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a b s t r a c t

Dam-break flow over an immersed stationary object is investigated using a coupled level set
(LS)/immersed boundary (IB) method developed in Cartesian grids. This approach adopts an improved
interface preserving level set method which includes three solution steps and the differential-based
interpolation immersed boundary method to treat fluid–fluid and solid–fluid interfaces, respectively. In
the first step of this level set method, the level set function φ is advected by a pure advection equation.
The intermediate step is performed to obtain a new level set value through a new smoothed Heaviside
function. In the final solution step, a mass correction term is added to the re-initialization equation to
ensure the new level set is a distance function and to conserve the mass bounded by the interface. For
accurately calculating the level set value, the four-point upwinding combined compact difference (UCCD)
scheme with three-point boundary combined compact difference scheme is applied to approximate
the first-order derivative term shown in the level set equation. For the immersed boundary method,
application of the artificial momentum forcing term at points in cells consisting of both fluid and solid
allows an imposition of velocity condition to account for the presence of solid object. The incompressible
Navier–Stokes solutions are calculated using the projection method. Numerical results show that the
coupled LS/IB method can not only predict interface accurately but also preserve the mass conservation
excellently for the dam-break flow.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dam-break flows interacting with solid bodies are commonly
observed in hydraulics and civil engineering [1,2]. Computational
methods developed for simulating dam-break flows in a complex
domain can be categorized into three classes: meshless, moving
grid, and fixed grid methods. Meshless or meshfree methods such
as the smoothed particle hydrodynamics (SPH) [3],moving particle
semi-implicit (MPS) [4,5] methods have featured their remark-
able flexibilities in handling interface deformation as well as frag-
mentation. These methods do not require grid structure, thereby
alleviating a time consuming and troublesome mesh generation.
However, due to the difficulty of coping with the Laplacian oper-
ator, application of a meshless method is limited normally to low
Reynolds number flow simulation. In moving grid methods, clas-
sical body-fitted grid-based methods, which are used to discretize
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the governing equations in curvilinear coordinates that conform
to physical boundaries, involve re-gridding mesh at each time
step. It is well known that grid generation requires considerable
manpower and computational time. In fixed grid methods [6–8],
treatment of fluid–fluid interfaces and solid boundaries need to be
taken into account when predicting an interface flow inside which
there is a solid body. Solid boundaries and fluid–fluid interfaces
may have unrestricted motions across the underlying fixed grid
lines. These methods simplify the gridding requirements and have
been applied to fixed curvilinear and unstructured grids. In this
study, a coupled level set (LS)/immersed boundary (IB) method,
which belongs to the fixed grid method, is chosen to simulate
incompressible fluid flow over solid bodies of different shapes.

Level set method [9–15] is one of the popular fluid–fluid in-
terface capturing methods. The level set method is a successful
approach developed to model two-phase flows, especially for the
case with a marked topological change. Given a level set func-
tion for the physical interface, both shape and its curvature of
this interface can be easily transported and accurately calculated,
respectively. Choice of a proper signed distance function for re-
shaping level set function and implementation of re-initialization
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procedure for the purpose of enhancing numerical stability are
normally required while applying the level set methods. Level
set method applied to predict interface suffers the problems of
numerical dissipation and non-conserved mass. Many attempts
have been made to cope with these two difficulties. The global
mass correction equation [16,17] coupledwith the first and second
distance functions is used to preserve mass in time. In addition, for
improving mass conservation using the level set method, one can
also apply the hybridmethod such as the coupled level set and vol-
ume of fluid (CLSVOF) method [18–21]. The other method known
as the particle level set (PLS) method [22,23] combines the ad-
vantage of Lagrangian tracking methods owing to their simplicity
and the efficiency embedded in level set method. It is also numer-
ically possible to improve mass conservation by using the volume
preserving level set method [24,25]. Volume preserving level set
method uses high-order upwinding combined compact difference
(UCCD) and high-order symplectic Runge–Kutta (SRK) scheme for
the approximation of the spatial derivative term and the temporal
derivative term shown in the level set equation, respectively. The
conservative level set method [26,27] solves a conservative form
of the LS advection equation with the high resolution scheme.
Then, a re-initialization equation with the artificial compression
and viscosity terms is applied to sharpen interface and to avoid
small interface thickness. The mass conservation is significantly
better for the conservative level set method as compared to the
conventional level set method introduced in [9].

For modeling solid boundaries in fluid flow, the immersed
boundary (IB) method has become increasingly popular since gen-
eration of grids can be greatly simplified when simulating flow
problems with complex stationary or moving boundaries. Im-
mersed boundary methods include the continuous and discrete
forcing methods [28]. The first class of methods involves adding a
forcing term into the continuous governing equations prior to the
discretization of the differential equations. Since the constitutive
equations can be directly incorporated into the formulation, appli-
cation of continuous forcing methods can give us a sound physical
basis to accurately simulate fluid flow problemwith elastic bound-
ary. It is therefore applicable to simulate biological flows rather
than to predict flows containing rigid bodies. Another advantage
of applying continuous forcing methods roots in the fact that
these methods can be formulated independent of the employed
spatial discretization. This typical continuous forcing method due
firstly to the original work of Peskin [29] was subsequently ex-
tended by Goldstein et al. [30]. In the discrete forcing methods,
the forcing term is either explicitly or implicitly applied to the
discretized Navier–Stokes equations [31–33]. In comparison with
the first category of the immersed boundary methods, discrete
forcingmethods allowadopting a sharper representation of the im-
mersed boundary. More application of IB method can be found in
Refs. [34–37].

In this study, a combined LS/IB method will be implemented in
Cartesian grid system. The fluid–fluid interface is captured through
the use of the currently adopted high-order level set method,
the application of the sixth-order accurate symplectic Runge–
Kutta scheme, and the sixth-order accurate upwinding combined
compact difference scheme. This upwinding combined compact
difference scheme is manifested with the minimized phase error,
thereby reducing much of the dispersion error generated from
the discrepancy between the effective and actual scaled wave
numbers. More importantly, application of this upwinding differ-
ence scheme can preserve very well the shape of interface for
the advection equation, thus avoiding either mass accumulation
or depletion. Another main objective of our study is to modify
the level set function before performing the re-initialization step
so as to improve the level of mass conservation in arbitrarily
shaped interfaces which may be merged or split. Furthermore, the

differential-based interpolation immersed boundary formulation
is applied to track the solid–fluid interface for the purpose of
increasing computational efficiency [37].

