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a b s t r a c t 

In this study, a one- and two-dimensional (1D–2D) coupled model is developed to solve the shallow wa- 

ter equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed 

particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved chan- 

nels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. 

Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as 

the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the 

SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to 

suppress oscillations in the predicted water depth. The performance of the two approaches in calculating 

the water depth is comprehensively compared through a case study of a straight channel. Additionally, 

three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate 

the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured 

data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy 

and guaranteed convergence. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Open channel flow is an essential topic in hydraulics, and

tudies of this topic range from drainage in artificial channels

nd rivers ( Ying et al., 2004 ; Burguete et al., 2008 ) and the

esign of hydraulic structures such as spillways ( Unami et al.,

999 ) and bridges ( Biglari and Sturm, 1998 ) to flood prevention

easures ( Hsu et al., 2003 ). Numerical simulation approaches are

xtensively used to study open channel flow by solving either 1D

r 2D shallow water equations (SWEs) for the discharge, wetted

ross-sectional area, flow velocity and depth ( Chaudhry, 2008 ).

he SWEs can be derived from the area-integrated and depth-

ntegrated Navier–Stokes equations. In general, 1D SWE models are

sed to model large open-channel systems because of their high

fficiency in comparison with the 2D SWE models. For example,

D SWE models approximated by the finite difference method

FDM) ( Choi and Molinas, 1993 ), finite element method (FEM)

 Sen and Garg, 1998 ) and finite volume method (FVM)
∗ Corresponding author at: National Taiwan University, No. 1, Sec. 4, Roosevelt 
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 Sanders et al., 2001 ) have been successfully applied to model

arge open-channel flows. 

However, the existing 1D SWE models cannot resolve the 2D

ow phenomena that can be captured by 2D SWE models, e.g. ,

ows in converging, diverging, or curved channels. Various cou-

led approaches that combine computationally efficient 1D SWE

odels with numerically accurate 2D SWE models have been pro-

osed in the past. Effectively exchanging data between the 1D and

D models is the key to success in these 1D–2D coupled meth-

ds. The processes of connecting the 1D and 2D domains in 1D–2D

oupled SWE models can be categorized into two types based on

he overlapping area ( Marin and Monnier, 2009 ; Fernandez-Nieto

t al., 2010 ; Arico et al., 2016 ) or the buffer zone ( Blade et al.,

012 ; Morales-Hernandez et al., 2013 ; Morales-Hernandez et al.,

016 ). In coupled models of the first type, the 1D model re-

ains intact, and the 2D model is locally employed (so-called lo-

al zoom model). Marin and Monnier (2009) first proposed a su-

erposition approach to convert the contribution of the 2D model

nto the source terms of the 1D governing equations to predict

iver overtopping flows. In coupled models of the second type, the

D model is decomposed into the 2D model, and a buffer zone

e.g., control meshes) is established that incorporates the 1D and

D domains. Blade et al. (2012) proposed a flux-based connection
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that considers the effects of the mass and momentum exchanged

between the 1D and 2D domains in natural channels. Morales-

Hernandez et al. (2013) developed an approach that accounts for

the interactions at the boundaries based on separate mass conser-

vation and mass and momentum conservation strategies in shallow

water flow simulations. 

Meshless numerical methods, such as the smoothed particle hy-

drodynamics method (SPH), moving particle semi-implicit method

(MPS) and reproducing kernel particle method (RKPM), have at-

tracted increased attention because of their excellent ability to

overcome large deformation difficulties that arise from fluid-solid

interactions. SPH, the most popular of these methods, is a La-

grangian meshless particle method. SPH was first proposed by

Lucy (1977) and Gingold and Monaghan (1977 ) in their investi-

gations of astrophysical problems. Particles in space move along

pathlines in a Lagrangian sense, and SPH has an advantage over

mesh-based methods when interfacial flow dynamics in free sur-

face flows Monaghan, 1994 ), fluid-structure flows ( Shao and Go-

toh, 2004 ) and mudflows ( Shao and Lo, 2003 ) are considered.

Some significant characteristics of SPH are as follows: (1) un-

like the Eulerian conservation equations, there are no nonlinear

convective terms in the Lagrangian equations, thereby ensuring

that the discretization is Galilean invariant; (2) the interface be-

tween two phases can be naturally captured; and (3) the interac-

tions between a fluid and a solid structure can be easily modeled

( Bouscasse et al., 2013 ; Gong et al., 2016 ). Recently, SPH has also

been utilized to solve SWEs (so-called SPH-SWE model) in mod-

eling dam break flows ( Wang and Shen, 1999 ; Rodriguez-Paz and

Bonet, 2005 ; Ata and Soulaimani, 2005 ; Chang et al., 2011 ; Kao and

Chang, 2012 ; Xia et al., 2013 ; Gu et al., 2017 ), open channel

flows ( Vacondio et al., 2012 ; Chang and Chang, 2013 ; Chen et al.,

2015 ; Chang et al., 2016 ; Chang et al., 2017 ) and run-off flows

( Chang et al., 2016 ). 

In the SPH literature, Narayanaswamy et al. (2010 ) addressed

the advantage of coupling a 1D finite difference Boussinesq model

with 2D SPH Navier–Stokes model in coastal flow simulations.

Altomare et al. (2015) presented a hybridization technique to pass

information between a 2D wave propagation model and a 3D SPH

Navier–Stokes model in real coastal applications. However, no nu-

merical study of coupled SPH-SWE models has been performed.

Therefore, we propose a coupled 1D and 2D SPH-SWE model to

more efficiently simulate open channel flows with complicated

boundaries. In our proposed model, a buffer zone associated with

the inflow/outflow boundaries of the 1D and 2D computational do-

mains is defined in the channel interior. This paper focuses on

subcritical flows because they are the most common in rivers and

open channels. Flows such as those that originate from dam break-

ing are not easily modeled with this approach. Based on the char-

acteristics of the proposed method, only one variable can be as-

sessed at the inflow/outflow boundaries. In this study, the water

discharge and water surface level at the internal boundaries are

interpolated to specify the required inflow and outflow boundary

conditions, respectively, for the 1D and 2D models. 

