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A B S T R A C T

The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU’s continuous harmonic
pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation
models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with
the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation
time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The
parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas
the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity,
viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms
(corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the
proposed model to examine the cavitation significance during the treatment process. Their maximum values
both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain
amount of deposited heat for both cavitation terms.

1. Introduction

High intensity waves propagating through the medium may lead to
the formation of cavities, which can be filled with gas or vapor. This
effect is known as acoustic cavitation. Early studies on acoustic cavi-
tation were mainly focused on different hydrodynamics applications
[1], starting from work of [2]. Later, Plesset [3] constructed the
mathematical model, which is called Rayleigh-Plesset equation, and
still remains the most popular cavitation model for the description of
single bubble oscillations in a liquid. Recently, the interest in cavitation
has been growning due to different biomedical applications, mainly
biomedical imaging and therapeutic ultrasound. In biomedical imaging,
bubble-based contrast agents are successfully used to improve the
image quality [4,5]. Theoretical and experimental study on cavitation
effects in biomedical imaging has been mainly performed for safety
reasons (with application of low intensity ultrasound).

With the increase of intensities, ultrasound can be applied for many
therapeutic applications, such as non-invasive treatment of tumors in
different parts of the body, arterial occlusion and acoustic hemostasis,
treatment of neurological disorders and gene delivery [6–9]. Thermal
and mechanical mechanisms can contribute to the treatment. It was

shown [10,11] that cavitation effects can enhance energy deposition
during thermal therapy, although appearance of cavitation makes the
treatment less predictable. Without microbubbles, the necrosed area
has a defined ellipsoidal shape and can be well predicted based on the
Penne’s bioheat equation [12,11,13]. Some therapeutic modalities,
such as lithotripsy [14,15] and histotripsy [16,17], rely mainly on ca-
vitation effects. However, at the present moment, it is not very clear,
which thermal, mechanical and bio-effects of cavitation play the main
role during different therapeutic applications. In order to understand
them better and improve the treatment, fundamental understanding is
necessary.

In the present work, we have developed the mathematical model for
the description of the bubble oscillations that can be applied at high
ultrasound intensities, in viscoelastic medium with relaxation and at
high ultrasound frequencies. Both cavitation model for bubble dy-
namics and viscoelastic model are crucial for the accurate description of
bubble collapse and understanding of bubble behavior in different
biological tissues. For the better understanding of thermal effects, the
bioheat equation will be presented with cavitation effects taken into
account.

Nowadays, various cavitation models exist. Rayleigh-Plesset (RP,
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[2]) model has been widely used due to its simplicity. The main as-
sumption that distinguishes this model from others is to treat liquid as
an incompressible fluid, which leads to the unphysical speed of sound
equal to infinity. Another drawback of this model is that it is valid only
at small Mach numbers ≪ 1R

c
̇

. In order to correct speed of sound in
Rayleigh-Plesset model, Herring-Trilling (HT, [18,19]) and Keller-
Miksis (KM, [20–22]) models were proposed that consider a liquid as a
compressible fluid. Thus, the speed of sound is constant in both HT and
KM models. That results in taking into account acoustics damping ef-
fect: in as much as when bubble oscillates in a compressible fluid, it acts
as a source for wave generation. Modified Herring-Trilling model
(MHT, [23]), sometimes called modified Rayleigh-Plesset model) is
regarded as an intermediate model in between RP model and HT model:
it retains the simplicity of RP model, but includes an essential acoustic
damping term as in HT model. However, all mentioned acoustic
damping models (HT, KM, MHT) can be applied only for Mach numbers
not larger than 1. Nevertheless, at high acoustic pressures of incident
focused ultrasound, Mach number can exceed this number. Gilmore-
Akulichev [24] model solves this problem and, therefore, goes further
than Herring-Trilling and Keller-Miksis models: it considers the pres-
sure dependent speed of sound and is suitable for the conditions with
high Mach number (because the speed of the bubble wall is deemed to
be comparable to the speed of sound). The present study will be focused
on the Gilmore-Akulichev model that has been considered as the most
developed and realistic cavitation model, since it well describes the
bubble collapse situation that is associated with high Mach numbers.

Most of the early studies on cavitation have been performed in liquids
for Newtonian fluids [1]. However, soft tissues can not be considered as
Newtonian fluids, since it is essential to take into account soft tissue’s
properties such as elasticity. Therefore, the employed cavitation model
should be combined with one of the viscoelastic models. Up to the pre-
sent moment, diverse models for describing viscoelastic medium exist
and plenty of them were investigated in coupling with one of the cavi-
tation models. Tanasawa and Yang [25] used Rayleigh-Plesset equation
together with Jeffreys model as a viscoelastic model. Yang and Church
[26] employed Keller-Miksis equation coupled with the Kelvin-Voigt
viscoelastic model. Gaudron, Warnez and Johnsen [27] extended the
approach of Yang and Church by considering a Neo-Hookean model for
modeling the finite-deformation elasticity in an elastic term of Kelvin-
Voigt model with Keller-Miksis equation. Movahed [28], as well, con-
sidered Kelvin-Voigt model, but it was coupled with Modified Herring-
Trilling equation (called as the modified Rayleigh-Plesset model in their
paper). Warnez and Johnsen [29] provided a nice review of the existing
viscoelastic models: Kelvin-Voigt, Zener, Jeffreys, Maxwell, Oldroyd
models on the basis of Keller-Miksis equation. However, the above
mentioned models are based on RP, HT, KM equations, which can be
applied only at low ultrasound intensities and at low Mach numbers, as
we mentioned before. Brujan [30,31] investigated Rayleigh-Plesset,
Herring-Trilling, Keller-Miksis, Gilmore-Akulichev and his own model,
which were coupled with Oldroyd and Maxwell viscoelastic models.