This paper is organized as follows: Section 2 presents the
smoothing method for the hydrodynamic system which consists
of the Navier–Stokes equations and the level set equation. In Sec-
tion 3, the numerical schemes for solving the Navier–Stokes equa-
tions and the level set equation are described. Section 4 describes
the immersed boundary method for modeling complex geometry
flow in Cartesian grids. Section 5 describes the algorithm of the
proposed coupled level set/immersed boundary method. Section 6
presents the predicted results concerning the impact of dam break
flow on the solid object. Finally, we will draw some conclusions in
Section 7.

2. Mathematical model

2.1. Equation for the free surface modeling

2.1.1. Advection step
In this study an improved interface preserving level set method

is developed to predict the time-varying interface (or free surface)
in a domain of incompressible fluid flow. At a surface where the
value of the level set function is zero, orφ(x, t) = 0, both kinematic
and dynamic boundary conditions are specified. The kinematic
boundary condition is interpreted in Lagrangian sense: for fluid
particles sitting on a surface, they will always stay. We can there-
forewrite amathematically equivalent pure advection equation for
the level set function φ at an interface that separates the gas and
liquid, which is

φt + u · ∇φ = 0, (1)

whereudenotes the flowvelocity. Note that the level set functionφ
is initially prescribed to have the following signed distance values
in gas and liquid domains

φ =

{
−d for x ∈ Ωgas
0 for x ∈ Γsf
d for x ∈ Ωliquid.

(2)

In Eq. (2), Ωgas and Ωliquid are the gas region and the liquid region,
respectively. Γsf denotes the location of interface and d is the
absolute normal distance to the interface.

2.1.2. Intermediate step
Interface motion is represented by the propagation of the zero

level setwhich is embedded in Eq. (1). Although the interface is still
represented by the reference value, the other values of φ might not
be the distances from the interface after calculating Eq. (1), thereby
implying that mass is not conserved all the time∫

Ω

H(φ, t = 0) dΩ −

∫
Ω

H(φ, t) dΩ = Herror ̸= 0. (3)

In Eq. (3), Ω is a fixed domain. H(φ, t) is the smoothed Heaviside
function at any time and can be described below

H(φ, t) =

⎧⎪⎪⎨⎪⎪⎩
0 ; if φ < −ϵ

1

(1 + e−
3φ
ϵ )

; if |φ| ≤ ϵ

1 ; if φ > ϵ.

(4)

Note that the value of ϵ shown above is chosen to be 2∆x to
conserve the area of a flow bounded by the interface, where ∆x
denotes the grid spacing. To retain themass conservation property,
the Heaviside function defined in Eq. (4) is modified as

Hnew(φ, t)

=

{
H(φ, t) +

Herror

Nin
; if 0 < H(φ, t) < 1,

H(φ, t) ; if H(φ, t) = 0 or H(φ, t) = 1,
(5)
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where Nin denotes the total nodal points in the smooth layer
(or in the thickness of interface). As a result, application of this
intermediate solution step guarantees mass conservation inside
the thickness of interface in the sense that

∫
Ω
H(φ, t = 0) dΩ =∫

Ω
H(φnew, t) dΩ . The proof to guarantee mass conservation for

this intermediate step has been given in the ‘‘Appendix’’. Note that
the values of φ from Hnew(φ, t) can be derived by Eq. (4) according
to the following equation

φnew =

⎧⎪⎨⎪⎩
−

1
3
ln
(

−
Hnew(φ, t) − 1
Hnew(φ, t)

)
ϵ; if 0 < H(φ, t) < 1,

φ; if H(φ, t) = 0
or H(φ, t) = 1.

(6)

2.1.3. Re-initialization step
To ensure that φ remains as a distance function (i.e., satisfying

|∇φ| = 1) and to conserve mass bounded by the interface, the
computed solution φnew from Eq. (6) is employed as the initial
solution when solving the following re-initialization equation:

φτ + sgn(φnew)(|∇φ| − 1) = λδ(φ)|∇φ|, (7)

where the parameter λ shown above is prescribed as that shown
in [10]

λ = −

∫
Ωi,j

δ(φ)(−sgn(φnew)(|∇φ| − 1)) dΩ∫
Ωi,j

δ2(φ)|∇φ| dΩ
. (8)

In Eq. (8), sgn(φnew) = 2(Hnew(φ) −
1
2 ). The Dirac delta function

δ(φ) shown in Eq. (7) is defined as

δ(φ) =

⎧⎪⎨⎪⎩
0 ; if |φ| > ϵ

3e−
3φ
ϵ

(1 + e−
3φ
ϵ )2 ϵ

; if |φ| ≤ ϵ.
(9)

2.2. Navier–Stokes equations

Both liquid and gas fluids are assumed to be incompressible
and immiscible. The resulting equations of motion for both fluids
separated by an interface are represented by the following dimen-
sionless equations

ut + (u · ∇)u =
1

ρ(φ)

[
−∇p +

1
Re

∇ · (2µ(φ)D)
]

+
1
Fr2

ēg , (10)

∇ · u = 0. (11)

Eq. (10) has two dimensionless parameters, which are known as
the Reynolds number Re (= ρrur lr

µr
) and the Froude number Fr (=

ur√
glr

), where ur , lr , ρr , µr are the referenced characteristic values
for the respective velocity, length, density and viscosity. The tensor
term D (= 1

2 (∇u + ∇uT)) denotes the rate of deformation.

2.3. Physical properties across interface

The fluid properties including density and viscosity across the
interface need to be smoothed in order to prevent numerical
instabilities near the interface [10]. In this study, the smoothed
Heaviside function shown in Eq. (4) is employed to smooth out the
density and viscosity jumps in a small zone defined by |φ| ≤ ϵ

ρ(φ) = H(φ) +

(ρG

ρL

)
(1 − H(φ)), (12)

µ(φ) = H(φ) +

(µG

µL

)
(1 − H(φ)). (13)

The subscripts G and L shown above denote the gas and liquid
phases, respectively. Note that the continuum surface force (CSF)
model should be considered when flow problems under investiga-
tion involve surface tension force [21,38,39].

