- 

erators, respectively. The spatial operators are then associated to a low–storage Runge–Kutta scheme to 

integrate the system explicitly in time. The present multi-GPU implementation aims to make the best 

use of every single GPU and gain optimal performance of the algorithm on the per-node basis. To assess 

the performance of the present solver, a typical mini-server computer with 4 Tesla K80 dual GPU accel- 

erators is used. The results show that the present formulation scales linearly for large domain problems. 

Moreover, when compared to an OpenMP implementation running with an i7 processor of 4.2 GHz, this 

is outperformed by our MPI-GPU implementation by a factor of 99. In this work, the present multi-GPU 

solver is illustrated with a three-dimensional simulation of a highly-intense focused ultrasound propaga- 

tion. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

s  

o  

(  

a  

t  

c  

v  

t  

i  

a  

f

N

(

 

ρ  

a

ρ

h

0

. Introduction 

The numerical description of the nonlinear behavior of ultra-

ound propagation plays an important role in the development

f biomedical applications of high-intensity focused ultrasound

HIFU) such as thermotherapy and shock wave lithotripsy [1 , 2 ,

nd references therein]. In this applications, small (acoustic) dis-

urbances in the pressure field -typically generated at frequen-

ies greater than 1 kHz- propagate through heat-conducting and

iscous ( thermoviscous ) fluid media–such as water or tissue–and

ransport energy from a piezoelectric device into a target region

nside the media. The propagation of this acoustic disturbances is

ssumed to be irrotational and models for describing it can be built

rom classical fluid dynamics equations, namely: 
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the equation of mass conservation 

∂ρ

∂t 
+ ∇ · (ρυ) = 0 , (1)

the equation of motion (
∂ υ

∂t 
+( υ · ∇) υ

)
=−∇ p+μ∇ 

2 υ+ 

(
μB + 

1 

3 

μ
)
∇ (∇ · υ) , (2)

nd the equation of heat transfer 

T 

(
∂s 

∂t 
+ ( υ · ∇) s 

)
= 

μ

2 

(
∂υi 

∂x j 
+ 

∂υ j 

∂x i 
− 2 

3 

δi j 

∂υk 

∂x k 

)2 

+ μB (∇ · υ) 2 + κ∇ 

2 T , (3) 

here υ : υ( x , t) = (u ( x , t) , v ( x , t) , w ( x , t)) is the fluid particle ve-

ocity, ρ: ρ( x , t ) is the density of the media, s : s ( x , t ), the en-

ropy, p and T are the pressure and temperature, respectively. x =
(x, y, z) ∈ R 

3 are the spatial (Cartesian) coordinates and t > 0 ∈ R

enotes time. μ≥ 0 and μB ≥ 0 are the coefficients of shear and

ulk viscosity, and κ ≥ 0 is the heat conductivity coefficient. The

bove system of equation is considered to be closed upon defining
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Table 1 

Acoustic parameters of the media: density, ρ0 , speed of sound, c 0 , Beyer’s 

parameter of nonlinearity, B / A , and the acoustic absorption coefficient, α, 

for standard air, distilled water and human liver tissue. 

Media ρ0 [kg/m 

3 ] c 0 [m/s] B / A [–] α [Np/m at 1 Mhz] 

Air 1.205 a 343 a 0.4 b,d 18.9 f 

Water 998.3 a 1448 a 5.0 b 0.025 e 

Liver tissue 1055 c 1550 c 6.5 b 5.0 g 

a Properties at 20 °C obtained from Ref. [10] . 
b Parameter A/B obtained from Ref. [11] . 
c Human liver at 30 °C obtained from Ref. [2] . 
d For γ –law gases : B/A = γ − 1 , where γ = 1.4 for air. a 

e Ultrasound attenuation coefs. obtained from Ref. [12] . 
f For air at 20 °C, 1 atm with 60% of relative humidity. Ref. [13] . 
g Obtained from Ref. [14] . 

Table 2 

Thermoviscous parameters of the media: shear viscosity, μ, bulk viscosity, μB , 

heat conductivity, κ , specific heat capacities at constant volume and pressure, 

c v | c p , for standard air, distilled water and human liver tissue. 

Media μ [Pa · s] μB [Pa · s] κ [W/(m · K)] c v | c p [kJ/(kg · K)] 

Air 1.80E −5 a 0.0257 a 1.01 | 0.718 a 

Water 1.01E −3 b 2.92E −3 b 0.598 b 4.182 b,e 

Liver tissue 0.469 d 3.540 c,e 

a Properties at 20 °C obtained from Ref. [10] . 
b Properties at 20 °C obtained from Ref. [12] . 
c Human liver at 30 °C obtained from IT’IS Foundation: www.itis.ethz.ch . 
d Human liver at 30 °C obtained from Ref. [2] . 
e For liquid fluids c v � c p . 
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a suitable equation of state (EoS) and the temperature relation of the

form 

p = p(ρ, s ) and T = T (ρ, s ) , (4)

respectively. Let the variables ρa = ρ − ρ0 , p a = p − p 0 , s a = s − s 0 ,

T a = T − T 0 and υa = υ denote small acoustic disturbances relative

to the state of the media, which is here assumed to be uniform and

at rest ( υ0 ≡ 0 ). Introducing these acoustic variables into Eqs. (1) –

(3) results in a set of fluctuation equations . Normalizing these re-

sulting equations reveals that ( ρa / ρ0 , p a / p 0 ) are order ε and ( T a / T 0 ,

s a / s 0 ) are order εδ, where {
ε = 

υa 

c 0 
� 1 : is a measurement of the acoustic amplitude,

δ = 

μ
ρ0 c 0 l c 

� 1 : is a measurement of the viscous dissipation.

(5)

Therefore, each term in the fluctuation equations can be identified

to be either order ε , ε 2 , ε δ or ε 2 δ. In Eq. (5) , c 0 denotes the speed

of sound of the media and l c is the characteristic length defined as

l c = c 0 /t c . 