To the best of our knowledge, all the SPH-SWE models use an

SPH summation operator instead of solving the continuity equa-

tion to calculate water depth because this approach enhances the

numerical stability. In this study, we add the density diffusion

term proposed by Molteni and Colagrossi (2009) into the continu-

ity equation for stability enhancement. A comprehensive compari-

son concerning the accuracy of the water depth and discharge and

the computational efficiency of two approaches applied to calcu-

late the variable water depth is performed based on test cases. 

This paper is organized as follows. In Section 2 , the 1D SWEs

for modeling the wetted cross-sectional area and water discharge

are presented. Additionally, the 2D SWEs for the water depth and

velocity are introduced. Section 3 gives the fundamental SPH oper-
tors, and details of how the proposed SPH-SWE model can be im-

lemented are presented. Section 4 is devoted to the treatment of

he three boundaries, the wall, inflow/outflow, and internal bound-

ries, between the 1D and 2D models. Finally, in Section 5 four

ow cases are considered in straight, converging, diverging, and

urved channels. Each case is solved to verify and validate the pro-

osed model based on the exact solution, the mesh-based numer-

cal results, and measured data. 

. Governing equations 

.1. One-dimensional shallow water equations 

The 1D SWEs can be derived from the area-integration of the

avier–Stokes equations ( Chaudhry, 2008 ) and govern the wetted

ross-sectional area and water discharge in open channel flows.

he Lagrangian form of the 1D SWEs can be written as follows.

DA 

Dt 
= −A 

∂u 

∂x 
(1)

DQ 

Dt 
= −Q 

∂u 

∂x 
− gA 

∂ ( d w 

+ z b ) 

∂x 
− gA S f (2)

In the above equations, D 
Dt denotes the total derivative term

 

D 
Dt = 

∂ 
∂t 

+ 

⇀ 

U · ∇). 
⇀ 

U ( u, v ) is the water velocity vector, where u and

 are the x - and y -components of water velocity, respectively. Q

enotes the water discharge ( = Au ); A is the wetted cross-sectional

rea; d w 

is the water depth; z b is the bed elevation; S f is the fric-

ion slope ( = n 2 
Ma 

Q 

2 / A 

2 R 4 / 3 ); n Ma is the Manning roughness coeffi-

ient; R is the hydraulic radius; and g is gravitational acceleration. 

.2. Two-dimensional shallow water equations 

By vertically (the direction of water depth) integrating the

avier–Stokes equations, the 2D SWEs for the water depth and ve-

ocity derived in ( Chaudhry, 2008 ) can be given in Lagrangian form

s follows: 

D d w 

Dt 
= −d w 

∇ ·
⇀ 

U (3)

D 

⇀ 

U 

Dt 
= −g∇ ( d w 

+ z b ) − g 
⇀ 

S f (4)

here the friction slope 
⇀ 

S f used in the 2D model is defined as

 

2 
Ma | 

⇀ 

U | ⇀ 

U /d 4 / 3 w 

. 

. SPH-SWE model 

.1. SPH operators 

Any physical quantity of particle a , such as φa , can be approxi-

ated as follows within the SPH context. (
⇀ 

r a 

)
= 

∫ 
φ
(

⇀ 

r 

)
ω 

(
⇀ 

r a −
⇀ 

r , h 

)
dV 

∼= 

b= N ∑ 

b=1 

m b 

φb 

ρb 

ω 

(∣∣∣⇀ 

r ab 

∣∣∣, h a 

)
(5)

In the above equation, m b ( = ρb V b ) is the mass of particle b ;

b is the density of particle b, which is defined as ρ0 A b in the

D model and ρ0 d w,b in the 2D model; ρ0 is the bulk density

f water ( = 10 0 0 kg/m 

3 ); V b is the volume of particle b ; 
⇀ 

r is the

osition vector ( 
⇀ 

r = ⇀ 

r (x ) in the 1D model and 

⇀ 

r = 

⇀ 

r ( x, y ) in the

D model); | ⇀ 

r ab | ( = | ⇀ 

r a −
⇀ 

r b | ) is the distance between particles a

nd b ; and ω( | ⇀ 

r ab | , h a ) is the kernel function of particle a and

s denoted as ω 

a 
ab 

. In this study, the smoothing length of parti-

le a , which is denoted as h a , is assigned an initial value of 1.4 l 
0 
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 l 0 = �x 0 in the 1D model and l 0 = �x 0 = �y 0 in the 2D model),

here �x 0 and �y 0 are the initial particle spacings in the x- and

- directions, respectively, and N is the number of particles in the

upport domain of particle a ( Violeau, 2012 ). 

In this study, the SPH gradient operator is expressed in sym-

etric form and the SPH divergent operator is expressed in asym-

etric form Violeau, 2012 ). These SPH differential operators are

hown in Eqs. (6) and ( (7) : 

( ∇φ) a = ρa 

b= N ∑ 

b=1 

m b 

(
φa 

ρa 
+ 

φb 

ρb 

)
∇ a ω 

a 
ab (6) 

∇ ·
⇀ 

φ
)

a 
= − 1 

ρa 

b= N ∑ 

b=1 

m b 

(
⇀ 

φa −
⇀ 

φb 

)
· ∇ a ω 

a 
ab (7) 

here ∇ a ω 

a 
ab 

denotes 
∂ω a 

ab 
∂ x a 

⇀ 

e x + 

∂ω a 
ab 

∂ y a 

⇀ 

e y and 

⇀ 

e x and 

⇀ 

e y are the unit

ectors in the directions of the x- and y -axes, respectively. 

In addition, the following SPH Laplacian operator is adopted

o consider the viscous acceleration proposed by Monaghan

 Monaghan, 1992 ): 

∇ · μ∇ 

⇀ 

U 

)
a 

= 2 ( D m 

+ 2 ) 

b= N ∑ 

b=1 

V b μab 

⇀ 

U ab ·
⇀ 

r ab 

| ⇀ r ab | 
2 

∇ a ω 

a 
ab (8) 

here μ is the kinematic viscosity, 
⇀ 

U ab = 

⇀ 

U a −
⇀ 

U b and μab =
 . 5( μa + μb ) . 