3. Numerical methods

3.1. Numerical method for solving the level set equation

To solve Eq. (1) accurately over a long time, one can employ
a high spectral resolution scheme such as the compact differ-
ence (CD) scheme or the combined compact difference (CCD) [40]
scheme.However, CD andCCD schemes inevitably produce numer-
ical oscillations near discontinuities and possibly lead to break-
down of the flow simulation. In [41], the CCD scheme is used
togetherwith the fifth-order compact-reconstructionweighted es-
sentially non-oscillatory (CRWENO5) scheme [42] to avoid numer-
ical oscillation generated around discontinuities. A CCD scheme in
the inner grids is coupled with the non-compact explicit scheme
applied at the boundary points to solve the wave equations [43].
Different from the CCD scheme presented in [43], our aim in this
study is to discrete the level set equation for φ using a four-point
combined compact difference scheme in the inner grids and the
three-point boundary combined compact difference scheme at the
boundary points.

3.1.1. Upwinding combined compact difference (UCCD) scheme for
spatial derivatives

In the following the combined compact difference scheme for
approximating the spatial derivative term φx is presented. The
derivative term φxx is also considered as the unknown variable at
each grid point for getting a spectral-like resolution. In a four-point
grid stencil with the uniform grid spacing ∆x = h, the employed
numerical schemes for ∂φ

∂x and ∂2φ

∂x2
are given below

a1
∂φ

∂x
|i−1 +

∂φ

∂x
|i + a3

∂φ

∂x
|i+1

=
1
h
(c1φi−2 + c2φi−1 + c3φi)

− h
(
b1

∂2φ

∂x2
|i−1 + b2

∂2φ

∂x2
|i + b3

∂2φ

∂x2
|i+1

)
, (14)

−
1
8

∂2φ

∂x2
|i−1 +

∂2φ

∂x2
|i −

1
8

∂2φ

∂x2
|i+1

=
3
h2 (φi−1 − 2φi + φi+1) −

9
8h

(
−

∂φ

∂x
|i−1 +

∂φ

∂x
|i+1

)
. (15)

The coefficients shown in Eq. (15) are derived through the
method of Taylor series expansion. Elimination of seven leading
truncation error terms by the modified equation analysis enables
us to get the formal accuracy order of six [40].

Derivation of the weighting coefficients in Eq. (14) is started
from performing Taylor series expansion on the terms φi−2, φi−1,
∂φ

∂x |i−1,
∂φ

∂x |i,
∂φ

∂x |i+1,
∂2φ

∂x2
|i−1,

∂2φ

∂x2
|i and

∂2φ

∂x2
|i+1 with respect to φi to

get the corresponding modified equation. The seven leading trun-
cation error terms derived from the modified equation analysis
are then eliminated to get a set of seven algebraic equations. We
are still short of one algebraic equation to uniquely get all the
introduced coefficients shown in Eq. (14). One way of deriving the
eighth equation so as to get a better approximation of the term ∂φ

∂x
is to reduce numerical error of the accumulative type.We can then
retain the theoretical dispersive property of ∂φ

∂x [44,45].
Our strategy of achieving the goal of reducing numerical dis-

persion error is to match the exact and numerical wavenumbers.
Use of this underlying approach amounts to equating the effective
wavenumbers α′ and α′′ to those shown on the right-hand sides of
Eqs. (16) and (17) [44]. The equations forα′h andα′′h are as follows

iα′h (a1e−iαh
+ 1 + a3eiαh) = (c1e−2iαh

+ c2e−iαh
+ c3)

− (iα′′h)2(b1e−iαh
+ b2 + b3eiαh),

(16)
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Fig. 1. Schematic of the differential interpolation scheme. (a) For the cell involving three fluid nodes (i.e. B,E,D nodes); (b) For the cell involving two fluid nodes (i.e. B,E
nodes). Note that the values used for the interpolation are marked by the gray circles.

(iα′′h)2
(
−

1
8
e−iαh

+ 1 −
1
8
eiαh

)
= (3e−iαh

− 6 + 3eiαh)

− iα′h
(
−

9
8
e−iαh

+
9
8
eiαh

)
.

(17)

The expression of α′h can be directly derived from Eqs. (16) and
(17). It is worthy to note here that the real and imaginary parts
of the numerical modified (or scaled) wavenumber α′h account for
the numerically generated dispersion error (or phase error) and the
dissipation error (or amplitude error), respectively.

To improve the dispersive accuracy of α′, the exact value of αh
should be very close to ℜ[α′h], where ℜ[α′h] denotes the real part
of α′h. To achieve this goal, the positive value error function E(α)
defined below should be very small over the integration interval
for the modified wavenumber αh

E(α) =

∫ 7π
8

0

[
W ·

(
α h − ℜ[α′ h]

)]2d(αh). (18)

Note that several integration ranges have beennumerically studied
so as to find the best one that can render the smallest value of E. The
weighting function W in Eq. (18) is chosen to be the denominator
of
(
α h − ℜ[α′ h]

)
[46]. This choice facilitates us to integrate E(α)

exactly. To make the error function E(α) defined in 0 ≤ αh ≤
7π
8 to be positive and minimal, the extreme condition given by
∂E
∂c3

= 0 shall be enforced. The constraint equation enforced in this
way for maximizing the dispersion accuracy is used together with
the other seven algebraic equations derived from the modified
equation analysis to get not only a smaller dissipation error but
also an improved dispersion accuracy.

The resulting eight introduced unknown coefficients can be
uniquely determined as a1 = 0.88825179, a3 = 0.04922965,
b1 = 0.15007240, b2 = −0.25071279, b3 = −0.01241647,
c1 = 0.01666172, c2 = −1.97080488 and c3 = 1.95414316 from
theunderlying strategy of reducing both dispersion anddissipation
errors. The upwinding scheme developed theoretically in the four
stencil points i− 2, i− 1, i and i+ 1 for ∂φ

∂x has the spatial accuracy
of order six according to the derived modified equation given
below

∂φ

∂x
=

∂φ

∂x
|exact + 0.424003657 × 10−6 h6 ∂7φ

∂x7
+ H.O.T . (19)

Fig. 2. The predicted results for linear advection problem are plotted at t = 2.