Hamilton and Blackstock in [1] argue that consistent acoustic

equations can be obtained by only retaining terms of order ε , ε 2 

and εδ from the fluctuation equations . So that the fluctuation equa-

tions of mass and momentum simply become 

∂ρa 

∂t 
+ ρ0 ∇ · υa = 

1 

ρ0 c 
4 
0 

∂(p a ) 2 

∂t 
+ 

1 

c 2 
0 

∂L 

∂t 
, (6)

ρ0 
∂ υa 

∂t 
+ ∇p a = (μB + μ) ∇ 

2 υa − ∇L , (7)

where 

L = 

1 

2 

ρ0 u 

2 
a −

p a 

2 ρ0 c 
2 
0 

(8)

is the second-order Lagrangian density. The Lagrangian terms in

above equations are found by using the method of successive ap-

proximations [1 , Chap. 7.3]. Lastly, by using Taylor expansions up to

the order εδ for the EoS and the temperature relation, and using

the fluctuation equation of heat-transfer together with thermody-

namic relations, the classical quadratic EoS for thermoviscous flu-

ids can be obtained [1] , namely 

p − p 0 = c 2 0 ρa + 

c 2 0 

ρ0 

B/A 

2 

ρ2 
a + κ

(
1 

c v 
− 1 

c p 

)
∇ · υa , (9)

where B / A is Beyer’s parameter, c v and c p are the heat capacities at

constant volume and constant pressure, respectively. 

In [3] , it is argued that in most practical applications of acous-

tics –such as HIFU ultrasound propagation–only cumulative nonlin-

ear effects are required. These effects are mainly accounted by the

quadratic EoS and the first term in left hand side of Eq. (6) . On the

other hand the Lagrangian terms only account for local nonlinear

effects and therefore their contribution can be safely neglected by

setting L = 0 [3] . Moreover, upon neglecting the contribution of

these terms, it is shown that the classical acoustic wave models of

Westervelt and the KZK equation can be recovered [1] . 

In [4] , using successive approximation principles and the as-

sumption L = 0 , it is found that the first term on the left hand

side of Eq. (6) can be treated as 1 

ρ0 c 
4 
0 

∂(p a ) 
2 

∂t 
= −∇ · (p a υa ) + O (ε 3 ) .

Using this approximation, Eqs. (5) , (6) and (8) can be written as

the convective–diffusive system of the form 

∂ p a 

∂t 
+ ∇ ·

(
(c 2 0 ρ0 + βp a ) υa 

)
= d 1 ∇ 

2 p a , (10a)

∂ υa 

∂t 
+ 

1 

ρ0 

∇(p a ) = d 2 ∇ 

2 υa , (10b)
here p a is the acoustic pressure field, υa is the velocity field

nd β = 1 + 

B/A 
2 is the parameter of nonlinearity of the media,

 1 = 

κ
ρ0 

(
1 
c v 

− 1 
c p 

)
and d 2 = 

1 
ρ0 

(
μB + 

4 
3 μ

)
are the heat conductive

nd the viscous coefficients, respectively. Both coefficients are de-

ned through thermoviscous properties of the media (i.e. μ, μB , κ ,

 v and c p ). In Tables 1 and 2 , some of the well-established acoustic

nd thermoviscous parameters for standard air, distilled water and

uman liver tissue are summarized. 

In [4] , the system of Eqs. (10) has been numerically explored

sing traditional finite-difference WENO methods [5] associated

ith the third-order low-storage Runge–Kutta scheme [6] and per-

ect matching layers (PML) [7] for one- and two-dimensional initial

alue problems. There, it is found that this system is suitable for

he direct description of the nonlinear propagation of ultrasound

or applications where local nonlinear effects are negligible. 

In this work, we extend the work of Diaz et al. [4] by for-

ulating a high-performing and parallel numerical solver using

UDA C [8] and MPI to solve the Eqs. (10) in three-dimensions.

s a step forward from preceding works, our solver is based on

 newer formulation of the finite-difference weighted essentially

on-oscillatory (WENO) methods, namely, the WENO–Z formula-

ion introduced in [9] which is shown to outperform the original

ormulation of Jiang and Shu [5] in the vicinity of discontinuous

xtrema. 

Under this framework, a highly-performing direct acoustic pres-

ure flow solver is obtained and can be used to study weakly- and

ighly-nonlinear acoustic wave propagation phenomena in homo-

eneous thermoviscous media. This solver is implemented to work

n single and on multiple K80 Nvidia Tesla GPU accelerators. When

he performance of the solver is compared with that of an OpenMP

mplementation, working on i7 CPU with 8 threads, it shows 99 ×
actor of improvement or 486 × factor with respect to the single-

hreaded solution. The formulation of the present solver is non-

rivial. The details of its design and implementation are reported

n the following sections. 

http://www.itis.ethz.ch
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This work is organized as follows. The discretization of the

hermoviscous acoustic model in Eqs. (10) is briefly presented in

ection 2 . In Section 3 , the basic algorithm, as well as the allo-

ation, communication and kernel optimization strategies that led

o the present numerical implementation are described. The per-

ormance of the proposed solver is then reported in Section 4 .

o illustrate the capabilities of the present solver formulation, the

coustic propagations produced by a typical HIFU device are sim-

lated using a three-dimensional model in Section 5 . Lastly, con-

luding remarks are addressed in Section 6 . 

. Discretization 

Under the assumption of homogeneous media, the density, ρ0 ,

nd speed of sound, c 0 , are constant parameters. Therefore, in

hree-dimensions, the system in Eqs. (10) can be recognized as a

onvective–diffusive system (or balance law) of the form 

 t + f x + g y + h z = D ∇ 

2 q , (11)

here q = { q 1 , q 2 , q 3 , q 4 } 
T = { u a , v a , w a , p a } 

T , is the vector of con-

erved acoustic quantities, D = diag{ d 1 , d 1 , d 1 , d 2 } is square diago-

al matrix that contains diffusive coefficients of the medium, and

 , g and h are flux functions defined as 

f = 

⎡ 

⎢ ⎣ 

k a u a 

p a /ρ0 

0 

0 

⎤ 

⎥ ⎦ 

, g = 

⎡ 

⎢ ⎣ 

k a v a 
0 

p a /ρ0 

0 

⎤ 

⎥ ⎦ 

, h = 

⎡ 

⎢ ⎣ 

k a w a 

0 

0 

p a /ρ0 

⎤ 

⎥ ⎦ 

, (12)

here k a = c 2 0 ρ0 + βp a . We are interested in weak solutions of this

ystem. To maintain the correct physical behavior in discontinuous

ow regions, a stable approximation is obtained by using a shock

apturing scheme. The discretization is based on a semi-discrete

pproach for a structured three-dimensional (3-d) grid. For the

resent work, we use a Cartesian grid with a total of N x × N y × N z 

niformly distributed cells. A conservative finite-difference method

s used to discretize the convective terms and a traditional finite-

ifference stencil operator is selected for the diffusive part. By ap-

roximating all terms by explicit spatial operators it is evident that

he system can be written as a continuous system of differential

quations as 

∂ q (t) 