Not all existing viscoelastic models are employed for describing soft
tissue behavior. In literature, usually Maxwell, Kelvin-Voigt and Zener
models are used for these purposes. Kelvin-Voigt model effectively

describes the creep behavior of tissue, whereas Maxwell model effec-
tively describes the relaxation process, but Catheline [32] showed that
for modeling a soft tissue, Kelvin-Voigt model is superior to the Maxwell
model. Focused ultrasound transducers are usually operated at MHz
frequencies, which means that the period of the wave is of the order of
microsecond. At such small periods, relaxation processes in tissues be-
come important, because relaxation time can be comparable to the
period of the wave. In [33], it was shown that at high intensities re-
laxation effects can significantly affect the amount of ultrasound energy
deposited to the tumors. Therefore, both relaxation and elasticity should
be taken into account for the modeling of bubble oscillations during
HIFU therapy. Zener model is one of the simplest viscoelastic models that
accounts for relaxation and elasticity at the same time. Zheng et al. [34],
Suomi et al. [35] consider Zener model as the one that describes soft
tissues in a more accurate way than Maxwell and Kelvin-Voigt models do
(various soft tissues with Zener model were modeled in [36]). Moreover,
Maxwell and Kelvin-Voigt models are just the limiting cases of Zener
model. Thus, for the current simulations, our main focus would be placed
on Zener model, since it is capable of describing both of general tissue
features (namely, elasticity and relaxation time), and is considered to be
more precise in predicting tissue viscoelastic behavior.

In order to understand the cavitation significance in the treatment
process, the heat deposition in tissue generated by the acoustically
driven bubbles should be investigated. Tumor ablation is a result of
tissue heating, caused by conversion of HIFU’s energy into thermal
energy. Cavitation is implicated to this process and can elevate tissue’s
temperature. Therefore, it is essential to estimate the order of obtained
thermal energy values that correspond to the cavitation’s contribution.
Tissue heating is well described by Pennes’s bioheat transport equation.
To take into account the cavitation heating, extra source terms should
be added to the original equation. Bubble can convert acoustic energy
into thermal energy in three ways: thermal damping, viscous damping
and absorption of the radiated pressure wave induced by bubble col-
lapse [37]. However, several authors [38–41] etc. have demonstrated
that the contribution of thermal damping term is minimal. Therefore, in
the present study we consider only two extra source terms in BHTE
corresponding to the heating induced by cavitation and perform the
related calculation.

This manuscript is organized as follows. First, the comparison of the
Gilmore-Akulichev model with other cavitation models is shown. Next,
the new proposed Gilmore-Akulichev-Zener model is described. Then
the parametric study based on this model is performed together with
the predicted numerical results. Further on, the calculation of the
temperature within the bubble is performed. Finally, the study of the
heat deposition caused by cavitation is presented.

2. Existing cavitation models

2.1. Limitations on some existing cavitation models

Authors considered Rayleigh-Plesset, Herring-Trilling, Modified
Herring-Trilling, Keller-Miksis and Gilmore-Akulichev cavitation
models. Peculiarities of these models are summarized in Table 1. It can

Table 1
Comparison of investigated cavitation models.

Rayleigh-Plesset Modified Herring-
Trllling

Herring-
Trilling

Keller-Miksis Gilmore-Akulichev

Incompressible liquid, infinite speed
of sound

Compressible fluid, constant finite speed of sound Compressible fluid, pressure dependent speed of
sound

No damping in acoustic radiation Damping resulting from acoustic radiation

≪ 1R
c

̇
<R

c
̇ 1

2
< 1R

c
̇

< 2.2R
C

̇

Driving acoustic pressure p t( )i is included as an input to background pressure p0 Driving acoustic pressure p t( )i is
included explicitly in derivation

Driving acoustic pressure p t( )i is included as an
input to background pressure p0
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be seen that even though Rayleigh-Plesset model is relatively simple,
however, it has such a serious drawback as not taking into account the
acoustic damping (because of treating liquid as incompressible fluid)
that can greatly affect the bubble dynamics (as can be seen below in
simulations). Modified Herring-Trilling model overcomes this drawback
by including an acoustic damping term. However, it’s range of applic-
ability is still quite limited as for the Rayleigh-Plesset. The Herring-
Trilling and Keller-Miksis models were later developed considering
compressible liquid and, hence, the acoustic damping. Prosperetti [42]
has shown that the difference between these two models is the presence
of the second order term of R ċ/ , thus, these models are very similar.
Inclusion of the driving pressure p t( )i explicitly in Keller-Miksis model
does not make a significant effect comparing to other models. It can be
seen that the Keller-Miksis’s application range is slightly larger than the
one for Herring-Trilling – this could be the only reason to give a pre-
ference to Keller-Miksis. Gilmore-Akulichev still considers acoustic
damping, but, also, accounts for the pressure dependent speed of sound.
The description of a more realistic effect and the applicability for high
Mach numbers are the compelling advantages that can urge one to
employ Gilmore-Akulichev model in simulations.