.2. Discretized shallow water equations 

Based on the chosen SPH gradient and the divergent operators

hown in Eqs. (6) and (7) , the source terms in Eqs. (1) to (4) can

e approximated as follows. 

DA 

Dt 

)
a 

= 

b= N ∑ 

b=1 

m b u ab 

˜ ∂ 

∂x 
( ω ab ) (9) 

DQ 

Dt 

)
a 

= u a 

b= N ∑ 

b=1 

m b ( u a − u b ) 
∂ω ab 

∂x 

− gA 

2 
a 

b= N ∑ 

b=1 

m b 

(
ηw,a 

A 

2 
a 

+ 

ηw,b 

A 

2 
b 

)
∂ω ab 

∂x 
− gA a S f,a 

(10) 

D d w 

Dt 

)
a 

= 

b= N ∑ 

b=1 

m b 

⇀ 

U ab · ˜ ∇ ω ab (11) 

 

D 

⇀ 

U 

Dt 

) 

a 

= −gd w,a 

b= N ∑ 

b=1 

m b 

(
ηw,a 

d 2 w,a 

+ 

ηw,b 

d 2 
w,b 

)
∇ω ab − g 

⇀ 

S f,a (12) 

In the above equations, ηw 

is the water surface level ( =
 w 

+ z b ), u ab = u a − u b and the Wendland function is used as the

ernel function ( Violeau, 2012 ). 

In our discretized SWEs, the averaged kernel function is con-

idered due to the non-constant smoothing length, i.e. , 
∂ω ab 
∂x 

=
 . 5( 

∂ω a 
ab 

∂x a 
+ 

∂ω b 
ba 

∂x b 
) and ∇ω ab = 0 . 5(∇ a ω 

a 
ab 

+ ∇ b ω 

b 
ba 

) Hernquist and

atz, 1989 ). Given that the mass in the compact domain of a fluid

article is constant, i.e. , ρh D m = constant, the temporal variation of

he smoothing length can be derived as Dh / Dt = −( h / D m 

ρ) D ρ/ Dt ,

here D m 

denotes the number of dimensions in the domain

 Altomare et al., 2015 ). Furthermore, the corrected divergence op-

rator of velocity, i.e. , ˜ ∂ /∂x in Eq. (9) and 

˜ ∇ in Eq. (11) , as proposed
y Bonet and Lok (1999 , is used to achieve first-order consistency,

s shown in Eqs. (13) and ( (14) : 

˜ ∂ ω 

a 
ab 

∂ x a 
= 

∂ω 

a 
ab 

∂ x a 

/ b= N ∑ 

b=1 

V b x ba 

∂ω 

a 
ab 

∂ x a 
(13) 

˜ 
 a ω 

a 
ab = L −1 

a ∇ a ω 

a 
ab (14) 

here L a = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

b= N ∑ 

b=1 

V b x ba 

∂ω 

a 
ab 

∂ x a 

b= N ∑ 

b=1 

V b y ba 

∂ω 

a 
ab 

∂ x a 

b= N ∑ 

b=1 

V b x ba 

∂ω 

a 
ab 

∂ y a 

b= N ∑ 

b=1 

V b y ba 

∂ω 

a 
ab 

∂ y a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

x ba = x b − x a and y ba = y b − y a . 

.3. Stabilization terms 

.3.1. Artificial viscosity 

In the 1D SPH-SWE model, an artificial viscous force proposed

y Monaghan (1992,(1994 ), as expressed in Eq. (15) , is applied to

revent the occurrence of a disordered particle distribution. 

 

art 
a = 

b= N ∑ 

b=1 

A ab 

(
V b ν

art 
ab 

u ab · x ab 

x 2 
ab 

+ ε 2 
∂ ω ab 

∂x 

)
, (15) 

here νart 
ab 

= αh ab c ab , h ab = 0 . 5( h a + h b ) , c ab = 0 . 5( c a + c b ) , A ab =
 . 5( A a + A b ) , ε = 10 − 10 and α is a parameter employed to control

he artificial viscous effect ( = 0.3 in this study). 

.3.2. Eddy viscosity 

As 2D channel flows become turbulent, eddy viscosity effects

an no longer be negligibly small, particularly in cases with solid

oundaries. Nadaoka and Yagi (1998) noted that the turbulence

tructure of a shallow water flow can be divided into bed-friction-

enerated 3D turbulence at length scales less than the water depth

nd horizontal 2D eddies at much larger length scales. Bed fric-

ion plays a key role in transmitting the dissipated energy from

orizontal 2D eddies to 3D turbulent processes. Therefore, the LES

hallow water model is ideal for describing the development of

orizontal, 2D large-scale eddies. Hence, the SPH-LES model pro-

osed by Shao and Gotoh (2004) , who introduced an LES model

or an SPH solver, is adopted to model the eddy viscosity origi-

ating from subparticle-scale eddies that act on fluid particles, as

iven in Eq. (16) . 

 

ed d y 
a = 4 

b= N ∑ 

b=1 

V b 

(
d w,a νt,a + d w,b νt,b 

)
d w,a 

⇀ 

U ab ·
⇀ 

r ab 

| ⇀ r ab | 
2 + ε 2 

∇ ω ab (16) 

In the above equation, νt is the turbulent kinematic viscosity

alculated by ( C s l 0 ) 
2 

√ 

2 S : S , where S is the local strain tensor and

 s is the Smagorinsky constant ( = 0.5 in this study). A spatial fil-

er with a width determined by C s l 0 is implicitly used in the LES

odel. As a result, only the solutions of particle-scale variables are

btained. 

.3.3. Density diffusion 

Since the continuity equation is independently solved for each

uid particle, oscillatory solutions are frequently found in the den-

ity field. Here, based on Molteni and Colagrossi (2009) , the den-

ity diffusion terms shown in Eqs. (17) and (18) are incorporated

nto the 1D and 2D SPH-SWE models, respectively, with the aim of

uppressing oscillations in the density field. 