∂t 
= L ( q (t)) , (13)

here the vector q (t) ∈ R 

N is the vector of the acoustic conserved

uantities in the computational domain. The system of differential

qs. (13) can be integrated by using an explicit third-order low-

torage Runge–Kutta scheme [15] , namely 

q 

(1) = q 

n + �t L ( q 

n ) , 

q 

(2) = 

3 

4 

q 

n + 

1 

4 

q 

(1) + 

1 

4 

�t L ( q 

(1) ) , 

 

n +1 = 

1 

3 

q 

n + 

2 

3 

q 

(2) + 

2 

3 

�t L ( q 

(2) ) . (14) 

he numerical spatial operator L (·) : R 

N → R 

N returns the right-

and side (RHS) of Eq. (13) . It provides an approximation to the

onvective and diffusive terms in (11) and is computationally the

ost intensive part when integrating the system (13) . Furthermore,

hree evaluations are required for every time step due to the three

tages of the numerical integrator. Given the Cartesian mesh, we

pply a dimensional splitting as 

 = L 

f + L 

g + L 

h + L 

∇ 

2 

(15)

or the individual contributions of the operators. The contribution

f convective operators for cell i, j, k reads 
 

f 

i, j,k 
= − 1 

�x 

(
ˆ f 

n 

i +1 / 2 , j,k − ˆ f 
n 

i −1 / 2 , j,k 

)
, 

 

g 

i, j,k 
= − 1 

�y 

(
ˆ g 

n 
i, j+1 / 2 ,k − ˆ g 

n 
i, j−1 / 2 ,k 

)
, 

 

h 
i, j,k = − 1 

�z 

(
ˆ h 

n 

i, j,k +1 / 2 − ˆ h 

n 

i, j,k −1 / 2 

)
. (16) 

or the L 

f , �x denotes a uniform spacing along the x -direction

nd 

ˆ f 
n 

i +1 / 2 is a numerical approximation to the flux f at the cell

nterface i + 1 / 2 for the time interval [ t n , t n +1 ) . Here, the discrete

ime is given as t n = n �t with fixed time step �t . The numerical

ux at the cell face i + 1 / 2 is obtained as 

ˆ f i +1 / 2 = 

ˆ f 
+ 
i +1 / 2 + 

ˆ f 
−
i +1 / 2 (17) 

here ˆ f 
±
i +1 / 2 are 5th-order ( r = 3 ) WENO–Z reconstructions [9] of

he left-going ( f −) and right-going ( f + ) parts of the flux f . In this

ork, the left- and right-going parts of the flux are obtained by

eans of the Lax–Friedrichs flux splitting, namely 

f 
±( q ) = 

1 

2 

( f ( q ) ± c q ) , with c = c 0 + 

β

ρ0 c 0 
max 
i, j,k 

| p a | . (18)

The definitions for L 

g and L 

h for the cell i, j, k are analogous

o L 

f . Notice that, unlike the Navier–Stokes system of equations,

he nonlinear acoustic model in (10) allows us to directly evolve

he primitive variables. Therefore, the flux splitting is performed

n the vector of conserved variables, q , without any special trans-

ormation. Lastly, the contribution of L 

∇ 

2 
for cell i, j, k is given by

 high-order 13-point finite-difference stencil that reads 

 

∇ 

2 

i, j,k = 

D 

12 �x 2 

(
−q 

n 
i −2 , j,k + 16 q 

n 
i −1 , j,k − 30 q 

n 
i, j,k 

+ 16 q 

n 
i +1 , j,k − q 

n 
i +2 , j,k 

)
+ 

D 

12 �y 2 

(
−q 

n 
i, j−2 ,k + 16 q 

n 
i, j−1 ,k − 30 q 

n 
i, j,k 

+ 16 q 

n 
i, j+1 ,k − q 

n 
i, j+2 ,k 

)
+ 

D 

12 �z 2 

(
−q 

n 
i, j,k −2 + 16 q 

n 
i, j,k −1 − 30 q 

n 
i, j,k 

+ 16 q 

n 
i, j,k +1 − q 

n 
i, j,k +2 

)
, (19) 

here D is a diagonal matrix with constant diffusive coefficients.

et us remark that the contribution of the flux and diffusive ap-

roximations depend on the cell average information of q n : q ( t n )

n the complete domain. Therefore, to ensure a stable evolution of

he information, we request that the size of the timestep be set as

t = min (�t C , �t D ) , (20)

here �t C and �t D represent the stable timestep size for the con-

ection and the diffusion process respectively, defined as 

t C ≤CFL 

c 
min (�x, �y, �z) , (21) 

t D ≤ CD 

max (d 1 , d 2 ) 
(

1 
�x 2 

+ 

1 
�y 2 

+ 

1 
�z 2 

) . (22) 

here CFL < 1 is the Courant number and CD < 1/2 is the sta-

ility factor for the diffusion. 

.1. Brief on WENO formulations 

Since the successful formulation of weighted essentially non-

scillatory (WENO) methods by Jiang and Shu [5] , here denoted

s WENO-JS, modifications on the nonlinear weights have been

ursued to improve the accuracy of the method and/or reduce
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Fig. 1. Solutions for the nonlinear Buckley–Levertt problem using the fifth-order 

formulation of WENO–SJ [5] , WENO–M [16] and WENO–Z [9] on an uniform grid 

of 80 nodes. The comparison of the numerical results shows that the solution of 

WENO–Z is the closest to the reference solution of this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Hardware specificiations for the Nvidia Tesla K80 GPU. 

Feature Nominal value 

Chip 2 × GK210B 

Primary clock 562 MHz 

Number of SP cores 2 × 2496 

Number of DP cores 2 × 832 

Peak SP performance 2 × 4.470 TFlop/s 

Peak DP performance 2 × 1.455 TFlop/s 

Memory clock 2.5 GHz 

GDDR5 memory 2 × 12GB 

Memory bandwidth 2 × 240GB/s 

PCIe Bus Gen3.0 × 16. 
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its computational cost. Arguably, the most popular reformulations

in the literature are: the WENO formulation of Henrick et al.

[16] called mapped-WENO or simply WENO–M; and the reformu-

lation of Borges et al. [9] , denominated WENO–Z. These new for-

mulations are claimed to exhibit improved accuracy in the vicinity

of discontinuous extrema. 