2.2. Gilmore-Akulichev equation

In what follows, we denote R t( ) – radius of the bubble, p – tissue
pressure on the bubble wall, ∞p – far-field pressure, ρ – tissue density, μ
– tissue viscosity, S – surface tension, c – speed of sound, h – tissue
enthalpy, u – tissue velocity, r – the distance from the center of bubble,
Φ – tissue’s velocity potential, τrr – stress in a motion in r direction, R0 –
initial bubble radius.

Gilmore model employs the diverging wave equation
+ =∂

∂
∂
∂( )c r( Φ) 0t r , which has the solution cast in the following form:

=
−( )f t

r
Φ

r
c

(1)

Bernoulli equation can be written as follows with Eq. (1) being
considered:

∫⎜ ⎟
⎛
⎝

+ ⎛
⎝

∂
∂

+ ⎞
⎠

+ ⎞
⎠

= ′ ⎛
⎝

− ⎞
⎠

∞
r h

ρ
τ
r

τ
r

dr u f t r
c

1 3
2r

rr rr
2

(2)

For Gilmore-Akulichev’s model in [24], the assumption that rΦ
propagating with the velocity +c u (c is local sound velocity) is ap-
plied, instead of habitual quasi-acoustic assumption that the propaga-
tion velocity is ∞c (as in Herring-Trilling and Keller-Miksis). This as-
sumption should be made in order to describe the situation, when liquid
velocities attain an appreciable fraction of the sound velocity. After a
further derivation, Gilmore-Akulichev’s model has the following form:

⎜ ⎟ ⎜ ⎟
⎛
⎝

− ⎞
⎠

+ ⎛
⎝
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2
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̇
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2

(3)
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R
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r

τ
r
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̇ 1 3rr rr
(4)
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⎝
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∂
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dr1 3 ,
R
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(5)

Here H and C denote respectively the values of enthalpy and sound
speed at the bubble wall [24] states that for most of the liquids the
pressure-density curve for an isentropic compression can be well fitted

by the formula =+
+∞ ∞( )p B

p B
ρ

ρ

n
):
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,
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n
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n
n

1
1

1

1
2

(6)

where B and n are particular liquid constants that were set for tissue
accordingly to [40].

Far-field pressure ∞p can be considered as a sum of the static
background pressure p0 and the varying driving sound field p t( )i .

Viscous and surface tension forces can strongly affect the bubble
surface. As a result, it makes sense to take them into consideration as
pressure boundary conditions at the bubble surface. With the surface
tension term being considered in the form of S

R
2 (Laplaces’s formula),

the equation for the pressure at the interface is:

= ⎛
⎝

⎞
⎠

− + =p p R
R

S
R

τ2 |G

γ

rr r R
0

3

(7)

Eq. (5) covers a velocity range extending to = 2.2R
C

̇
[24], implying

that Gilmore-Akulichev model has the largest applicability range. It is,
therefore, suitable for the situations involving large amplitudes [43].

3. Zener viscoelastic model

Zener viscoelastic model [44] can be represented as a spring (with
rigidity G2) in series with a dashpot (with viscosity ν) and in parallel
with another spring (with elasticity G1) – Fig. 1.

With tissue parameters defined as the relaxation time =λ ν
G1 2
, ri-

gidity =G G1 and viscosity = +μ G G( )ν
G 1 22

, Zener model can be
written as:

+ = +τ λ τ Gγ μγ̇ 2 2 ̇ ,rr rr rr rr1 (8)

where γrr is a strain and γ ̇rr is a strain rate. For both compressible and

incompressible cases, strain rate equals = −γ ̇ 2rr
R R
r

̇2
3 (derived from

continuity equation while neglecting terms of the order of −c 2). The
strain turns out to be = − −γ R R( )rr r

2
3

3
0
3

3 .
There are two limiting cases for the Zener model: with =λ 01 , Zener

model reduces to the Kelvin-Voigt model and, when =G 0, Zener model
becomes Maxwell model.

One might derive that = −G Gμ
λ2 1

. To maintain physical adequacy,
this spring coefficient should be positive and, thus, the restriction of
Zener model is <λ μ

G1 .
Dividing Eq. (8) by r and integrating the resulting equation from R

to ∞, one can get:

∫ ∫+ =
+∞ ∞τ λ τ

r
dr

Gγ μγ
r

̇ 2 2 ̇
R

rr rr
R

rr rr1
(9)

We can then calculate:

∫ ⎜ ⎟

+
= ⎛

⎝
− − − ⎞

⎠

∞ Gγ μγ
r

G
R

R R μ R
R

2 2 ̇ 1
3

4
3

( ) 4
̇

R
rr rr

3
3

0
3

(10)

By introducing a new variable ∫= ∞q drR
τ r t

r
( , )rr , Eq. (9) becomes:

Fig. 1. Schematic of the Zener model.
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⎜ ⎟+ + = ⎛
⎝

− − − ⎞
⎠

q λ q λ Rτ
R

G
R

R R μ R
R

̇
̇ | 1

3
4
3

( ) 4
̇rr R

1 1 3
3

0
3

(11)

By evaluating Eq. (11) at =r R, an additional equation for τ |rr R is
obtained as

⎟⎜ ⎟+ = − ⎛
⎝

− ⎞
⎠

− ⎞

⎠
τ λ τ G R

R
μ R

R
| |̇ 4

3
1 4

̇
rr R rr R1

0
3

3
(12)

Thus, Zener model can be coupled with any cavitation model by
adding two differential equations, namely Eqs. (11) and (12), and in-
cluding the variables q and τ |rr R as follows:

∫+ ⎛
⎝

∂
∂

+ ⎞
⎠

= − +
∞

ρh r τ
r

τ
r

dr ρh r τ q( ) 3 ( ) | 3
R

rr rr
rr R (13)

4. Gilmore-Akulichev-Zener model

To study bubble dynamics in a soft tissue (viscoelastic medium),
authors propose to employ the combination of Gilmore-Akulichev’s
equation and Zener viscoelastic model. Gilmore-Akulichev model is the
best cavitation model to simulate bubble collapse process (since it is
observed in HIFU studies with continuous driving pulse). Zener vis-
coelastic model is considered to be suitable for soft tissue modeling,
accounting for both essential soft tissue features: creep recovery and
stress relaxation [34,44]. Eqs. (15)–(19) constitute the complete model
to be employed in this study:
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⎝

− ⎞
⎠

−τ λ τ G R
R

μ R
R

| |̇ 4
3

1 4
̇

rr R rr R1
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The above equations have been solved numerically through six-
stage Runge-Kutta method. In our simulations, if not specified other-
wise, = ∗P 1.013 10 Pa0

5 , =f 10 Hz6 , =ρ 1060 kg/m3, = −c 1500 ms 1.

5. Acoustic model

Two most well known models of finite-amplitude nonlinear wave
propagation are Khokhlov-Zabolotskaya-Kuznetsov (KZK) and
Westervelt equations. Westervelt equation is a full wave equation. In
the limiting case of directional sound beams, this equation can be
transformed to KZK equation. Nonlinear Westervelt equation for ul-
trasound pressure p has the following form:

▽ −
∂
∂

+
∂
∂

+
∂
∂

=p
c

p
t

δ
c

p
t

β
ρ c

p
t

1 0,2

0
2

2

2
0
4

3

3
0 0

4

2

2 (20)

it takes into account the effects of diffraction, absorption and non-
linearity. The first two terms in Eq. (20) correspond to the effects of
diffraction, the third term is responsible for an ultrasound attenuation,
and the last one describes a nonlinear propagation effect.

In case of linear wave propagation, the shape of the signal has a
harmonic form = ∗p A πftsin(2 ). If nonlinear propagation effects are
taken into account, higher harmonics are generated, and wave form
becomes distorted. Since the shape of the distorted wave depends on
many parameters (including transducer shape, tissue properties) – in
the present paper, for clarity sake, only linear acoustic model will be
considered. Hereafter, the Eq. (20) will be transformed into:

▽ −
∂
∂

+
∂
∂

=p
c

p
t

δ
c

p
t

1 0.2

0
2

2

2
0
4

3

3 (21)

Although, nonlinear propagation effects and relaxation effects can
be easily added to the model, as it was done in our previous papers
[33,45]. The influence of nonlinear wave propagation effects on the
bubble dynamics shall be a subject of the further studies.

6. Numerical simulations

6.1. Verification and validation

In order to justify the employed numerical scheme, some verifica-
tion and validation studies were performed.

Analytical solutions for Rayleigh-Plesset model were presented in

[46] for the pulse-free case and gas-filled bubble ( )( )pG
R
R

γ30 case with a

polytropic exponent =γ 1.5. In [46], Rayleigh-Plesset equation was
solved analytically for a non-dimensional form of the equation with
respect to the variables =u R

R0
and = −T t

ω0
1 at the constant values of

=ω γp
ρR
3 G

0
2 and =β p

pG

0 . The solution has the following form of Weierstrass

elliptic function:

∫= −℘⎧
⎨⎩

− ⎫
⎬⎭

=
−

u C τ τ g g T u ζ dζ9
8

1
6

( ), , , ( ) ,
τ1

0 2 3

2
3

0

5
2

(22)

where C1 is an integration constant that can be calculated from the
initial conditions. In the above, = ( )g 3 C

2
9

4

21 and = −( )g β2 C
3

9
4

31 are the
elliptic invariants, τ0 is a constant that can be obtained as a solution of
the equation ℘ =( )τ g g, , 01

6 0 2 3 . Fig. 2a exhibits the comparison be-
tween the analytical and numerical solutions.

The widespread modeling test case of the bubble collapse that takes
into account the viscosity effect at the interface between bubble and
liquid was presented in [47]. Fig. 2b shows that the current solution
agrees with that in [47]. In [47], modified Herring-Trilling model was
used (modified Rayleigh-Plesset). Pulse was set in a one-period har-
monic form = −P t Acos πωt( ) (2 ).

Purposely, to ensure an adequate accuracy of the current numerical
solution of the equation involving the viscoelastic model, the test case
with Keller-Miksis and Zener model [44] was performed. Pulse was set
as a constant step increase in pressure =A 3.4 MPa. Fig. 2c shows the
comparison between the current solution and the one obtained in [44].

6.2. Comparison of models

All models taking into account the acoustic damping effect show a
very good agreement as can be seen in Fig. 3a, whereas Rayleigh-
Plesset’s model behaves in a different way. Therefore, it can be con-
cluded that the inclusion of acoustic damping is an essential step for
getting a proper modeling of cavitation dynamics, since bubble oscil-
lations can be damped significantly. Fig. 3b demonstrates Mach number
comparison for the different models. An amplitude was set accordingly
to the HIFU amplitude range (1 MPa–20 MPa). However, it can be seen
that the majority of models are out of their applicability range (given in
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Fig. 2. (a) Agreement between numerical and analytical
solutions (analytical solution – solid line, numerical solu-
tion – dashed line) is shown for the Rayleigh-Plesset model
without pulse. Y – u, X – T. =u (0) 1, =u (0) 0t , =C1

62
135

,

=β 1.05. (b) Agreement between the current solution and
that in [47] (current solution – solid line, [47] – dashed
line) based on Modified Herring-Trilling equation (V-MHT).
Y – bubble radius (m), X – time (sec) divided by period
T = 38 μs. = ∗A 1.42 10 Pa5 , =ω 26500 Hz, =σ 0.073 kg/s2,

= −μ 10 Pa s3 , =ρ 10 kg/m3 3, = −c 1481 ms 1, = ∗ −R 4 100 6.
(c) Agreement between current solution and that in [44]
(current solution – solid line, [44] – dashed line) based on
Keller-Miksis model coupled with Zener viscoelastic model
(Zener-KM). Y – bubble radius divided by R0, X – tc

R0
.