 

1D 
a = 

b= N ∑ 

b=1 

D ab V b ( A a − A b ) 
x ab 

x 2 
ab 

+ ε 2 
∂ ω ab 

∂x 
(17) 
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Table 1 

Solution algorithms of the modified Verlet scheme employed in the 1D and 

2D models. 

1D model 2D model 

Midpoint step 

Q n +1 / 2 
a = Q n a + 0 . 5 · �t( DQ 

Dt 
) n a 

⇀ 

U 
n +1 / 2 

a = 

⇀ 

U 
n 

a + 0 . 5 · �t( D 
⇀ 

U 
Dt 

) n a 

A n +1 / 2 
a = A n a + 0 . 5 · �t( DA 

Dt 
) n a d n +1 / 2 

w,a = d n w,a + 0 . 5 · �t( D d w 
Dt 

) n a 

h n +1 / 2 
a = h n a [ 1 − 0 . 5 · �t 1 

A n a 
( DA 

Dt 
) n a ] h n +1 / 2 

a = h n a [ 1 − 0 . 25 · �t 1 
d n w,a 

( D d w 
Dt 

) n a ] 

u n +1 / 2 
a = Q n +1 / 2 

a /A n +1 / 2 
a 

⇀ 

r 
n +1 / 2 

a = 

⇀ 

r 
n 

a + 0 . 5 · �t ·
⇀ 

U 
n 

a 

x n +1 / 2 
a = x n a + 0 . 5 · �t · u n +1 / 2 

a 

Next step 

Q n +1 
a = Q n a + �t( DQ 

Dt 
) n +1 / 2 

a 

⇀ 

U 
n +1 

a = 

⇀ 

U 
n 

a + �t( D 
⇀ 

U 
Dt 

) n +1 / 2 
a 

A n +1 
a = A n a + �t( DA 

Dt 
) n +1 / 2 

a 

⇀ 

r 
n +1 

a = 

⇀ 

r 
n +1 / 2 

a + 0 . 5 · �t ·
⇀ 

U 
n +1 

a 

u n +1 
a = Q n +1 

a /A n +1 
a d n +1 

w,a = d n +1 / 2 
w,a + 0 . 5 · �t( D d w 

Dt 
) n +1 

a 

x n +1 
a = x n +1 / 2 

a + 0 . 5 · �t · u n +1 
a h n +1 

a = 

h n +1 / 2 
a 

1+0 . 25 ·�t 1 

d n +1 
w,a 

( D d w Dt ) n +1 
a 

h n +1 
a = 

h n +1 / 2 
a 

1+0 . 5 ·�t 1 

A n +1 
a 

( DA 
Dt ) 

n +1 
a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The schematic of the wall boundary treatment. 
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S 2D 
a = 

b= N ∑ 

b=1 

D ab V b 

(
d w,a − d w,b 

) ⇀ 

r ab · ∇ ω ab 

| ⇀ r ab | 
2 + ε 2 

(18)

where D ab = βh ab c ab and β = 0.2 in this study. 

3.4. Time integration method 

A modified Verlet scheme proposed by Molteni and Cola-

grossi (2009) is adopted in this study. This approach enables the

use of large Courant–Friedrichs–Lewy (CFL) numbers in the process

of updating the solutions at the next time step. Table 1 shows the

algorithms of the modified Verlet scheme for the 1D and 2D mod-

els. The time step ( �t ) that satisfies the CFL stability condition is

as follows: 

�t ≤ CF L · min 

a 

( 

l 0 

| ⇀ U a | + c a 

) 

. (19)

In this study, we set CFL to 0.8. 

4. Boundary treatment 

4.1. Wall boundary 

In the 2D model, the ghost particle technique developed by

Colagrossi and Landrini (2003) is adopted to specify the wall

boundary condition. In this study, four layers of ghost particles

are involved in the computations of the water depth, pressure

force and viscous force of each fluid particle, as schematically

shown in Fig. 1 . These ghost particles are associated the velocity-

divergence operator, the gradient operator of water depth, and

the velocity-Laplacian operator. For the ghost particles influenced

by the velocity-divergence operator, both the normal and tangent

components of their velocities are equal to zero due to the station-

ary non-slip walls ( Bouscasse et al., 2013 ). 

To estimate the viscous interaction between the fluid and ghost

particles, mirror points, such as point c in Fig. 1 , are generated us-

ing a mirroring technique along the plane of symmetry. Following

the work of Bouscasse et al. (2013) , in the presence of free-slip

boundary conditions, the normal and tangential components of the

velocity of each ghost particle are identical to those at its mirror

point. However, in the case of non-slip boundary conditions, the

tangential velocity of each ghost particle is specified with the op-

posing sign as that at the mirror point, and the normal velocity of

each ghost particle remains the same as that at the mirror point. 
To calculate the gradient operator of water depth for ghost par-

icles, the impermeable boundary condition shown in Eq. (20) is

pplied ( Bouscasse et al., 2013 ). 

D 

⇀ 

u 

Dt 

)
w 

· ⇀ 

n = 

[ 
−g∇ ( d w 

+ z b ) − g 
⇀ 

S f 

] 
w 

· ⇀ 

n = 0 (20)

Rearranging Eq. (20) leads to the following formula. 

∂d w 

∂n 

)
w 

= −
(
∇z b + 

⇀ 

S f 

)
w 

· ⇀ 

n 

(21)

Taking the water depth, bed elevation, and water velocity at

irror point c into consideration, the water depth of ghost particle

 can be determined as follows. 

 w,g = 

b= N ∑ 

b=1 ,b∈ f 
V b 

[ 
d w,b − l gc 

(
∇ z b,b −

⇀ 

S f,b 

)
· ⇀ 

n gc 

] 
˜ ω 

c 
cb (22)

In the above equation, 
⇀ 

n gc denotes the unit normal vec-

or ( = ( 
⇀ 

r c −
⇀ 

r g ) / | ⇀ 

r c −
⇀ 

r g | ) , l gc = | ⇀ 

r c −
⇀ 

r g | . Additionally, ˜ ω 

c 
cb 

is the

orrected kernel function, which can be represented as follows

 Randles and Libersky, 1996 ): 

˜  c cb = 

ω 

c 
cb ∑ b= N 

b=1 ,b∈ f V b ω 

c 
cb 

(23)

here h c = 1.4 l 0 . 