To verify this claim, one can simply implement the fifth-order

scheme of each of the above mentioned WENO formulations and

proceed to compare numerically their accuracy. Here we have cho-

sen to verify this claim by using the classical Buckley–Leverett non-

linear hyperbolic model [5] . A discrete domain using 80 uniformly

distributed cells in [ −1 , 1] with initial data: u = 1 in [ −0 . 5 , 0 ] and

u = 0 elsewhere. The system is evolved up to a dimensionless time

t = 0.4 under constant CFL = 0.4 . A reference solution of this

problem was obtained by re-running this problem with WENO-JS

in 10,0 0 0 cells. In Fig. 1 , one can observe that all fifth-order WENO

formulations managed to correctly evolve the nonlinear hyperbolic

model in the presence of discontinuities in the solution, however,

one will also notice that WENO5–Z solution is closer to the refer-

ence solution (in black continuous line) than those of WENO5-JS

and WENO5-M. 

From the computational perspective, we observe that a WENO-

M implementation is on average 20% and 25% more expensive than

WENO–JS and WENO–Z respectively. These observations are con-

sistent with those reported in [17,18] . A Matlab implementation to

support these observations of this comparison is freely accessible

from the first author’s Github repository. 1 

The above observations have led us to consider the use of

WENO–Z reconstructions in the formulation of the convective

terms in Eqs. (10) , so that the resulting numerical solver can

mainly benefit from improved shock-capture capabilities. 

3. Software design 

In this section, the design of a multi-GPU solver based on

Eq. (11) is presented. We first describe the steps required to evolve

the acoustic system in time, as stated in Eq. (13) , to later address

the implementation of each spatial operator in Eq. (15) as single

GPU kernels. Our initial target architecture is a mini-server con-

taining four NVidia Tesla K80 GPU accelerators. Each accelerator is

a dual unit such that this single node machine contains in total

8 GPUs, each containing 12GBs of RAM. Table 3 shows the main
1 https://github.com/wme7/WENO5-X. 

3

 

h  
ardware characteristics of this GPU. The present algorithm was

ritten in CUDA C language. 

.1. Data allocation 

We start by organizing vector of fields q in a structure of ar-

ays (SoA) format in the CPU memory. In this format, the initial

ondition of the problem is setup in the complete domain and

fterwards each sub-array q ∈ R 

N , where N = N x × N y × N z , is de-

omposed in smaller partitions such that they can fit into the

lobal memory of a single GPU. Let us remark that this partition

oes not modify the data on memory. Fig. 2 depicts the refer-

nce of the domain decomposition used in this work. Evidently

he number of cells per m -segment is N m 

= N x × N y × n z,m 

so that

 z = 

∑ 

m 

n z,m 

. In this work, a one-dimensional domain decompo-

ition is considered along the k -axis which is also the slowest

oving index. In our design, we propose that the data inside the

PU memory should be stored as pitched memory arrays and it

hould be padded along the i -coordinate. The purpose of doing

his will become more evident later on. Here, this is done by

llocating each of the fields of q m 

as pitched buffers with the

udaMallocPitch() instruction [8] . This work results in the

ata of the SoA to be organized as continuous array of 2-d padded

lices inside the GPU memory as shown in Fig. 3 . Therefore every

, j, k -cell of a single q m 

field can be simply accessed as 

 i, j,k ≡ q [ i + pitch ∗ j + (pitch ∗ N y ) ∗ k ] . (23)

To produce each of the Runge–Kutta stages, it is also neces-

ary to allocate extra buffers for q 0, m 

and L m 

in the same man-

er. By considering the data exchange between GPUs, it is evident

hat special regions are needed to be appended and prepended to

he buffer arrays. Fig. 4 depicts how each of the individual fields in

 m 

, q 0, m 

and L m 

are extended to be of size N m 

= N x × N y × (n z,m 

+
 r) . Here r denotes the number of slices that will function as a

host region for the communication and four-extra buffers of size

 exchange = N x × N y × r needed for the communication strategy in-

roduced in the next subsection. 

.2. MPI and the communication scheme 

To achieve computations in multiple GPU architectures, we

hose to rely on a CUDA-aware [8] Message Passage Interface (MPI)

o directly transfer data between GPUs. Moreover, to overlap the

omputation process with the data exchange communications, we

lso rely on the concept of CUDA streams. A state-of-the-art strat-

gy for achieving this communication exchange has been already

eported in [19] in the context of a forward Euler time stepping.

n this work, we extend this idea so that it can be used within a

unge–Kutta time integration scheme in an economic manner. 

.2.1. Convention of regions in the data allocation 

As introduced in the previous section, q m 

, q 0, m 

and L m 

buffers

ave been allocated in the GPU’s memory and are slightly larger
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Fig. 2. Decomposition of a single domain array into small partitions to be submitted to the GPU memory. 

Fig. 3. Storing and padding the data of a single q m field in the GPU global memory. Notice that this allocation technique can led a suitable for binding of the data with a 

single or a multiple array of 2-d textures. 

Fig. 4. Convention for the allocation each field in q m , q 0, m and L m of the partition m inside the GPU global memory. 
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Fig. 5. Streams schedule for overlapping the computation and communications pro- 

cesses during the evaluation of a single Runge–Kutta stage. 

Algorithm 1: Processing of Runge–Kutta stages. 

1: Make copy of q n to auxiliary buffer q 0 (compute stream) 

2: Set q 0 ← q n (virtual step) 

3: for s = { 0 , 1 , 2 } do 

4: Compute L (q s ) on boundary regions (comm. streams) 

5: Exchange L (q s ) of boundary regions (comm. streams) 

6: Compute L (q s ) on inner region (compute stream) 

7: Synchronize all CUDA streams 

8: Compute Runge–Kutta stage (compute stream) 

RK s (q s , q 
0 , L (q s ) ) → q s +1 

9: Synchronize compute stream 

10: end do 

11: Set q n +1 ← q 3 (virtual step) 
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than the q buffers by 2 r slices that were appended along the k -

index. Fig. 4 , depicts the regions in which this buffer is virtu-

ally subdivided. Namely, the inner region , located at the center, is

where the GPU main kernels will store and accumulate the contri-

butions of the convective and diffusive operators. The data values

needed by the neighbor will constitute the boundary region ( Fig. 4 ),

whereas the data values that are provided by the neighbors consti-

tute the ghost region . These regions exist at both ends of the do-

main and are simply differentiated by the labels left and right . 