= ∗A 3.4 10 Pa6 , =σ 0.056 kg/s2, =μ 0.015 Pa s (μ in Zener
model), = ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 s10 , =ρ 1060 kg/m3,

= −c 1540 ms 1, = ∗ −R 5 100 6.

Fig. 3. (a) Comparison of Rayligh-Plesset’s (RNNP),
Herring-Trilling’s (V-HT), Modified Herring-Trilling’s (V-
MHT), Keller-Miskis’s (V-KM) and Gilmore-Akulichev’s (V-
GA) models with viscosity and surface tension boundary
conditions, driving pressure is a continuous pulse. (b)
Comparison of Mach number R ċ/ for Herring-Trilling’s (V-
HT), Modified Herring-Trilling’s (V-MHT), Keller-Miksis’s
(V-KM) and Gilmore-Akulichev’s (V-GA) models with visc-
osity and surface tension boundary conditions. Simulation
parameters: = ∗A 3 10 Pa6 , =μ 0.015 Pa s, =σ 0.056 kg/s2,

= ∗ −R 1 10 m0 6 . Only Gilmore-Akulichev model can be ap-
plied at such high Mach numbers (Table 1). (c) Difference
between Gilmore-Akulichev-Zener model and Keller-Miksis-
Zener model, = ∗A 8 10 Pa6 , = ∗ −R 4 10 m0 6 .
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Table 1): even the Keller-Miksis model’s Mach number goes beyond its
restriction value during bubble collapse. Whereas, Gilmore-Akulichev
model still preserves Mach number less than 2.2 that proves the pro-
priety of choice of this model for HIFU simulations. Viscosity and sur-
face tension introduce damping to the system, thereby an inclusion of
viscosity and surface tension boundary conditions into Gilmore-Aku-
lichev model reduces Mach number. An increase in elasticity, as well,
diminishes Mach number’s values. Keller-Miksis-Zener model is quite
often used in the literature for cavitation simulations. It shows very
good agreement with Gilmore-Akulichev-Zener model at low and
medium values of driving pulse amplitudes. However, with high am-
plitude values (where Keller-Miskis-Zener model becomes inapplicable
because of high Mach numbers), the difference between these two
models is significant and shows through occurrence of the additional
bubble collapse (Fig. 3c). As it will be shown below, bubble collapse is
very important, since its absence (or presence) can lead to the under-
estimation (or overestimation) of the values of temperature inside the
bubble and amount of heat that is deposited in tissue.

6.3. Study of the effects of viscosity, surface tension, elasticity and
relaxation time

The contribution of diverse effects was investigated by employing
Gilmore-Akulichev-Zener model. For the soft tissue, viscosity was
ranged from 0.001 Pa s to 3.15 Pa s (accordingly to [48]). In the pre-
vious studies, it was observed that viscosity accelerates bubble collapse
and decreases bubble amplitude. This behavior was confirmed for the
currently used model (Fig. 4a).

Variation of surface tension (Fig. 4b) does not demonstrate any
strong impact on bubble dynamics: the diminution of the oscillation
amplitude associated with surface tension is minimal (surface tension
range for tissue was based on [26,49]).

As one might expect a raise of elasticity modulus G (Fig. 5) results in

a dramatic restriction of oscillation and an amplitude, what goes in
accordance with [50,44] (rigidity values range for tissue is set in
agreement with [51,52,26,44]: 0–10 MPa). An increase in amplitude of
the driving pulse emphasizes the elasticity effect.

The relaxation time effect is displayed on Fig. 6b. At low values of
the relaxation time, when λ is much smaller than the period of the
ultrasound wave (Fig. 6b: = −λ 10 s9 ), there is a small difference be-
tween Zener and Kelvin-Voigt models =λ( 0). When relaxation time is
close to the period of the ultrasound wave (Fig. 6b: ⩽ <− −λ10 s 10 s7 6 ),
the frequency of oscillations diminishes and the amplitude increases.
With λ being approximately equal to the period of the wave (Fig. 6b:

−10 s6 ), the amplitude of oscillations reaches the maximum value. With
further increase in relaxation time the amplitude starts decreasing.
Since the elasticity damps the oscillations, larger elasticity values make
bubble behavior more chaotic with respect to the relaxation time var-
iation (Fig. 6a).