Fig. 3. Schematic of the initial condition for the investigated 2D dam break flow.

For u < 0, the proposed four-point UCCD scheme can be similarly
derived.

For the present UCCD scheme, the first derivative term ∂φ

∂x |1
at the left boundary point x1 is approximated by the following
formula

∂φ

∂x
|1 + α1

∂φ

∂x
|2 + β1h

∂2φ

∂x2
|2 =

1
h
(a1φ1 + b1φ2 + c1φ3). (20)
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Fig. 4. The predicted solutions at Re = 42 796 in 300 × 75 grids. (a) t = 2; (b) t = 3.75; (c) t = 4.7; (d) t = 7.3; (e) t = 8.8; (f) t = 11.5.

Fig. 5. The predicted solutions at Re = 122 000 in 300 × 75 grids. (a) t = 2; (b) t = 3.75; (c) t = 4.7; (d) t = 7.3; (e) t = 8.8; (f) t = 11.5.

The Taylor series expansions is used in Eq. (20) for the terms ∂φ

∂x |2,
∂φ2

∂x2
|2, φ1, φ2 and φ3. Therefore, the leading five truncation error

terms are eliminated in the modified equation to get the following
set of algebraic equations:

ā1 + b̄1 + c̄1 = 0, (21)

b̄1 + 2c̄1 − ᾱ1 = 1, (22)

1
2
b̄1 + 2c̄1 − ᾱ1 − β̄1 = 0, (23)

1
6
b̄1 +

4
3
c̄1 −

1
2
ᾱ1 − β̄1 = 0, (24)

1
24

b̄1 +
2
3
c̄1 −

1
6
ᾱ1 −

1
2
β̄1 = 0. (25)

The resulting five unknown coefficients shown in Eq. (20) can be
determined as α1 = 2, β1 = −1, a1 = −

7
2 , b1 = 4, c1 = −

1
2 . We

also approximated the first derivative term at the right boundary
point xN

∂φ

∂x
|N + α1

∂φ

∂x
|N−1 − β1h

∂2φ

∂x2
|N−1

= −
1
h
(a1φN + b1φN−1 + c1φN−2), (26)

where N denotes the number of grid points along x-direction. The
coefficients shown in Eq. (26) can be also determined through the
Taylor series expansion with respect to φN . It is note that both
Eqs. (20) and (26) have the truncation error term −

22
5! h

4 ∂5φ

∂x5
. The

second derivative terms approximated at the two boundary points
x1 and xN are summarized below:
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Fig. 6. The plots of the front location of the dam break flow against time at different Reynolds numbers. (a) Re = 42 796; (b) Re = 122 000.

Fig. 7. Comparison of the water columns for the dam break flow investigated at
Re = 42 796.

h
(

∂2φ

∂x2

)
1
+ α2h

(
∂2φ

∂x2

)
2
+ β2

(
∂φ

∂x

)
2

=
1
h
(a2φ1 + b2φ2 + c2φ3), (27)

h
(

∂2φ

∂x2

)
N

+ α2h
(

∂2φ

∂x2

)
N−1

− β2

(
dφ
dx

)
N−1

=
1
h
(a2φN + b2φN−1 + c2φN−2), (28)

where α2 = 5, β2 = −6, a2 = 9, b2 = −12 and c2 = 3.
The truncation error term is −

14
5! h

4 ∂5φ

∂x5
for Eqs. (27) and (28). The

above proposed UCCD scheme, which uses Eqs. (20) and (27) for
i = 1, Eqs. (26) and (28) for i = N , and Eqs. (14), (15) for
i = 2, 3, 4, · · N − 1, forms a 2N × 2N matrix system. These
matrix equations can be effectively solved by the twin-forward
elimination and twin-backward substitution solution solvers [40].

3.1.2. Symplectic Runge–Kutta scheme for temporal derivatives
The temporally sixth-order accurate implicit symplectic

Runge–Kutta scheme [47] is employed to solve the following

ordinary differential equation with a function F (≡ −u · ∇φ)

dφ
dt

= F (φ). (29)

Given the solution φn at t = n∆t , the solution φn+1 is obtained
iteratively from the procedures given below. Calculation of the
solutions from Eq. (29) is started from the guessed values φ(i) for
φn, where i=1 to 3, to calculate F (i). These computed values of F (i)

(i = 1, 2, 3) are then substituted into the implicit equations given
below to update the values of φ(i) (i= 1 to 3)

φ(1)
= φn

+ ∆t
[

5
36

F (1)
+

(
2
9

+
2̃c
3

)
F (2)

+

(
5
36

+
c̃
3

)
F (3)
]

, (30)

φ(2)
= φn

+ ∆t
[(

5
36

−
5̃c
12

)
F (1)

+
2
9
F (2)

+

(
5
36

+
5̃c
12

)
F (3)
]

, (31)

φ(3)
= φn

+ ∆t
[(

5
36

−
c̃
3

)
F (1)

+

(
2
9

−
2̃c
3

)
F (2)

+
5
36

F (3)
]

. (32)

where c̃ =
1
2

√
3
5 . Note that F (i)(i = 1, 2, 3) shown above represent

the values of F at t = n + ( 12 + c̃)∆t , t = n +
1
2∆t , and t = n +

( 12 −c̃)∆t , respectively. As the difference of the solutions computed
from any two consecutive iterations becomes a negligibly small
magnitude, calculation of the values of F (i) from Eqs. (30)–(32) is
terminated. Upon reaching the specified tolerance, which is 10−6,
the solution at the time t = (n + 1)∆t is obtained as φn+1

=

φn
+

∆t
9 [

5
2F

(1)
+ 4F (2)

+
5
2F

(3)
].

3.2. Numerical implementation of the re-initialization equation

The fifth-order weighted essentially non-oscillatory (WENO5)
scheme [48] is applied to approximate the spatial derivative term
shown in the re-initialization equation (7). As for the temporal
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Fig. 8. The values ofMΩ andMerror
Ω are plottedwith respect to the dimensionless time t for the dam break flow on a dry bed. (a) and (b) Re = 42 795; (c) and (d) Re = 122 000.