3.2.2. A modified communication strategy for the RK scheme 

In [19] and other preceding works, data exchange is performed

on the buffers containing the updated data, therefore requiring the

allocation of different buffers for the old and updated data, namely

q n m 

and q n +1 
m 

buffer fields and the swapping of their pointers every

timestep. However, by realizing that the communication processes

should take place at the level of L m 

buffers instead, we can avoid

the need of extra buffers, so we can keep to a minimum the mem-

ory requirements of the implementation. 

Let us illustrate the communication strategy used in this work

for the left-end of the L m 

buffer in rank node m . The data ex-

change is a three-step procedure that starts with computing the

contribution of the operators inside the left boundary region so that

the updated info is then copied into the left send buffer . Secondly,

the content of this buffer is transmitted directly to the GPU in the

neighbor rank node m − 1 by using a MPI send instruction. Thirdly,

in the neighboring rank, a MPI receive instruction is already wait-

ing to collect the transmitted data into a right receive buffer on the

memory of the GPU. If the transmission is successful, this data is

then copied into the right ghost region of the L m −1 buffer. Note

that communication process at the right-end of L m 

is mirror sym-

metric. Once the computation process and data exchange processes

are complete at both sides, we will require the Runge–Kutta stage

to be evaluated for all the data in L m 

buffers so that the updated

data could be directly stored in the q n m 

buffers, ready for the eval-

uation of the next time step. 

From Fig. 4 , it is evident that the communications at both ends

of the buffer are independent processes, therefore these tasks can

be scheduled in different CUDA streams and asynchronous MPI in-

structions can be used to overlap and ensure that the transmis-

sion occurs simultaneously on both sides of the buffer. We can

also schedule the computation process in an independent stream

so that the computations in the inner region are overlapped with

the communication processes. At each end, one stream is used to

initialize the computation to the boundary region and to send the

data to the neighbor rank node, and another stream is used to start

the MPI receive instruction to collect the data from a neighbor rank

and copy it into a ghost region. This strategy requires five CUDA

streams per rank, whose scheduling is depicted in Fig. 5 . Let us re-

mark that the evaluation of a Runge–Kutta stage should only take

place until communications and the inner region computations are

completed. 

3.3. Algorithm 

The numerical implementation of Eq. (13) yields a fully explicit

algorithm for the evolution of the data in every partition m . By us-

ing a Runge–Kutta time integration algorithm, the most expensive

part of such algorithm is the evaluation of the spatial operator L m 

.

Algorithm 1 describes the main steps required to evolve informa-

tion in partition m from the present time step t n to the next t n +1 

using a third-order low-storage Runge–Kutta scheme. 

To reach a target output time, t final , Algorithm 1 must be ex-

ecuted n -times, where n denotes the number of timesteps, �t .

For simplicity we only consider a fixed timestep �t , which is es-

tablished from a conservative CFL condition at the beginning of
he computation based on an estimation of the maximum acoustic

ressure in the initial condition of the system. The implementation

f a dynamic time step �t typically requires a reduction process to

nd the maximum value of pressure inside the domain. Here, we

ostpone the implementation of this feature to an extension of the

resent work. 

.4. Computing kernels 

In this section, the procedure for developing and optimizing the

patial GPU kernels needed to approximate the L m 

operator on

artition m , is described. As mentioned in Section 2 , the convective

perators are based on a 5th-order WENO–Z reconstruction while

he diffusive operators are based on the 4th-order finite-difference

tencil of Eq. (19) . For the sake of clarity the implementations of

he convective operators in CUDA C language are denoted in the

gures as the WENO5 Z f f f x , WENO5 Z g g g y , WENO5 Z h h h z kernels. Sim-

larly, the diffusive contribution of D∇ 

2 q is denoted as the Lapla-

ian ( ∇ 

2 ) kernel. Lastly, we also consider a CUDA C implementa-

ion of the Runge–Kutta stages as presented in Eq. (14) . This im-

lementation will be referred as the RK stage kernel. 

.5. Optimization approach 

To optimize the performance of the spatial and RK stage ker-

els we require firstly, to define a baseline implementation for

ll kernels, secondly, to build a roofline model [6] of the target

rchitecture, and lastly, to set the thermoviscous acoustic model
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Fig. 6. Collapse of a high-pressure region modeled under the thermoviscous acoustic model in Eqs. (10) is depicted for at time t = 0 , 5 and 10 μs. Color scale provided in 

MPa. In sub-figures (A), (B) and (C), the pressure field is depicted using a slice cut on the volume of data. Given the symmetry of the solution, in sub-figures (D), (E) and (F), 

the profile in the x -direction is presented. The reference solution, in continuous red line, is obtained by solving the same IVP in a domain of [512] 3 with a multi-GPU solver. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n Eqs. (10) as an initial value problem (IVP). Any new strategy,

emory optimization and/or reformulation that is introduced to

he baseline kernels is measured and contrasted with that of the

aseline. By using the roofline as a map of the performance (in Gi-

aFLOP/s) and operational intensity (in FLOPs/byte), the overall im-

lementation of acoustic solver can then be gradually optimized.

s in the implementation of [20] , we initially concentrate on the

ptimization of the solver for a single node. Once we are satisfied

ith the performance of the implementation in a single node, the

olver is then extended to the multiple node context. 

In this work, the baseline implementation for all the kernels is

ased on Micikevicius’ single-pass strategy [21] working on coa-

esced memory, as introduced earlier in Section 3.1 . The roofline

odel of a single GPU is built and used as a reference for the max-

mum performance achievable in a single node. Lastly, a symmetri-

al implementation of thermoviscous acoustic model in Eqs. (10) is

ormulated as an initial value problem (IVP). Here, a domain where

(x, y, z) ∈ � ∈ [ −30 , 30] 3 mm 

3 filled with degassed water is as-

umed. Inside it, a high pressure region given by 
 

 

 

 

 

u (x, y, z) = v (x, y, z) = w (x, y, z) = 0 , 

p(x, y, z) = 

{
10 MPA if 

√ 

x 2 + y 2 + z 2 ≤ 10 mm , 

0 otherwise, 

(24) 

t set. For simplicity, Dirichlet homogeneous conditions are set

long the boundary, ∂�. To provide enough work for the measure-

ents, the domain is discretized with a grid of [256] 3 nodes. The

xpert reader would recognize that the IVP in Eq. (24) is the ana-

og of a Riemann problem formulated for the present 3-d acoustic

odel. In Fig. 6 , the solution of the high-pressure region collapse

s depicted for times t = 0, 5 and 10 μs. 