6.4. Temperature within the bubble

For the simulation of the temperature dynamics within the bubble,
three approaches have been used. The first one is to assume the adia-
batic equations of state for the bubble interior, meaning that there is no
heat exchange between the bubble and exterior: = ( )p pgas G

R
R

γ30 and

=
−( )T T R

R

γ
0

3( 1)0 . The second approach consists in interpolating between
isothermal and adiabatic behavior: it assumes heat exchange (iso-
thermal motion) for most of the oscillation cycle, when bubble wall
motion is relatively slow, and the adiabatic collapse, because during
collapse, bubble motion is faster than the time scale of heat conduction
[41,53]. This method was derived by Prosperetti [38] and is associated
with employment of γ dependent on time that is meant to describe the
interplay between isothermal and adiabatic regimes. For the second
approach the following equations were used [41]:

Fig. 4. (a) Viscosity effect for the Gilmore-Akulichev-Zener
model. = ∗A 8 10 Pa6 , =σ 0.056 kg/s2, = ∗ −R 1 100 6,

= ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 s9 . (b) Surface tension effect for
the Gilmore-Akulichev-Zener model. = ∗A 8 10 Pa6 ,

=μ 0.015 Pa s, = ∗ −R 1 100 6, = ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 s9 .

Fig. 5. Elasticity modulus G effect for the Gilmore-
Akulichev-Zener model. = ∗A 1 10 Pa6 , =μ 0.015 Pa s,

=σ 0.056 kg/s2, = ∗ −R 1 100 6, = ∗ −λ 3 10 s9 .
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= − − − −T γ t R R
R

T χ t T T
R

̇ ( ( , ) 1) 3 ̇
( ) ,g

0
2 (23)

= −p γ t R R
R

ṗ ( , ) 3 ̇
,gas gas (24)

where χg is a thermal diffusivity. Other parameters were set according
to the Enskog theory of gases [53,41].

Eqs. (23) and (24) were solved together with Eqs. (15)–(19). The
coupling of the original model under the case of ≠γ const results in a
slightly different bubble and temperature dynamics comparing to the
case of assuming solely =γ const (Fig. 7). The order of temperature
within the bubble in both cases was obtained to be near 104 (in K).

The third approach for the temperature inside calculation was
proposed by [54,55]. In contrast with the above described methods,
here, the inside temperature is a function of a distance from the center
of the bubble. Following the approach of [56,57], the vapor mass
transfer across the bubble surface is taken into account (bubble is
considered to be a mixture of non-condensible gas and vapor). With
assumption of spherical symmetry and ideal gas law for gas–vapor
mixture, the temperature, pressure and vapor mass concentration
within the bubble can be described by the following equations:
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where =C ρ
ρ

v

m
is a vapor mass concentration, ρm a gas-vapor mixture

density, r a distance from the center of the bubble, ″ṁv a vapor flux
across the interface, Kg a thermal conductivity of the gas, D a diffusion
coefficient = ∗ −D( 24.2 10 m /s)6 2 , Rv a vapor gas constant, Rg a gas
constant. Following [54], Kg can be approximated as a linear function
of = +T K AT B: g , where = ∗ −A 5.3 10 W/mK5 2, = ∗ −B 1.17 10 W/mK2

are numerical values. Boundary conditions are as follows: =∂
∂ =

0T
r r 0

,

==T T|r R t out( ) , =∂
∂ =

0C
r r 0

, = ⎛
⎝

− − ⎞
⎠

= ( )C p p p| / 1r R t sat gas
R
R sat

R
R( )

v
g

v
g

, where

psat denotes the saturated vapor pressure at the bubble wall and it is

equal to = −p p esat ref

T
Tref ( = ∗p 1.17 10 Paref

11 , =T 5200 Kref [56]).
For the simplification of the given above formulation, during nu-

merical simulation new variables were introduced: =y r
R t( ) ,

∫=τ K θ dθ( )T
T
out

. System of Eqs. (25)–(30) was solved together with Eqs.
(15)–(19). Fig. 8 displays that obtained inside temperature and vapor
concentration are not uniform within the bubble, what emphasizes the
importance of diffusive processes. The highest value of the inside
temperature is achieved at the center of the bubble and the lowest value
turned out to be at the interface (this result goes in accordance with

Fig. 6. Relaxation time effect for the Gilmore-Akulichev-Zener
model. (a) = ∗A 8 10 Pa6 , =μ 0.015 Pa s, =σ 0.056 kg/s2,

= ∗ −R 1 100 6, = ∗G 0.1 10 Pa6 . (b) = ∗A 5 10 Pa6 ,
=μ 0.02 Pa s, =σ 0.056 kg/s2, = ∗ −R 1 100 6, = ∗G 3 10 Pa3 .

Fig. 7. (a) Bubble dynamics for the case of assuming
adiabatic behavior ( =γ const , solid line) and adiabatic
+ isothermal behavior ( ≠γ const , dashed line). (b)
Temperature distribution (K) within the bubble assuming
adiabatic behavior ( =γ const , solid line) and adiabatic
+ isothermal behavior ( ≠γ const , dashed line).

= ∗A 5 10 Pa6 , =σ 0.056 kg/s2, =μ 0.015 Pa s, = ∗ −R 4 100 6,
= ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 s9 .
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earlier studies [54,56]). The order of the obtained temperature values is
the same that as for the two described above approaches. Regarding to
the vapor concentration, at the bubble growing phase the vapor con-
centration at the bubble wall is highest (this effect also is confirmed by
previous results [56]).

Influence of the tissue physical properties on the temperature inside
the bubble was investigated. Fig. 9 demonstrates that elasticity and
viscosity both reduce the values of temperature inside the bubble. Thus,
the impact of these properties on the inside temperature resembles their
influence on the radius of the bubble. The same conclusion can be made
about the relaxation time: as for the radius of the bubble, the biggest
temperature values are reached at the relaxation time values that are
close to the period of the ultrasound wave (Fig. 9c). For different
elasticity and initial radius values, bubble behavior can be more com-
plex.