.2. Inflow/outflow boundary 

In this study, three types of fluid particles, namely, inflow parti-

les (rectangular points), inner particles (circle points) and outflow

articles (triangular points), are used to resolve the problems re-

ated to the inflow/outflow boundaries, as schematically shown in

ig. 2 . Since SPH is an explicit method, the inflow/outflow bound-

ry conditions must be determined prior to solving the governing

quations at each time step. Therefore, we adopt the specified time

nterval method ( Chaudhry, 2008 ) to calculate unknown variables

t the inflow/outflow boundaries. Fig. 2 (a) depicts the directions of

he characteristic lines. In the presence of a subcritical flow at the

nflow boundary, the water discharge is prescribed, and the water

epth is obtained by solving Eq. (24) along the negative character-

stic line LP schematically shown in Fig. 2 (a) via Newton–Raphson

terations. 
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Fig. 2. The schematic of the inflow/outflow boundaries in (a) 1D and (b) 2D. 

Q

 

w  

f  

F

Q

 

F

 

1  

a  

fl  

b  

a  

d  

e  

t  

o

 

b  

u  

t  

E

z

 

p

Fig. 3. The schematic of the internal boundaries. 
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 p = A P u P = A P 

[
u L + 

g 

c L 
( d w,P − d w,L ) − g 

((
∂z b 
∂x 

)
L 

+ S f,L 

)
�t 

]
(24) 

For a subcritical flow specified at the outflow boundary, the

ater depth is prescribed, and the water discharge is determined

rom Eq. (25) along the positive characteristic line RS shown in

ig. 2 (a). 

 S = A S u S = A S 

[
u R − g 

c R 
( d w,S − d w,R ) − g 

((
∂z b 
∂x 

)
R 

+ S f,R 

)
�t 

]
(25) 

One can refer to ( Vacondio et al., 2012 ; Chang and Chang, 2013 ;

ederico et al., 2012 ) for additional details of this method. 

In the treatment of 2D inflow/outflow boundary conditions, the

D specified time interval method is applied. In this case, no char-

cteristic lines are used. When a subcritical flow occurs at the in-

ow boundary, the projection point A of particle I on the inflow

oundary, as shown in Fig. 2 b, is identified. Then, the water depth

t point A obtained by solving Eq. (24) is specified as the water

epth of inflow particle I. Similarly, if a subcritical flow is consid-

red at the outflow boundary, the water discharge of outflow par-

icle O is equal to the water discharge at projection point D on the

utflow boundary obtained using Eq. (25) , as shown in Fig. 2 (b). 

In addition, virtual bed particles are introduced to describe the

ed elevation and the roughness ( Vacondio et al., 2012 ). The vol-

me of each virtual bed particle equals l 0 , and the bed eleva-

ion and the roughness of each fluid particle a are computed from

q. (26) . 

 b ,a = 

b= N ∑ 

b=1 ,b∈ v b 
V b z b,b ̃  ω 

b 
ab , n Ma,a = 

b= N ∑ 

b=1 ,b∈ v b 
V b n Ma,b ̃  ω 

b 
ab (26) 

In the above equation, the subscript vb denotes the virtual bed

article and h = 1.4 l . 
b ∈ vb 0 
.3. Internal boundary between the 1D and 2D models 

In the proposed coupled model, we use the concept introduced

y Narayanaswamy et al. (2010) to choose a buffer zone that con-

ects the 1D domain and the 2D domain. There are two types of

onnections. The first type includes a 1D model at the upstream

ide and a 2D model at the downstream side, and the second in-

ludes a 2D model at the upstream side and a 1D model at the

ownstream side, as shown in Fig. 3 . For the first type of con-

ection, the locations of section E and section A’B’ in the buffer

one are the same as the inflow boundary of the 2D model and

he outflow boundary of the 1D model. Similarly, for the second

ype of connection, the locations of section CD and section F in the

uffer zone are the same as the inflow boundary of the 1D model

nd the outflow boundary of the 2D model. Here, we call the in-

ow/outflow boundaries of the buffer zone the internal bound-

ries. 

By exchanging the dependent variables in the 1D and 2D

odels at the internal boundaries, one can obtain the required

nflow/outflow boundary conditions and perform computations 

t the next time step. As subcritical flows form at the internal

oundaries, the model at the upstream side provides the inflow

oundary condition of water discharge for the model at the down-

tream side, i.e. , Q 

AB 
= Q E for the first connection and Q F ′ = Q 

C ′ D ′ 
or the second connection, where Q E = 

∑ b= N 
b=1 ,b∈ f l,a ∈ E V b Q b ̃  ω 

a 
ab 

nd Q 

C ′ D ′ = 

∫ 
l= C ′ D ′ ( 

∑ b= N 
b=1 ,b∈ f l,a ∈ C ′ D ′ V b ( 

⇀ 

U b ·
⇀ 

n 
C ′ D ′ ) ̃  ω 

a 
ab 

) dl. Simi- 

arly, the model at the downstream side provides the out-

ow boundary condition of the water surface level for

he model at the upstream side, i.e. , ηw,E ′ = η
w, A ′ B ′ for the

rst connection and η
w, CD 

= ηw,F for the second connec-

ion, where η
w, A ′ B ′ = 

1 
l 

∫ 
l= A ′ B ′ ( 

∑ b= N 
b=1 ,b∈ f l,a ∈ A ′ B ′ V b ηw,b ̃  ω 

a 
ab 

) dl and 

w,F = 

∑ b= N 
b=1 ,b∈ fl,a ∈ F V b ηw,b ̃  ω 

a 
ab 

. In the above equations, the sub-

cript fl stands for fluid particles, and the smoothing length of

nterpolation point a is 1.4 l 0 in all interpolations. Thus, we can

btain one boundary condition at the inflow/outflow boundaries

f the 1D and 2D models and solve the characteristic equations

hown in Section 4.2 to determine another required inflow/outflow

oundary condition. In the current study, the width of the buffer

one is chosen as 2 h , where h is equal to 2 l 0 . This value ensures

hat the SPH summation includes the complete support domain at

he boundaries of the buffer zone. Moreover, the convergence of

he boundary conditions in the buffer zone will be guaranteed. As

he initial particle spacing approaches zero, the buffer zone will

hrink to a point. Thus, all boundary conditions at the internal

oundary are identical for the 1D and 2D models. 
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Table 2a 

Non-dimensional L 2 norms and convergence rates of water depth and ve- 

locity for the summation approach in calculating the water depth. 