.6. Optimization process 

We aim for optimal kernels that approximate the spatial con-

ributions L m 

in partition m using double precision computations.
ased on the traditional approach, implementations based on spa-

ial blocking [22] , shared memory and texture memory were devel-

ped. 

For each kernel implementation, the total bandwidth (Q) con-

umed by an individual kernel, the total number of operations

erformed (W) and the average execution time (T) are measured.

herefore the performance (W/T) and the operational intensity

Q/W) can be established. For instance, the performances of each of

he baseline kernels are depicted with black markers in Fig. 7 . The

erformance parameters are then used for comparison and guid-

nce criteria for developing improved versions from the baseline

ernels. As a result, the best performing kernels are simply se-

ected for the final implementation. 

In this work, optimizations based on texture memory tech-

iques were pursued. However, it is found that 2D texture ar-

ays are not yet enabled to fetch natively double precision data.

n [23] , a workaround transformation has been presented via the

_hiloint2double() [8] function. However, our measurements

ndicate that any improvement obtained by using texture mem-

ry to read double precision data is overshadowed by having to

ransform the data from int2 into doubles as proposed by the

orkaround strategy. Therefore, we simply concentrate on blocked

denoted by upper index b and red markers in Fig. 7 ) and shared

emory (upper index sh and orange markers in Fig. 7 ) implemen-

ations of the GPU kernels. 

The result of this optimization process, as depicted in Fig. 7 ,

hows that kernels based on the single-pass associated with

locked strategy performs better for the convective operators in

he j - and k -direction, while a simple shared memory strategy is

ptimum for the convective operator in the i -direction. A careful

nalysis reveals that this is due to the fact that single-pass reduces

he need of caching non-coalesced data from our pitched alloca-

ion. However, if the data is perfectly coalesced, it can be loaded

aster into the a shared memory cache, so that the WENO–Z recon-

tructions can benefit from faster access to the data. For the diffu-

ive operator, we notice that a single-pass with a blocking strategy
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1455 GFLOP/s
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Fig. 7. Roofline for the Tesla K80 GPU with measured performances of each individual kernel. Black color markers correspond to the baseline implementation, red color, 

shows the optimized performance based on spatial blocking, orange color, shows the optimized performance using both spatial blocking and shared memory. Circles ( � ), 

squares ( �) and rhombus ( ♦) represent convective operators in x , y and z directions correspondingly (operators f x , g y , h z introduced in Eqs. (2) and (3) . L(q) is the total 

spatial operator given in Eq. (4) , which includes both convective and diffusive parts. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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provides the best performance. Similarly, a pure blocked imple-

mentation of the RK stages kernel yields an improved performance.

We observe that the best performance for all of the kernels is ob-

tained using thread blocks that correspond to 4 warps. Moreover,

we test for any improvement that results from limiting the number

of registers per block at compile time and forcing the spilled regis-

ter to be stored in L1 cache, e.g. providing the argument -Xptxas
-maxrregcount = 32 -dlcm = cg to the compiler. However, in

our measurements the best performance was attained without al-

lowing any register spill. 

Table 4 shows the number of registers per thread and the level

of occupancy for each of the final kernel obtained from the opti-

mization process in the present work. In the following sections the

final measurements of the best performing kernels and the overall

performance of the implementation is reported. 

4. Implementation performance 

The performance measurements of the kernels for the multi-

GPU acoustic solver were evaluated on a mini-server machine that

contains two Xeon E5–2630v3 CPUs and four Nvidia Tesla K80

GPUs. Here, each K80 unit is in reality a dual unit, therefore

this machine contains in total 8 GK210 chips to our disposal (see

Table 3 ). In the present implementation, we rely on GCC 4.8.5 and

CUDA 7.5 toolkit. The Nvidia profiler, nvprof , provided in the CUDA

toolkit was used to capture the performance data necessary to get

Fig. 7 . Let us remark that all the present measurements were ob-

tained using double precision computations. 

4.1. Single node performance 

In this section, we report the performance of the implemented

GPU kernels by means of the roofline model [6] . In this work, the

empirical roofline benchmark suite 2 is used to build the roofline

ceiling of the memory-bound region. We measured a memory

(DRAM) bandwidth of 133GB/s (55% of the nominal peak) and a
2 https://bitbucket.org/berkeleylab/cs-roofline-toolkit . 

o  

o  
ouble precision top performance of 1.23 TFLOP/s (85% of the nom-

nal peak). ECC was enabled for the memory bandwidth measure-

ents. 

Fig. 7 shows the roofline for a single chip of the K80 GPU

nd the performances of the kernels obtained on the K80 accel-

rator are depicted. The black ceilings correspond to the mea-

urements based on the benchmark suite mentioned above, while

he references for 10%, 25% and 50% of the nominal peak per-

ormance are indicated by the red rooflines. We use the Nvidia

rofiler to count the number of floating point instructions and

easure the runtime of the Laplacian 

b kernel. From these num-

er we determine a performance of 10.6 GFlop/s. Similarly, it is

ound that the Runge–Kutta (RK 

b ) stage kernel has an average

erformance of 85.7 GFlop/s. Given that the WENO5 Z reconstruc-

ion kernels have a high floating point density, therefore it is not

urprising that they exhibit a higher performance among other

ernels. The profiler shows that the WENO5 b 
Z 

g y and WENO5 b 
Z 

 z kernels achieve 365.7 GFlop/s while the WENO5 sh 
Z 

f x achieves

77.9 GFlop/s. All selected WENO5 Z kernels exhibit an operational

ntensity of ∼ 8 Flop/Byte. Let us remark that the convective ker-

els include the computation flux splitting by the Lax–Friedrich

ethod. Based on these measurements, an overall performance

or the single partition computation of L m 

is estimated to be

01 GFLOP/s with an operational intensity of 28 FLOPs/byte. The

oofline model evidently shows that there is still plenty of room

or improvements, however, these improvements require more in-

olving strategies. Our future work will focus on this aspect.

astly, we notice that the performance values of convective ker-

els also reflects performance of a single WENO–Z reconstruction.

his is to be expected, as each kernel performs the reconstruc-

ion of a velocity and pressure field in a serial manner, as de-

ned in Eqs. (2) and (3) . Moreover, our measurements verify that

ach WENO–Z reconstruction exhibits an operational intensity of

.2 Flop/Byte (including the flux splitting). This value contrasts

ell with the 6 Flop/Byte reported for the WENO-JS reconstruction

n [20] and indicates that WENO–Z formulation is computationally

heaper than the classical WENO-JS formulation. Here, to the best

f the authors’ knowledge, this is the first time that measurements

f performance and numerical intensity of WENO–Z implementa-

https://bitbucket.org/berkeleylab/cs-roofline-toolkit
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Fig. 8. Performance measurements of a multi-GPU solver based on model Eqs. (10) . 