Fig. 9. Comparison of the numerical and experimental results on a wet bed at different dimensionless times. (a), (c), (e), (g) present numerical results; (b), (d), (f), (h)
represent experimental results [57].
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Fig. 10. Justification of the predictedmass conservation property for the dam break
problem on a wet bed at t = 0.343 s. (a)MΩ ; (b) Merror

Ω .

derivative term shown in the following equation for φ

dφ
dτ

= L(φ) = −sgn(φnew)(|∇φ| − 1) + λδ(φ)|∇φ|, (33)

the third-order TVD Runge–Kutta (TVD-RK3) scheme [49] is ap-
plied. The solution of the above ordinary differential equation is
solved through the algorithm consisting of the following three
steps

φ(1)
= φ(n)

+ ∆τL(φ(0)), (34)

φ(2)
=

3
4
φ(n)

+
1
4
φ(1)

+
1
4
∆τL(φ(1)), (35)

φ(n+1)
=

1
3
φ(n)

+
2
3
φ(2)

+
2
3
∆τL(φ(2)). (36)

4. Immersed boundary method

How to prescribe the nodal forces along the immersed bound-
ary is the key to determine the success of applying the immersed
boundary method. In general, these forcing points are not neces-
sarily located at the boundary of immersed object. It is therefore
required to interpolate velocity in all solid–fluid cells. However,
the boundary treatment using algebra-based approaches may lead

to numerical instability. To resolve this kind of instability prob-
lem motivates the development of the class of methods without
the need of performing interpolation that is indispensable in the
algebraically-interpolated method [37].

The present IB method can be used efficiently in planar and
curved boundaries as shown in Fig. 1(a) and (b). We define the
value uQ at point Q , which is the image point of the ghost point
A through the boundary point P . It follows that the length between
points A and P (or AP) is equal to the length between points P andQ
(or PQ ). The value uA is derived in terms of uQ and uP as follows by
performing Taylor series expansion along the direction orthogonal
to the immersed boundary

uA = 2uP − uQ . (37)

In what follows, we will determine the value uQ at Q .
The following advection equation will be employed to calculate

the value of u along the direction normal to the immersed bound-
ary [37]
∂u
∂τ

+ n · ∇u = 0. (38)

In the above, τ is the artificial time and n denotes the unit normal
vector. By solving Eq. (38), one can transport the known value to
the ghost point placed inside the solid. For example, we evaluate
uQ using the differential Eq. (38) at the ghost point A by means of
∆τ = APQ = 2AP . Eq. (38) can be discretized by the following
first-order upwind scheme(

uτ+1
A − uτ

A

∆τ
+ O(∆τ )

)
+

(
nx

uτ
A − uτ

B

∆x
+ O(∆x)

)
+

(
ny

uτ
D − uτ

A

∆y
+ O(∆y)

)
= 0, (39)

where∆x and∆y are the grid spacings along the x- and y-direction,
respectively. However, the value uτ

A is unknown since A is a solid
ghost point.

To determine the unknown value uτ
A , the following extrapola-

tion equation given in [50] is used
∂u
∂τ ∗

+ nx(∆xu′

xx) + ny(∆yu′

yy) = 0. (40)

The values of u′
xx and u′

yy will be calculated below. Define

uxx(i, j) =
(ui,j − 2ui−1,j + ui+1,j)

∆x2

uyy(i, j) =
(ui,j − 2ui,j−1 + ui,j+1)

∆y2

we can then derive
u′

xx(i, j) = uxx(i − 1, j) if nx(i, j) ≥ 0;
else u′

xx(i, j) = −uxx(i + 1, j)
u′

yy(i, j) = uyy(i, j − 1) if ny(i, j) ≥ 0;
else u′

yy(i, j) = −uyy(i, j + 1).

By solving Eq. (40) until the steady-state solution is reached, the
second-order accurate extrapolation along the characteristic direc-
tion can be obtained at the ghost points. It is noted that if nx =

0 or ny = 0, the above derivation will be reduced to the one-
dimensional second-order extrapolation along x or y direction. Nu-
merical results confirm that the solution of second-order accuracy
foruτ+1

A can be calculated fromEq. (39) provided that uτ
A is obtained

by solving Eq. (40) to get the steady state solution.
The overall solution procedures of the present method are

summarized below [37]:
(I) calculate the extrapolated velocity uτ

A at point A by solving
Eq. (40) to get the steady state solution.
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Fig. 11. The predicted free surfaces for the dam break problem at different times. (a) t = 0.2 s; (b) t = 0.3 s; (c) t = 0.4 s; (d) t = 0.5 s; (e) t = 0.2 s [58]; (f) t = 0.3 s [58];
(g) t = 0.4 s [58]; (h) t = 0.5 s [58].

(II) calculate uτ+1
A at point A by solving Eq. (38) at the artificial

time τ = 2AP .
(III) set uQ = uτ+1

A and calculate the intermediate velocity uA at
point A by using Eq. (37).

5. Incompressible two-phase flow solver

5.1. Approximation of the convection terms in the momentum equa-
tions

Approximation of the convective terms in flow equations needs
to take the upwinding nodal solutions along the flow direction
into a favorable consideration. A sixth-order upwinding combined
compact difference scheme described in Section 3.1.1 for φ = u (or
v) is employed to approximate the first-order derivative terms in
the equations. Our primary aim is to enhance convective stability
and increase dispersive accuracy at the same time when solving
the Navier–Stokes equations.