Initial particle spacing ( l 0 ) (m) L 2 ( d w ) L 2 ( u ) L 2 ( v ) 

80 2.73E −04 6.05E −04 3.78E −04 

40 1.94E −04 2.09E −04 1.95E −04 

20 1.19E −04 1.76E −04 1.16E −04 

Convergence rate 0.60 0.89 0.85 

Table 2b 

Non-dimensional L 2 norms and convergence rates of water depth and ve- 

locity for the continuity approach in calculating the water depth. 

Initial particle spacing ( l 0 ) (m) L 2 ( d w ) L 2 ( u ) L 2 ( v ) 

80 1.21E −04 5.86E −04 3.71E −04 

40 4.49E −05 1.62E −04 1.68E −04 

20 3.20E −05 9.39E −05 8.68E −05 

Convergence rate 0.96 1.32 1.05 
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5. Validation 

In this section, a straight channel is chosen in our simulation

to assess the performance of the two approaches to calculate the

water depth. The first approach uses the SPH summation operator.

d w,a = 

b= N ∑ 

b=1 

m b ω 

(∣∣∣⇀ 

r ab 

∣∣∣, h a 

)
(27)

Since the non-constant smoothing length is calculated by

h a = h 0 ,a ( 
d w 0 ,a 
d w,a 

) 1 / 2 , where d w 0 and h 0 are the water depth and

smoothing length at the beginning of the simulation, respec-

tively, Eq. (27) becomes nonlinear. A Newton–Raphson iteration

is applied to solve Eq. (25) ( Rodriguez-Paz and Bonet, 2005 ;

Vacondio et al., 2012 ). The second approach algebraically solves the

SPH-discretized continuity equation given in Eq. (11) . Hereafter, we

call the first and second approaches the summation and continuity

approaches, respectively. 

Next, three cases involving converging, diverging and curved

channels are investigated to assess the performance of the pro-

posed 1D and 2D coupled SPH-SWE model. All the channels are

rectangular, horizontal and frictional. Numerical simulations were

performed on an Intel (R) Core (TM) i7-2600 CPU 3.4 GHz PC

equipped with 4GB of RAM. In addition, a non-dimensional L 2 
norm for any physical quantity ( φ) is applied to calculate the con-

vergence rate. 

L 2 (φ) = 

√ 

1 

N 

N ∑ 

i =1 

(
φSPH − φEXT 

φEXT 

)2 

(28)
Table 3 

The CPU times for all the study cases. 

Total simulation time (sec) Summation 

Initial particle nu

CPU time (sec) 

Case 1 60 0 0 1159 

1.05E + 03 

Total simulation time (sec) 2D SPH-SWE mod

Initial particle nu

CPU time (sec) 

Case 2 200 27679 

6.00E + 04 

Case 3 200 27359 

6.02E + 04 

Case 4 200 23354 

2.36E + 04 
In the above equation, N is the number of particles at fixed

oints in the domain and the superscripts SPH and EXT denote the

umerical and exact solutions, respectively. 

.1. Straight channel flow simulation 

The first simulation involves a straight channel of length

0 0 0 m and width 400 m. This channel was considered by

acondio et al. (2012) in their simulation using an SPH summa-

ion operator to calculate the water depth. The Manning roughness

oefficient is 0.0308 s/m 

1/3 . The exact solutions of the unit water

ischarge (15 m 

2 /s) and water depth (5 m) are prescribed at the

nflow and outflow boundaries, respectively. 

Three different initial particle spacings of 80 m, 40 m, and 20 m

re used to analyze the accuracy and convergence. The non-

imensional L 2 norms based on the water depth and the velocity

re calculated as follows. 

 2 ( d w 

) = 

√ 

1 

N 

N ∑ 

i =1 

(
d SPH 

w,i 
− d EXT 

w 

d EXT 
w 

)2 

, 

L 2 (u ) = 

√ √ √ √ 

1 

N 

N ∑ 

i =1 

( 

u 

SPH 
i 

− u 

EXT √ 

gd EXT 
w 

) 2 

, 

L 2 (v ) = 

√ √ √ √ 

1 

N 

N ∑ 

i =1 

( 

v SPH 
i 

− v EXT √ 

gd EXT 
w 

) 2 

(29)

In the above, d w 

is the water depth ( d EXT 
w 

= 5 m), u is the x -

omponent velocity ( u EXT = 3 m/s), v is the y -component velocity

 v EXT = 0 m/s), and N is the number of particles in the domain. The

ccuracy and the convergence of the two approaches to calculate

he water depth are given in Tables 2a and 2b . The continuity ap-

roach is more accurate than the summation approach in calculat-

ng the velocity and the water depth. Fig. 4 presents the simulated

ater discharge profiles of the two approaches for the case of an

nitial particle spacing of 20 m. As shown in Fig. 4 , the continuity

pproach exhibits better mass conservation than the summation

pproach. L 2 ( Q ) of the summation approach is 1.02E −04, and L 2 ( Q )

f the continuity approach is 3.81E −05. In addition, the continu-

ty approach achieves a faster convergence speed. The convergence

ates based on the water depth and the velocity approach unity.

or the summation approach, the water depth errors mainly occur

n the vicinity of the wall boundaries and are not rapidly reduced

y decreasing the initial particle spacing. This issue is reflected by

he low convergence rates in Table 2a . 