Here, the initial condition in Eq. (24) is evolved on uniformly distributed domains 

of different sizes. For simplicity they are denominated extra-small (SX), small (S), 

medium (M), large (L) and extra-large (XL). The sizes of these grids are defined in 

Table 4 . 

Table 4 

Register usage per thread and occupancy for thread blocks. 

Kernel Warps Registers per thread Occupancy 

WENO5 sh 
Z ( f x ) 4 60 72.3% 

WENO5 b Z ( g y ) 4 78 66.9% 

WENO5 b Z ( h z ) 4 78 67.1% 

Laplacian b ( ∇ 

2 ) 4 35 89.7% 

RK b stage (avg.) 4 28 99.5% 
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Table 5 

Computation time per timestep obtained for an 

OpenMP solver of thermoviscous acoustic model in 

Eqs. (10) . Computations were performed on a In- 

tel Core i7-7700K CPU working at a frequency of 

4.20 GHz. 

Time per iteration (s) 

Test No. cells 1 thread 8 threads 

XS 32 × 32 × 64 0.0596 0.0107 

S 64 × 64 × 128 0.6441 0.1029 

M 128 × 128 × 256 2.9990 0.9366 

L 256 × 256 × 512 35.5667 9.2204 

XL 512 × 512 × 1024 375.9982 76.9223 
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ions on a GPU device have been explored and reported in the lit-

rature. 

.2. Multiple node performance 

For simplicity reasons the domain has been decomposed along

he k -direction, resulting in a one-dimensional (1-d) decomposi-

ion. One benefit of a 1-d decomposition is that kernels devel-

ped for a single-GPU can be used without additional modifica-

ion. Nevertheless, this 1-d decomposition can be suboptimal for

xtremely large problems size that span across many nodes. In this

ork, given the chosen target machine, the present 1-d decompo-

ition will suffice. Fig. 8 , depicts the performance of the acous-

ic solver using 1, 2, 4 and 8 GPUs for evolving the initial con-

ition (24) in different domain sizes. Firstly, we notice that the

ingle-GPU tests, as expected, exhibit a computational performance

f ∼ 200 GFLOP/s. Secondly, given the size of the tests, it is no-

iced that as long as the computation part is big enough, the com-

unication part can be entirely hidden. So that the computation

nly depends on how fast each GPU can compute for L m 

. This

lso proves that with the increase of the problem size the per-

ormance improves. Lastly, it is interesting to notice that for small

ized problems, using two GPUs exhibit an improved performance.

ere, we simply speculate that it must be related to the inter-

al communication between the two GPU chips contained in every

80 unit. 

To get a better feeling of the meaning of these measurements

e compare them with those obtained using a single CPU-OpenMP

mplementation of the same algorithm. A gaming PC loaded with

n Intel Core i7-7700K of 4.20 GHz, Socket 1151, 8MB Cache with

 threads is used for this test. The computation time for evolving

he IVP up to time 10 μs under different domain sizes is recorded,

o that the average computation time of a single timestep can be

ompared in Tables 5 and 6 . The comparison of computation time

f a single timestep shows that the multi-GPU implementation can

erform up to 99 × faster than that of an OpenMP single CPU im-

lementation using all 8 threads, and 486 × faster than that of a

ingle-threaded CPU implementation. 
. Numerical simulation 

We are interested in modeling the wave propagation generated

y focusing piston transducer typical for highly-intense focused ul-

rasound (HIFU) surgery [25,26] . The device is assumed to have

 radius of curvature, A , of 62.6 mm, and aperture length, a , of

2 mm working. Moreover we assume that it generates a contin-

ous sinusoidal signal at a constant frequency, f , of 1.06 MHz, with

mplitude, P 0 , of 1 MPa that propagates through a media of de-

assed water: see Fig. 9 (a). The degassed water is assumed to be at

0 °C and its acoustic properties have been summarized in Table 1 .

The proposed multi-GPU solver for Eqs. (10) is used to simulate

he nonlinear propagation of ultrasound in a thermoviscous media.

ere, to represent the geometry of the focused piston, a collection

f point sources is arranged in a manner to represent the profile

f the transducer: see Fig. 9 (b). Moreover, in liquid fluids the ratio

 p / c v ≈ 1. Therefore, the contribution of the diffusion coefficient in

he pressure equation can be neglected. As a result, these assump-

ions yield a thermoviscous acoustic system of form 
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∂t 
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∂(k a u a ) 

∂x 
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= S, 

∂u a 
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∂ p a 

∂x 
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(
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∂x 2 
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∂ 2 u a 
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)
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∂v a 
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ρ0 
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= d 2 

(
∂ 2 v a 
∂x 2 
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+ 

∂ 2 v a 
∂z 2 

)
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∂w a 
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1 

ρ0 

∂ p a 

∂z 
= d 2 

(
∂ 2 w a 

∂x 2 
+ 

∂ 2 w a 

∂y 2 
+ 

∂ 2 w a 

∂z 2 

)
, 

(25) 

here k a is the corrected bulk modulus and d 2 is the viscous coef-

cient introduced in Section 2 . However, for ultrasound signals, it

s well known that the viscous coefficient d 2 can be alternatively

btained as 

 2 = 

2 c 3 0 α

ω 

2 
, (26) 

here α is the absorption coefficient of the media in Np/m, c 0 is

he speed of sound in the media and ω is the angular frequency

f the signal. Lastly, S : S ( x, y, x, t ) is a source term that represents

 scalar field where singular discrete points introduce an acoustic

erturbation into the system. This scalar field is then defined as 

(x, y, z, t) = s (t) δδδ(x − x ∗l ) δδδ(y − y ∗l ) δδδ(z − z ∗l ) . (27)

here (27) , s (t) = P 0 sin (ωt) is the sinusoidal signal to be intro-

uced into the system which is characterized by its amplitude, P 0 ,

nd angular frequency, ω = 2 π f . The set { (x ∗
l 
, y ∗

l 
, z ∗

l 
) } , l = 1,2,..., L ;

epresents a list of the spatial coordinates of discrete points that

orrespond to the radial profile of the transducer. Consequently

(x ) δδδ(y ) δδδ(z) represents a scalar field where the few non-zero ele-

ents corresponds to those cells whose coordinates are in the list

f discrete points. For simplicity, we will refer to the formulation
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Table 6 

Comparison between the multi-GPU (MPI + CUDA C) solver and the OpenMP solver. 