5.2. Projection method for the two phase flow system

The projectionmethod [51,52] is an effective method in solving
the time-dependent incompressible flow solutions. The advantage
of the projectionmethod employed in this study is that the compu-
tation of velocity and pressure fields can be decoupled. In [53], the
second order projection method for variable density incompress-
ible flows is described. Development of this method is based on a
second order fractional step scheme inwhich diffusion–convection
terms are advanced without enforcing the incompressibility con-
dition. The resulting intermediate velocity field is then projected
onto the space of a discretely divergence free vector field. Based on
the idea of the projection method given in [51], the computational
procedures are summarized as follows:

(Step 1) Setφ0 = 1 in the liquidwhileφ0 = −1 in the gas. Initialize
the level set function φ by solving the initialization equation given
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Fig. 12. The ratios defined in Eqs. (46) and (47) are plotted with respect to time t
for the calculation carried out in 400 × 240 grids.

below

φτ + sgn(φ0)(|∇φ| − 1) = 0. (41)

Given the solution obtained at a time T = LD, which is the largest
length of the computational domain, we set the computed value of
φ as φ0.

(Step 2) Define the fluid properties of density ρ(φ) and viscosity
µ(φ) described in Section 2.3.

(Step 3) Calculate the intermediate velocity u∗ by solving the fol-
lowing momentum equation in the fluid-domain

u∗
− un

∆t
= −(un

· ∇)un
+

∇ · (2µ(φ)Dn)

ρ(φ)
+

1
Fr2

ēg . (42)

(Step 4) Calculate the extrapolated intermediate velocity u∗

A (see
Fig. 1) at the solid points that are near the flow domain by the
immersed boundary method presented in Section 4.

(Step 5) Derive the following Poisson equation for pn+1

∇ ·
∇pn+1

ρ(φ)
=

∇ · u∗

∆t
, (43)

by taking the divergence and requiring that ∇ · un+1
= 0.

(Step 6) Approximate Eq. (43) for the 2D situation by(
pn+1
i+1,j − pn+1

i,j

ρi+ 1
2 ,j∆x2

)
−

(
pn+1
i,j − pn+1

i−1,j

ρi− 1
2 ,j∆x2

)
+

(
pn+1
i,j+1 − pn+1

i,j

ρi,j+ 1
2
∆y2

)

−

(
pn+1
i,j − pn+1

i,j−1

ρi,j− 1
2
∆y2

)

=
1

∆t

(u∗

i+1,j − u∗

i−1,j

∆x
+

v∗

i,j+1 − v∗

i,j−1

∆y

)
. (44)

The above implicit equation can be solved using the Gauss–Seidel
iterative solver to obtain pn+1

i,j . Note that the harmonic mean in-
stead of arithmetic mean is employed to calculate the face values
ρi− 1

2 ,j, ρi+ 1
2 ,j, ρi,j− 1

2
and ρi,j+ 1

2
.

(Step 7) Correct the intermediate velocity to obtain the final solu-
tion un+1

un+1
− u∗

∆t
= −

∇pn+1

ρ(φ)
. (45)

Fig. 13. Schematic of the 3D dam break flow over a rectangle obstacle.
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Fig. 14. The predicted time-evolving free surfaces for the 3D dam break flow over a rectangle obstacle. (a) t = 0.125 s; (b) t = 0.25 s; (c) t = 0.5 s; (d) t = 0.75 s; (e)
t = 1.0 s; (f) t = 1.25 s.

(Step 8) Solve Eq. (1) by the CCD scheme described in Section 3.1.1
with the symplectic Runge–Kutta timemarching schemedescribed
in Section 3.1.2 to obtain φn+1.

(Step 9) Calculate the new smoothed Heaviside function H(φnew)
by Eq. (5). If Hnew(φ, t) > 1, set Hnew(φ, t) = 1, if Hnew(φ, t) < 0,
set Hnew(φ, t) = 0.

(Step 10) Calculate the new level set value φn+1
new by Eq. (6).

(Step 11) Re-initialize the level set function φn+1
new by solving Eq. (7)

described in Section 2.1.3.

(Step 12) Repeat the calculations from Step 2 to Step 11 for one
time loop.

6. Numerical results

The performance for the CCD and UCCD schemes is shown
in Section 6.1 by a advection test. Two dam break problems in
Section 6.2 are chosen to show the ability of the proposed method
to solve the problems without taking solid object into account. We
measure the mass and its errors, respectively, as

MΩ =

∫
Ω
H(φ, t) dΩ∫

Ω
H(φ, t = 0) dΩ

, (46)
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Fig. 15. The predicted water depth at the point Hp is plotted with respect to time.

Fig. 16. The ratios defined in Eqs. (46) and (47) are plotted with respect to time t
for the calculation carried out in 256 × 80 × 80 grids.

and

Merror
Ω =

∫
Ω
H(φ, t) dΩ −

∫
Ω
H(φ, t = 0) dΩ∫

Ω
H(φ, t = 0) dΩ

. (47)

In the above, Ω denotes the whole computational domain. Af-
ter validating the dam break problems without solid object, we
proceed to demonstrate the characteristic of the LS/IB method
by virtue of the four investigated dam-break problems, which all
involve solid objects and undergo topological changes of the in-
terface. In Euler framework, the gas/liquid interface will penetrate
inside the solid object due to numerical errors when simulat-
ing interaction between the solid object and the interfacial flow.
Several methods have been proposed to deal with this kind of
problem [13,54]. Mass conservation is a essential property to be
satisfied for the dam break flows in the present work. Therefore,
this issue in simulating interaction between solid object and in-
terfacial flow will be left to future studies. In this study we also

Table 1
The six calculations performed in different grids and time-step sizes.

Section Computational domain Grids Time-step size ∆t

6.2 5 × 1.25 300 × 75 ∆t = 0.005∆x
6.3 10 × 2 600 × 120 ∆t = 0.005∆x
6.4 4 × 2.4 400 × 240 ∆t = 0.002∆x
6.5 3.2 × 1 × 1 256 × 80 × 80 ∆t = 0.01∆x
6.6 1.6 × 0.6 × 0.6 200 × 75 × 75 ∆t = 0.01∆x
6.7 16 × 5 × 7 208 × 65 × 91 ∆t = 0.005∆x

measure the mass

MΩ1 =

∫
Ω1

H(φ, t) dΩ1∫
Ω1

H(φ, t = 0) dΩ1
. (48)

In Eq. (48), we define Ω1 ≡ Ω \Ωsolid, and Ωsolid is the solid region.
Table 1 shows the number of uniform grids and the time-step size
used in the following six dam-break flow problems.