Table 3 lists the CPU times for each approach involving 1159

articles, and the total simulation time is 60 0 0 s. The summation

pproach takes 1.1 times the CPU time consumed by the continuity
Continuity Speed-up ratio 

mber Initial particle number 

CPU time (sec) 

1159 1.1 

9.66E + 02 

el 1D–2D SPH-SWE model Speed-up ratio 

mber Initial particle number 

CPU time (sec) 

13672 2.1 

2.83E + 04 

12602 2.0 

3.09E + 04 

10923 2.1 

1.10E + 04 
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Table 4 

The locations of the inflow/outflow boundaries in the 1D domain in the 1D–2D coupled SPH-SWE model. 

Channel 1 Channel 2 Channel 3 

Inflow boundary Outflow boundary Inflow boundary Outflow boundary Inflow boundary Outflow boundary 

Case 2 x = 5B x = B − 4 l 0 y = −4B y = −B + 4 l 0 x = −6B + 4 l 0 x = −8B 

Case 3 x = −10B x = −2B + 4 l 0 x = 4B − 4 l 0 x = 10B y = 7B − 4 l 0 y = 10B 

Case 4 x = −7B x = −B + 4 l 0 x = −2B + 4 l 0 x = −4B – –

B is the channel width, and l 0 is the initial particle spacing. 

Fig. 4. The simulated water discharge profiles of the two approaches in calculating 

the water depth in the straight channel. 
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Fig. 5. The schematic of the converging channel: (a) 2D model and (b) 1D–2D cou- 

pled model. 

Table 5 

The convergence rates in 1D and 2D domains in the 1D–2D coupled model. 

Involved initial particle spacing ( l 0 ) (m) Convergence rate 

1D 2D 

Case 2 l 0 = 0.0914, 0.0457, 0.02285 0.99 0.88 

Case 3 l 0 = 0.03, 0.015, 0.0075 1.40 1.49 

Case 4 l 0 = 0.08, 0.04, 0.02 1.07 1.15 

t  

w  

0  

i  

i  

t  

t  

t  
pproach. We believe that the approach of calculating water depth

ia solving the continuity equations can efficiently yield a higher

ccuracy than the summation approach for the water depth and

ields a higher degree of mass conservation. Therefore, in the fol-

owing case studies, only the continuity approach is used in the

wo SPH-SWE models. 

.2. Converging channel flow simulation 

A converging channel with a junction angle of 90 ° was exper-

mentally studied by Weber et al. (2001) and is adopted in this

tudy for comparison. The converging channels in the 2D and 1D–

D coupled models are schematically shown in Fig. 5 (a) and (b),

here the solid lines denote the 2D domain and the dash lines

enote the 1D domain. Table 4 shows the locations of the in-

ow/outflow boundaries in the 1D domain. The channel width is

.914 m, and the Manning’s roughness coefficient of 0.011 s/m 

1/3 

ccounts for bed friction. A water discharge of 0.043 m 

3 /s and wa-

er depth ( d w ,0 ) of 0.296 m are prescribed as the inflow and out-

ow boundary conditions in the main channel, respectively, and a

ater discharge of 0.127 m 

3 /s is prescribed as the inflow boundary

ondition in the branch channel. The outflow discharge in the main

hannel is therefore equal to 0.17 m 

3 /s. The initial particle spacing

s set to 0.02285 m in the 1D and 2D models, and the maximum

ime step is 0.007 s. 

The depth contours and the streamline configurations for the

wo SPH-SWE models are plotted in Fig. 6 . The water depths grad-

ally decrease downstream of the channel convergence section,

nd the flow convergence results in the formation of a vortex. Fig.

 shows the simulated profiles of water depths at three lateral

istances along the main channel. The results obtained by the in-

estigated SPH-SWE models are all consistent with the measured

ata presented by Weber et al. (2001) and the FEM-based simula-

ion results of Song et al. (2012) . A comparison of the simulated

rofiles of water discharge along the main channel based on the

wo SPH-SWE models is presented in Fig. 8 . When the flow from
he upstream side of the main channel converges at the junction

ith the flow from the branch channel, the discharge increases to

.17 m 

3 /s. In the 1D–2D coupled model, L 2 ( Q ) in the 1D domain

s 1.05E −02, and L 2 ( Q ) in the 2D domain is 7.58E −03. As listed

n Table 5 , the convergence rates based on the water discharge in

he 1D and 2D domains are 0.99 and 0.88, respectively. In addi-

ion, Table 3 shows that the 2D model takes 2.1 times the CPU

ime required by the 1D–2D coupled model. Both the 1D–2D cou-
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Fig. 6. The water depth contours simulated by the (a) 2D model and (b) 1D–2D 

coupled model. The streamlines simulated by the (c) 2D model and (d) 1D–2D cou- 

pled model in the converging channel. 

Fig. 7. The simulated water depth profiles in the converging channel: (a) y = 0.833 B , 

(b) y = 0.5B and (c) y = 0.167B. 
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led model and 2D model results can be efficiently obtained for

he converging channel. 

.3. Diverging channel flow simulation 

In the third simulation case, a diverging channel with a junc-

ion angle of 90 ° that was experimentally studied by Shettar and

urthy (1996) is investigated. This channel has a width of 0.3 m,

nd the channel bottom is rough, with a Manning’s roughness co-

fficient of 0.011 s/m 

1/3 . Fig. 9 shows the schematic of the diverg-
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Fig. 8. The simulated profiles of water discharge in the converging channel. 

Fig. 9. The schematic of the diverging channel: (a) 2D model and (b) 1D–2D cou- 

pled model. 
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Fig. 10. The water depth contours simulated by the (a) 2D model and (b) 1D–2D 

coupled model. The streamlines simulated by the (c) 2D model and (d) 1D–2D cou- 

pled model in the diverging channel. 
ng channel investigated using the 2D and 1D–2D coupled models.

he locations of the inflow/outflow boundaries in the 1D domain

re given in Table 4 . As boundary conditions, a water discharge of

.005673 m 

3 /s and water depth of 0.0541 m are prescribed at the

nflow and outflow boundaries of the main channel, respectively,

nd a water depth of 0.0458 m is specified at the outflow bound-

ry of the branch channel. The initial particle spacing is 0.01 m in

oth the 1D and 2D models, and the maximum time step is 0.007 s.