6.5. Heat deposition

According to [10] BHTE equation for tissue has the following form:

∂
∂

= ∇ − − + + +∞ρc T
t

K T ω c T T q q q( ) ,t t b b ac visc rad
2

(31)

where ρ is a tissue density, ct a specific heat, K a tissue thermal con-
ductivity, ωb a perfusion rate for the tissue cooling in capillary flows, ∞T
a far-field temperature in tissue. The ultrasound power deposition term
qac is =qac

αp
ρc

2
[58], where p is the driving pulse and α is a local

acoustic absorption coefficient. The remaining terms qvisc and qrad are
cavitation terms responsible for viscous damping and absorption of
the radiated pressure wave, respectively. Parameters in BHTE were
set according to [58]: =c 3600 J/(kg K)t , =K 0.512 W/(m K),

=ω 10 kg/(m s)b
3 , =∞T 310.15 K, =α 9 Np/m. Units of all heat source

terms qac, qvisc and qrad are W/m3.
The spatial averaged power density that corresponds to viscous

damping caused by cavitation is defined as follows:

=
′

q
πμRR
πr

16 ̇
,visc

2

4
3

3
(32)

where ′r is the radius of the volume, upon which ultrasound power is
deposited. This viscous cavitation energy appears at the bubble surface
and is caused firstly by the viscous friction forces. Then it distributes in
tissue through heat conduction.

When bubble collapses, the acoustic pulse is emitted in a form of a
spherical wave. The acoustic emission data can be observed using
passive cavitation detector [10]. During the pulse propagation, it is
absorbed by the medium. The amplitude of spherical wave decreases
with respect to the distance as −er

αr1 (where α is an absorption coeffi-
cient).

To determine qrad, firstly, we have to know the radiated pressure prad
at the distance r from the bubble surface:

= +p
ρR
r

R RR(2 ̇ ¨)rad
2

(33)

The power deposited through a sphere with radius ′r , where
acoustic emission is absorbed, has the following form:

= − − ′D πr
p
ρc

e4 (1 ),rad
abs rad αr2

2
2

(34)

where α is absorption coefficient.
By averaging by volume of the surrounding sphere ′πr4

3
3, the term

that corresponds to radiated pressure wave caused by bubble collapse is
defined as follows [37]:

=
′

q
πr

D3
4rad rad

abs
3 (35)

Fig. 10a and b display that the heat deposition cavitation terms qrad
and qvisc reflect the bubble dynamics precisely. It is noted that their
peaks might be observed only during the bubble collapse. Also, Fig. 10d
demonstrates that the viscous emission is present all over the bubble

0 1 2 3
x 10-6

0

1

2

3

x 104

Time t

edisni erutarep
meT

Bubble center
Middle of R(t)
Bubble interface

Fig. 8. Consideration of the interdiffusion of vapor
and non-condensible gas inside the bubble. (a) Bubble
dynamics for the Eqs. (25)–(30). (b) Temperature (K)
within the bubble at the bubble center, at the middle
of the bubble radius and at the bubble wall. (c) Vapor
mass concentration at the bubble center, at the middle
of the bubble radius and at the bubble wall.

= ∗A 1 106 Pa, =σ 0.056 kg/s2, =μ 0.015 Pa s,
= ∗ −R 1 100 6, = ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 9 s.
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Fig. 9. (a) Viscosity effect on the temperature inside the
bubble (K). = ∗A 8 10 Pa6 , =σ 0.056 kg/s2, = ∗ −R 1 100 6,

= ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 9 s. (b) Elasticity effect on the
temperature inside the bubble (K). = ∗A 8 10 Pa6 ,

=σ 0.056 kg/s2, = ∗ −R 1 100 6, = ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 9 s.
(c) Relaxation time effect on the temperature inside the
bubble (K). = ∗A 8 10 Pa6 , =σ 0.056 kg/s2, = ∗ −R 1 100 6,

= ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 9 s.
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Fig. 10. Heat deposition sources. (a) Viscous damping term caused by
cavitation qvisc (W/m3); b) The term that corresponds to radiated

pressure was caused by bubble collapse q adr (W/m3); (c) The corre-
sponding bubble dynamics. d) Enlarged collapsing moment for both
heat sources. = ∗A 8 106 =Pa σ, 0.056 = ∗ = ∗−kg s R G/ , 1 10 , 0.1 102 0 6 6

= ∗ −Pa λ, 3 10 9 ′ =s r mm, 0.1 .
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oscillation cycle, whereas the radiation wave appears at the moment of
bubble collapse.

At low driving pressure amplitude, the maximum values achieved
by qvisc are bigger than ones that are reached by qrad. However, at high
amplitudes (in case of HIFU), the situation changes: qrad also becomes
the essential bubble-related heating mechanism. Fig. 11a and b exhibit
that maximum values that are achieved by both cavitation heat sources
over dominate acoustic term qac.

As expected, the values of the radiation term qrad and viscous
damping term qvisc decrease with the increase of the radius ′r (the heat
deposition in tissue is investigated in the sphere of radius ′r that sur-
rounds oscillating bubble). This results in the situation that if the
bubble surrounding volume is tight, maximum values of cavitation heat
sources are comparable to each other and they both dominate the
acoustic term significantly (Fig. 11a). Whereas in a case of large vo-
lume, acoustic term becomes more noticeable (Fig. 11b).