6.1. One dimensional advection problem

The one-dimensional linear equation φt + cφx = 0 with c = 1
is considered subject to the following initial condition [55]

φ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp
(

− log(2)
(x + 7)2

0.0009

)
; −0.8 ≤ x ≤ −0.6

1 ; −0.4 ≤ x ≤ −0.2
1 − |10(x − 0.1)| ; 0 ≤ x ≤ 0.2
1 − 100(x − 0.5)2

2
; ; 0.4 ≤ x ≤ 0.6

0 ; otherwise.

(49)

This initial conditions consist of the shapes of exponential wave,
discontinuous square wave, triangular wave, and parabolic wave.
The periodic boundary condition is assumed in this study. The
numerical results are shown at t = 2.0 in Fig. 2 with the domain
[−1, 1] being divided into 200 uniform grids. The time step is
chosen to be ∆t = 0.05∆x. The predicted kinks near the root of
discontinuous square wave is inevitable because both UCCD and
CCD schemes are not non-oscillatory schemes. However, one can
see that the UCCD scheme shows less numerical oscillation than
the CCD scheme in the case of the exponential wave. The reason
is that the upwind-type combined compact difference scheme has
an inherent artificial viscosity and, thus, can eliminate numerical
oscillations.

6.2. Dam break flow on a dry bed

The lock of water was released to flow by removing a thin
wall suddenly and then the water falls down freely caused by the
gravity effect. The schematic of the initial condition is shown in
Fig. 3. Modeling of dam break flow needs to specify the physical
properties for the air and water. The water density is ρL = 1000 kg

m3

and its dynamic viscosity is µL = 0.001 kg
ms . The air density is ρG =

1 kg
ms and its dynamic viscosity is µG = 0.0001 kg

ms . The problem
under investigation is characterized by the Reynolds number Re =
ρLUa
µL

. As a result, the Froudenumber Fr =
U

√
ga is 1,whereU(=

√
ga)

is the characteristic velocity. No-slip conditions are specified along
the horizontal and vertical walls. In Figs. 4 and 5, the numerical
results predicted at two different representative Reynolds num-
bers, namely, 42 796 and 122 000 (i.e. a = 0.05715 m ( 94 inch)
and a = 0.1143 m ( 92 inch)) in 300 × 75 grids are presented.
We also compare the predicted front location and water column
with the experiment results of Martin and Moyce [56] in Figs. 6
and 7. The water column is defined as the distance from the zero
level set value to the bottom wall on the left wall (see Fig. 3).
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Fig. 17. The predicted time-evolving free surfaces for the 3D dam break flow against a tall structure. (a) t = 0.18 s; (b) t = 0.35 s; (c) t = 0.50 s; (d) t = 0.70 s; (e) t = 0.85
s; (f) t = 1.00 s.

It can be seen that our simulation results are in good agreement
with the results of Martin and Moyce [56] predicted at different
flow conditions. The Sussman’s original paper [9] has been known
to have its weakness in mass conservation. Therefore, we make
comparison of results obtained from the present LS method with
those obtained by the level set method introduced in [10]. It is also
observed from Fig. 8 that the mass conservation property indeed
holds well.

6.3. Dam break flow on a wet bed

The proposed level set method is also applied to simulate dam
break overflow in shallowwater. The simulation conditions are the
same as those of Jánosi et al. [57] in order to validate the numerical
model. In their experiment, the vertical baffle plate is used to
enclose the water body of 0.15 m deep. In a domain of 600 × 120

grids, the predicted free surface shape in Fig. 9 is compared with
experimental result. In Fig. 9(a), the moving waves are formed at
the confluence of the water body and the downstreamwater body.
In Fig. 9(c), the waves break and then merge with the downstream
water, thereby resulting in a large bubble in the region of x = 7.5 ∼

x = 8.0 at t = 0.343. We can see from Fig. 10 that the mass
conservation deviates only slightly from the theoretical value at
t = 0.343. However, conservative property built in the present
level set method is still retained quite well.

6.4. 2D dam break flow over a rectangular obstacle

The developed LS/IB model is validated by solving the dam-
break flow over a rectangular obstacle which was experimentally
studied by Koshizuka et al. [58]. The tanks of area 4a×2.4a and the
water column of area a×2a are considered, where a = 0.146m. A
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Fig. 18. The mass ratios defined in Eqs. (46) and (47) are plotted with respect to
time t for the calculation carried out in 200 × 75 × 75 grids.

rectangular solid obstacle placed on the bottom wall is away from
the right of the water column with a distance of a. The obstacle
is 2b in height and b in width, where b = 2.4 cm. The density and
viscosity ratios are chosen to be ρG/ρL = 0.001 andµG/µL = 0.01,
respectively. Three grids of the resolutions 200 × 120, 400 × 240
and 600 × 360 are performed for grid sensitivity studies. The
solutions for mass conservation and interface can be calculated
similarly for the cases with 400 × 240 and 600 × 360 grids.

Therefore,we only show thenumerical resultswhich are uniformly
divided into 400 × 240 grids in this dam break problem. The time
step chosen for this calculation is ∆t = 0.002∆x.

Fig. 11 shows the predicted and experimental results [58] at
different times. The broken dam flow results from the removal of
water gate, thereby impounding water reservoir and resulting in
a flood over the rectangular bump under investigation. At a time
about t = 0.2, water hits the rectangular bump and the wave
profile changes drastically. At t = 0.5, when the water impacts the
right wall, a bulge is formed in the numerical and experimental
results. Good agreement with the numerical and experimental
results given in [58] is clearly demonstrated in Fig. 11 for the
free surface location. Fig. 12 shows the excellentmass preservation
property for MΩ . However, we see that the MΩ1 is not excellently
conserved because a small amount of flow penetrates inside the
solid object.

6.5. 3D dam break flow over a rectangle obstacle

Three dimensional dam break problem regarding the flood over
a rectangle obstacle has been investigated to show if the proposed
methods can be applied to simulate the formation of complex
interface [59–61]. The schematic of the initial condition is shown in
Fig. 13. TheρL andρG are chosen respectively as 1000 kg

m3 and 1.0 kg
m3 .