Test Time per iteration (s) Speed up w.r.t. OpenMP solver 

1 GPU 2 GPUs 4 GPUs 8 GPUs 1 GPU 2 GPUs 4 GPUs 8 GPUs 

XS 0.0043 0.0032 0.0038 0.0037 1.22 1.64 1.39 1.44 

S 0.0156 0.0059 0.0055 0.0061 3.29 8.75 9.41 8.38 

M 0.1349 0.0390 0.0285 0.0198 3.47 12.01 16.45 23.71 

L 1.1590 0.3581 0.2079 0.1327 6.63 21.45 36.95 57.91 

XL 1.3118 0.7721 58.64 99.62 

Fig. 9. Acoustic propagation in homogeneous media. In (a), Experimental setup for measuring the high-intensity ultrasound propagation in degassed water using hydrophone. 

In (b), a top view of the 3-d domain formulation. Here, the distribution of PML layers (or regions) and the arrangement of the point sources to represent the focused device 

inside the region of interest are depicted. 
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in Eq. (25) as the thermo-acoustic system (TAS) model for degassed

water. 

For this simulation the propagation of ultrasound waves is as-

sumed to take place in an open domain. Numerically, this done by

implementing perfectly matching layers (PML), in the sense of [7] .

PML regions are considered for surrounding the entire domain to

avoid unwanted reflection from happening at the boundaries of the

discrete domain. In the TAS model, this is reflected by introducing

absorption terms as 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ p a 

∂t 
+ 

∂(k a u a ) 

∂x 
+ 

∂(k a v a ) 
∂y 

+ 

∂(k a w a ) 

∂z 
= S − (σx + σy + σz ) p a , 

∂u a 

∂t 
+ 

1 

ρ0 

∂ p a 

∂x 
= d 2 

(
∂ 2 u a 

∂x 2 
+ 

∂ 2 u a 

∂y 2 
+ 

∂ 2 u a 

∂z 2 

)
− σx u a , 

∂v a 
∂t 

+ 

1 

ρ0 

∂ p a 

∂y 
= d 2 

(
∂ 2 v a 
∂x 2 

+ 

∂ 2 v a 
∂y 2 

+ 

∂ 2 v a 
∂z 2 

)
− σy v a , 

∂w a 

∂t 
+ 

1 

ρ0 

∂ p a 

∂z 
= d 2 

(
∂ 2 w a 

∂x 2 
+ 

∂ 2 w a 

∂y 2 
+ 

∂ 2 w a 

∂z 2 

)
− σz w a , 

(28)

where σ x ( x ) is an absorption coefficient that is non-zero only in-

side a sub-region (layer) in the vicinity of the boundary of the

domain. See Fig. 9 (b). The thickness of this layer is �PML = N�x,

where N is the PML thickness in terms of nodes and �x is the

spacing of the uniform grid in the x -direction. For a smooth tran-

sition for the region of interest to the boundary layer σ x ( x ) is de-

fined as the parabolic profile as 

σx (x ) = σ0 

(
x 

�PML 

)2 

, σ0 = log 

(
1 

R 

)
3 c 0 

2�PML 

, (29)
here σ 0 is the maximum damping parameter which is function

f the theoretical reflection coefficient R . From [24] , the recom-

ended values of R are 

 = 

⎧ ⎨ 

⎩ 

0 . 01 if N = 5 , 

0 . 001 if N = 10 , 

0 . 0 0 01 if N = 20 . 

(30)

he definition of σ y ( y ) and σ z ( z ) are analogous to σ x ( x ). 

Strictly speaking, given the nonlinear nature of the TAS model,

t is not expected that use of PML layers will help to perfectly

void small reflections from incoming waves with high amplitude.

owever, by considering slightly thicker PML regions it is possible

o reduce those reflection to almost zero. In this work, PML layers

ith 20 nodes in width are considered at all faces of the Cartesian

omain. 

The domain for the simulation is assumed to span an area of

0 × 90 × 130 mm 

3 . Moreover, it is assumed to be discretized with

he uniform distribution of 832 × 832 × 1300 cells in the x, y and

 direction, respectively. The number of cells used in this discrete

omain is approximately 0.9 billion, and leads to a resolution of

6 cells per wave length. Moreover, a total of 63,553 discrete point

ources are used to represent the focused device. 

The TAS model is evolved up to time t = 70 μs. The timestep

s set to �t = 12 . 5 ns (or ×10 −9 s), as a result the simulation re-

uires 5600 iterations to reach the output time. Using the multi-

PU acoustic solver with double precision computations on 8 GPU

odes, the entire computation takes 2.52 h. The unsteady acous-

ic propagation generated by a HIFU transducer is simply depicted

n Fig. 10 for time t = 70 μs. Here, any acoustic reflection at the

oundary has been dampened by the PML boundaries allowing the

odel to evolve under free-flow conditions. 
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Fig. 10. Simulation of highly-intense acoustic propagation generated by a focused 

device represented by point sources in degassed water. The solution of the unsteady 

acoustic pressure field is interpolated from the full 3-d domain on a inclined plane 

along the domain and illustrated for time t = 70 μs. 
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[  
. Concluding remarks 

We have presented a double-precision explicit solver for mod-

ling the propagation of acoustic fluctuations in thermoviscous

edia. The present solver is based on a shared memory –blocking

trategy that improves the performance of stencil computations

n GPUs. Moreover, by using a fifth-order WENO–Z scheme the

resent solver provides improved shock capturing capabilities over

receding works. In this work, GPU implementations of WENO–

 reconstructions were studied, and their performance and oper-

tional intensity on a GPU are reported for first time. Lastly, an

xtension of the multi-stream communication strategy in [19] to

e used with Runge–Kutta schemes, was presented. Although, in

his work we targeted the acoustic system presented in [4] , the ap-

roach used is rather general and can be straightforwardly applied

o other convective–diffusive problems such as the Navier–Stokes

quations. The overall floating point performance of the right-side

omputation is 201 GFLOP/s (in double precision) on a single node

ssociated with a single chip of the dual K80 GPU. The observed

erformance corresponds approximately to 13.8% of the nominal

eak performance (in double-precision) of a single K80 GPU chip.

hen solving on four K80 dual units (8 GPUs in total), a perfor-

ance of 1730 GFLOP/s was achieved. 
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