On Fig. 11c, the total heat power is represented without spatial
averaging. It can be seen that viscous damping power is now

independent of ′r . Fig. 11c shows that with an increase in radius ′r , the
amount of the absorbed energy that was radiated by bubble collapse
enlarges. In this case, the difference between the radiation power and
the viscous damping power can rise up to 20 times. From Fig. 11c, it can
be concluded that, generally speaking, ′r can be chosen differently for
both heat cavitation terms: for ′q r,visc should be set close to the bubble
surface (since it is caused by forces acting at the bubble surface),
whereas for ′q r,rad should represent larger volume.

Diverse physical tissue properties have influence on the amount of
heat deposition caused by cavitation and were investigated. As it was
clear from the expression for the viscous damping cavitation term: qvisc
increases with the increase of the viscosity. The elasticity influence was
not obvious from the definition of the cavitation heat sources. However,
from the previous analysis of the bubble dynamics one might expect
that elasticity may lead to the diminution of the deposited heat values.
This tendency can be observed for both cavitation heat sources on
Fig. 12. The surface tension parameter did not display a very noticeable
contribution for the heat deposition values within the HIFU amplitude
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Fig. 11. The comparison of contribution of heat
sources considering their maximum values: cavitation
terms q q,rad visc and acoustic term qac (W/m3). (a)

Surrounding volume radius ′ =r 0.1 mm; (b)
Surrounding volume radius ′ =r 1 mm. (c) Deposited
heat power corresponding to qrad and qvisc as function

of ′r (not spatial averaged, W). Simulation parameters:
= ∗A 3 10 Pa6 , =σ 0.056 kg/s2, = ∗ −R 4 100 6,
= ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 9 s.

Fig. 12. Elasticity effect on the heat deposition induced by
cavitation. (a) The term that corresponds to radiated pres-
sure wave caused by bubble collapse qrad. (b) Viscous

damping term caused by cavitation qvisc . = ∗A 4 10 Pa6 ,

=σ 0.056 kg/s2, = ∗ −R 1 100 6, = ∗G 0.1 10 Pa6 , = ∗ −λ 3 10 s9 ,
′ =r 1 mm.
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range. Less predictable behavior can be observed for the dependency of
power deposition terms on the relaxation time. The effect becomes
pronounced, when the relaxation time is close to the period of the
wave.

7. Conclusion

In the present work, the model for the bubble dynamics in soft tissue
during high-intensity focused ultrasound was proposed. The proposed
model can deal with high ultrasound pressures and high frequencies
that appear in HIFU applications. For the description of bubble dy-
namics, Gilmore-Akulichev cavitation model is chosen for the following
reasons. Firstly, it was revealed that the effect of acoustic damping
appeared to be an integral part of the correct bubble dynamics, there-
fore, Rayleigh-Plesset model should not be considered as a good choice
for a detailed cavitation simulation. Secondly, Gilmore-Akulichev
model can deal with high Mach number that appears to take place
during bubble collapse that is frequently observed in case of continuous
driving pulse (in contrast to other cavitation models, such as Keller-
Miksis, Herring-Trilling and modified Herring-Trilling, whose applic-
ability range is more restricted).

For a soft tissue modeling, Zener viscoelastic model was preferred to
other viscoelastic models, in as much as it is considered to be the
simplest viscoelastic model that is capable of describing both creep
recovery and stress relaxation of tissue (in contrast, with Maxwell and
Kelvin-Voigt models). The proposed cavitation-viscoelastic coupled
model is deemed to be an accurate model for the description of the
bubble cavitation in viscoelastic medium such as a soft tissue driven by
a harmonic pulse induced by HIFU.

Contribution of diverse effects was studied based on the Gilmore-
Akulichev-Zener model. It was concluded that the elasticity, viscosity
and relaxation time can affect the bubble curve significantly. Elasticity
and viscosity can both damp oscillations and can, therefore, restrict an
amplitude, whereas the relaxation time effect strongly depends on the
period of the ultrasound wave.

Cavitation effect can strongly impact the temperature elevation
during HIFU therapy. The temperature within the bubble was calcu-
lated (the comparison of the temperatures was shown for two cases: the
one assuming only the adiabatic regime and the other one im-
plementing the interpolation between the adiabatic and isothermal
regimes). However, the difference was found to be not significant,
thereby resulting in the same order of the obtained temperatures during
the bubble collapse. The internal temperature of the bubble during
collapse can reach up to several thousands degrees. Influence of the
tissue properties and ultrasound radiation parameters on the inside
temperature resembles their impact on the bubble radius.

The temperature distribution within the tissue can be described by
the bioheat equation with two extra terms responsible for the cavita-
tion. One term corresponds to the viscous damping, another one to the
pressure wave radiated by bubble collapse. At high intensities, max-
imum values of both cavitation terms overdominate the acoustic term.
Viscous damping term is mainly distributed close to the bubble surface,
whereas the radiation power source can cause temperature increase in a
region that is far away from the bubble surface. Chavrier et al. [40]
experimentally showed that at the 1 mm distance from the bubble
surface, temperature can increase up to 100° C.

In our previous studies, the three fields coupled mathematical
model [33,45,59] has been developed for the modeling of temperature
elevation in a patient specific liver geometry. The physical model takes
into account the convective cooling in large blood vessel and the per-
fusion due to capillary flows. The effect of acoustic streaming is also
taken into account. In the following studies, we are going to combine
the developed three fields coupled model with the proposed in the
current paper cavitation and bioheat models and further investigate,
how cavitation effects can impact the temperature elevation in tissue.
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