The magnitudes of µL and µG are 1 × 10−3 Pa s and 1 × 10−5 Pa s.
Water column with the dimension of 1.228 m × 1 m × 0.55 m
hits the stationary object which has the dimension of 0.161 m ×

0.41 m × 0.161 m.
In Fig. 14, the numerical result predicted in 256×80×80mesh

points is presented. At t = 1.25, the predicted flood hits the right
wall and causes the water to rebound. The predicted time-varying
water heights are plotted at the observation points shown in Fig. 15
(see Fig. 13 for the locations of the water height data at the point

Fig. 19. Schematic of the 3D dam break flow over a circular cylinder.
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Fig. 20. The predicted time-evolving free surfaces for the 3D dam break flow over a circular cylinder at Re = 5000. (a) t = 1.05; (b) t = 1.80; (c) t = 2.40; (d) t = 3.65; (e)
t = 5.00; (f) t = 5.85.

Hp). At the gage point Hp, water elevation is decreased in the time
range of t = 0 s ∼ t = 2.3 s since the water is released suddenly.
When the reflected waves occurred, the progressive dam-break
wave leads to a rapid increase of water level at a time about t =

3.6 s as Fig. 15 shows. The predicted values of MΩ and MΩ1 are
plotted with respect to time in Fig. 16. The value of MΩ1 is seen to
be lower by an amount less than 0.2%.

6.6. 3D dam break flow against a tall structure

The dam break flow against a tall structure, which was investi-
gated in [62], is then simulated. Fig. 17 plots the evolution of the
water elevations predicted in the domain of 200×75×75 grids. The
flowhas hit the rightwall of the tank at t = 1.0 andhas generated a
complicated flow structure. Fig. 18 shows that themass can bewell

conserved for the case investigated in the domain of 200×75×75
grids.

6.7. 3D dam break flow over a circular cylinder

After validating five dam break flow problems described in the
above sections, we further investigate the dam break flow over a
circular cylinder. The water column is 4D×5D×4.5D. The circular
cylinder is located in the middle of the tank (or x = 8D, y = 2.5D)
and has a diameter of 2D, where D is the characteristic length.
The schematic of the initial condition is shown in Fig. 19. The air–
water density and viscosity ratios are specified as ρG

ρL
= 0.001

and µG
µL

= 0.01, respectively. This problem under investigation is
characterized by the Reynolds number Re(= ρUD

µ
) = 5000 and
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Fig. 21. The predicted time-evolving free surfaces for the 3D dam break flow over a circular cylinder at Re = 100. (a) t = 1.05; (b) t = 1.80; (c) t = 2.40; (d) t = 3.65; (e)
t = 5.00; (f) t = 5.85.

the Froude numbers Fr =
U

√
gD = 1, where U(=

√
gD) is the

characteristic velocity. Slip boundary condition is specified on the
all walls. In Fig. 20, the free surfaces predicted in the domain of
208 × 65 × 91 grids are plotted at t = 1.05 s, 1.80 s, 2.40 s, 3.65 s,
5.00 s and 5.85 s. The flow has hit the right wall of the tank and has
generated complex fluid structures at t = 5.85 s. The Reynolds
number for the impact problems under investigation is high so
that free-slip boundary condition is assumed. In other words, the
boundary layer has a limited influence on the global flow evolution
at high Reynolds numbers. This case is also investigated at Re =

100 and no-slip boundary condition is imposed. Fig. 21 shows the
numerical results predicted in the domain of 208 × 65 × 91 grids.
We can see that the wave runs up to a high elevation upon impact
with the obstacle block at t = 2.40 s. Water splashes upon hitting

the right wall at t = 5.85 s. The mass ratio MΩ shown in Fig. 22 is
almost unchanged.MΩ1 is seen to decrease by an amount less than
0.2% at Re = 100.

7. Concluding remarks

In this paper we develop a coupled level set/immersed bound-
ary method in collocated grids to predict dam break flow
with/without solid obstacle problems. For improving interface pre-
serving level set method, the interface is moved implicitly by the
advection of level set function φ, which is split into three solu-
tion steps. Firstly, the symplectic Runge–Kutta temporal scheme
and the upwinding combined compact difference spatial scheme
featured with a minimal introduction of numerical phase error are
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Fig. 22. The ratios defined in Eqs. (46) and (47) are plotted with respect to time t
for the calculation carried out in 208 × 65 × 91 grids. (a) Re = 5000; (b) Re = 100.

employed together to solve the pure advection equation. Secondly,
the modified level set solution φnew is calculated from the new
smoothed Heaviside function. Finally, the correction term is added
to the re-initialization equation to keep φnew as a distance function
and to conserve mass bounded by the interface. The differential-
based interpolation immersed boundary method is used for the
modeling of flowproblems containing either a regular or an irregu-
lar solid object. This mathematical model is developed underlying
the projection method to compute the incompressible Navier–
Stokes solutions. Dam break flows with/without solid obstacle
have been successfully simulated through the comparison of the
predicted results with their corresponding experimental or other
numerical results.
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Appendix

The intermediate step follows the equation∫
Ω0

H(φ, t = 0) dΩ −

∫
Ω

H(φ, t) dΩ = Herror

define the average error Herror =
∫

Ω
H̄error d Ω . To show how

intermediate step preserve themass, substitute the newHeaviside
function into the calculation of mass.∫

Ω

Hnew(φ, t) dΩ =

∫
Ω ′

Hnew(φ, t) dΩ +

∫
Ωd

Hnew(φ, t) dΩ

where Ω ′ denotes the domain excluding interface and Ωd denotes
the interface region. Substitute Eq. (5) into the integral, obtained∫

Ω

Hnew(φ, t) dΩ =

∫
Ω ′

Hnew(φ, t) dΩ +

∫
Ωd

Hnew(φ, t) dΩ

=

∫
Ω ′

H(φ, t) dΩ +

∫
Ωd

[
H(φ, t) +

Herror

Nin

]
dΩ

=

∫
Ω ′+Ωd

H(φ, t) dΩ +

∫
Ωd

Herror

Nin
dΩ

=

∫
Ω

H(φ, t) dΩ + Herror =

∫
Ω0

H(φ, t = 0).

This guarantees that intermediate steps has the better conser-
vation of mass.
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