The depth and streamline contours are plotted in Fig. 10 , which

hows that the water depth at the downstream side of the main

hannel increases and a vortex forms at the left side of the inlet in

he branch channel as the flow separates at the diverging junction.
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Fig. 11. The simulated profiles of water depth in the diverging channel: (a) along 

PQ; (b) along RS in the main channel; (c) along PQ; and (d) along RS in the branch 

channel. 

Fig. 12. The simulated profiles of water discharge in the diverging channel. 

Fig. 13. The schematic of the curved channel: (a) 2D model and (b) 1D–2D coupled 

model. 
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t  
s shown in Fig. 11 , the simulated water depths were compared

ith the data collected by Shettar and Murthy (1996) . The varia-

ions in water depth along the four walls predicted using the two

roposed SPH-SWE models exhibit good agreement with the mea-

ured data. However, the SPH-based simulation results are less ac-

urate than those predicted by the FEM-based method because the

PH-based solutions at the walls are obtained based on an extrapo-

ation from the inner fluid particles. Fig. 12 displays the SPH-based

imulated profiles of water discharge along the main channel in

he two SPH-SWE models. Notably, the accuracy and convergence
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Fig. 14. The water depth contours simulated by the (a) 2D model and (b) 1D–2D 

coupled model. The profiles of velocity vectors simulated by the (c) 2D model and 

(d) 1D–2D coupled model in the curved channel. 
Fig. 15. The simulated profiles of water velocity in the curved channel: (a) θ = 0 °, 
(b) θ = 35 °, (c) θ = 65 °, (d) θ = 100 °, (e) θ = 143 ° and (d) θ = 186 °
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Figure 16. The simulated profiles of water discharge in the curved channel. 
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of the 1D–2D coupled model were investigated. L 2 ( Q ) in the 1D

domain is 1.34E −02, and L 2 ( Q ) in the 2D domain is 2.86E −03. The

convergence rates based on water discharges of 1.40 and 1.49 in

the 1D and 2D domains, respectively, are shown in Table 5 . Addi-

tionally, the CPU times are shown in Table 3 . The ratio of the CPU

time of the 2D model to that of the 1D–2D coupled model is 2.0.

Thus, it is clear that the 1D–2D coupled model is more efficient in

shallow water simulations. 

5.4. Curved channel flow simulation 

A channel with a 180 ° constant curvature bend is schemati-

cally shown in Fig. 13 for the 2D and 1D–2D coupled models.

The channel has a width of 0.8 m and was originally designed

by Rozovskii (1961) . Table 4 illustrates the locations of the in-

flow/outflow boundaries in the 1D domain. This curved channel

consists of an inner radius with a curvature of 0.4 m and an outer

radius with a curvature of 1.2 m. Manning’s roughness coefficient is

adopted as 0.011 s/m 

1/3 in this study. The water discharge and wa-

ter depth are set to 0.0123 m 

3 /s and 0.058 m at the inflow and out-

flow boundaries, respectively. The initial particle spacing is equal

to 0.02 m in both the 1D and 2D models, and the maximum time

step is 0.015 s. 

Fig. 14 gives the simulated contours of water depths and the

profiles of water velocity vectors for the two SPH-SWE models. In

Fig. 14 (c) and (d), the water velocity along the inner wall increases

as flow passes through the front part of the bend. Then, the wa-

ter velocity decreases as flow exits the bend. Along the outer wall,

flow deacceleration occurs within the front part of the bend, and

flow acceleration then occurs as the flow exits the bend. Hence,

the water depth along the inner wall is lower than that along the

outer wall, as schematically illustrated in Fig. 14 (a) and (b). 

The magnitudes of water velocities along the radial axis at the

angles of 0 °, 35 °, 65 °, 100 °, 143 ° and 186 ° are compared with the

data collected by Rozovskii (1961) and the FDM-based simulation

results of Lien et al. (1999) , as shown in Fig. 15 . The simulated wa-

ter velocity magnitudes exhibit good agreement with the measured

data, except the results predicted in the vicinity of the inner wall.

Due to the use of a non-slip boundary condition, the magnitudes of

water velocities in the vicinity of the inner wall computed by the

two SPH-SWE models are lower than the measured values. Fig. 16

presents the simulated water discharge for the two SPH-SWE mod-

els. The degree of satisfaction of the mass conservation constraint

in the 1D–2D coupled model can be determined using Eq. (28) .

Specifically, L 2 ( Q ) in the 1D domain is 6.94E −03, and L 2 ( Q ) in the

2D domain is 1.75E −03. As listed in Table 5 , the convergence rates

based on the water discharge in the 1D and 2D domains are 1.07
nd 1.15, respectively. Thus, the two SPH-SWE models are both ap-

licable to simulations of curved channel flows. However, as shown

n Table 3 , the 1D–2D coupled model yields a higher efficiency

han the 2D model. 

. Concluding remarks 

In this study, the proposed 1D and 2D coupled SPH-SWE model

as validated based on three subcritical flows in converging, di-

erging and curved channels. The simulation results compare well

ith measured data and mesh-based numerical results. Model con-

ergence based on water discharge was investigated to verify that

he proposed SPH model yields first-order convergent solutions in

D and 2D domains. Additionally, we confirmed that the proposed

odel produces results that are quantitively comparable to those

ased on 2D SPH-SWEs, but the results of the couple model re-

uire a much smaller CPU time. Furthermore, incorporating the

ontinuity equation and an externally added density diffusion term

nto the model yielded more accurate and efficient predictions of

ater depth than those based on the SPH summation operator.

he convergence rate of the continuity approach can reach ap-

roximately unity. Conversely, the water depth errors close to the

all boundaries result in lower convergence rates for the summa-

ion approach. In summary, the proposed 1D–2D coupled SPH-SWE

odel is a potential alternative for numerical simulations of open

hannel flows bounded by irregularly shaped walls. 
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