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Abstract. In this study an explicit Finite Difference Method (FDM) based scheme is de-
veloped to solve the Maxwell’s equations in time domain for a lossless medium. This
manuscript focuses on two unique aspects – the three dimensional time-accurate dis-
cretization of the hyperbolic system of Maxwell equations in three-point non-staggered
grid stencil and it’s application to parallel computing through the use of Graphics Pro-
cessing Units (GPU). The proposed temporal scheme is symplectic, thus permitting
conservation of all Hamiltonians in the Maxwell equation. Moreover, to enable ac-
curate predictions over large time frames, a phase velocity preserving scheme is de-
veloped for treatment of the spatial derivative terms. As a result, the chosen time
increment and grid spacing can be optimally coupled. An additional theoretical inves-
tigation into this pairing is also shown. Finally, the application of the proposed scheme
to parallel computing using one Nvidia K20 Tesla GPU card is demonstrated. For the
benchmarks performed, the parallel speedup when compared to a single core of an
Intel i7-4820K CPU is approximately 190x.
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1 Introduction

Gauss’s law is known to serve as the constraint equation on the Maxwell’s equations
consisting of the Faraday’s and Ampère’s laws. The two divergence-free equations in
Gauss’s law are not always discretely satisfied when solving the electromagnetic (EM)
wave solutions solely from the Faraday’s and Ampère’s equations. The computed nonzero-
divergence errors in magnetic and electric flux densities can introduce undesired insta-
bility into the calculation process. Circumvention of this type of unphysical oscillations
is therefore crucial in a successful simulation of Maxwell’s equation [1]. The two con-
straint equations in Gauss’s law can be numerically satisfied at all times when solving
Maxwell’s equations using Yee’s staggered grid system [2]. For efficiently calculating
EM wave solutions in parallel, in this study an explicit scheme capable of rendering a
set of divergence-free electric and magnetic solutions is adopted using non-staggered (or
co-located) grids.

While approximating the spatial and temporal derivative terms in Maxwell’s equa-
tions, the key measure of the prediction accuracy is the dispersion error introduced into
the solution [3]. In the worst cases, dispersion error tends to hinder simulation of prob-
lems involving narrow pulses and large time spans [4]. Therefore, any attempts to numer-
ically solve the Maxwell equations should endeavor to simultaneously reduce dispersion
and dissipation errors – this is particularly important for approximation of the first-order
spatial derivative terms in the EM wave equations. Owing to this reason, extensive ef-
fort has been put toward the development of higher order FDTD schemes. One can refer
to the detailed overview of higher order time-domain methods in [5]. An alternative
to reduce numerical dispersion error, which constitutes a major source of error in the
FDTD method, is to design schemes based on optimization criteria, other than to max-
imize the order of accuracy. Minimization of dispersion error can be achieved through
the angle-optimized FDTD algorithm [6] and the parameter-dependent FDTD scheme [3].
Over the past two decades, there have been several FDTD schemes developed with the
objective of satisfying the dispersion-relation equation to reduce dispersion errors [7].
Shlager and Schneider compared dispersion properties of several low-dispersion FDTD
algorithms [8].

When attempting long-term simulations – meaning simulations which require a very
large number of discrete time steps – of the electromagnetic wave equations, the solution
quality may be deteriorated substantially due to the accumulation of numerical error
resulting from the application of a non-symplectic time-stepping scheme. These accumu-
lated errors, while initially quite small, may build to values large enough to physically
alter the properties of the solution. In order to avoid this problem, it is important to nu-
merically preserve the symplectic property existing in Maxwell’s equations when treat-
ing the time derivative terms in Faraday’s and Ampère’s equations. When simulating
Maxwell’s equations, the quality of the solution predicted by the Finite Difference Time
Domain (FDTD) method can be deteriorated as well by the introduced anisotropy error.
Dispersion and anisotropy errors are both accumulative with time and can seriously con-
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taminate the true propagation characteristics. One of the goals of this study is to reduce
the magnitude of the above mentioned error types through different underlying theories
applied to a three dimensional domain.

Performing large-scale electromagnetic wave simulations requires significant compu-
tational expense. The application of single core architectures is often not feasible or prac-
tical when using error-minimizing or optimized models alone. When examining ways
to increase the computational efficiency, the hardware architecture chosen to carry out
FDTD simulation of equations often needs to be taken into account. The recent resur-
gence in popularity of vector-type computational architectures, such as Advanced Vector
eXtensions (AVX), the 512-bit wide registers in the Intel Xeon Phi coprocessor and various
Graphics Processing Units (GPU’s) means that careful consideration to SIMD-type par-
allelization must be considered when performing parallel computation on such devices.
With the invent of such tools, in addition to the development of CPU sockets support-
ing increasing number of CPU cores, we are able to dramatically increase the compute
density of computer systems, allowing us access to the so-called ”green” computing so-
lutions which require lower power than conventional HPC systems at a fraction of the
capital expense.

With the recent increase in the computational capacity of GPU devices, multiple au-
thors have been drawn to the numerical simulation of Maxwell’s equations on such de-
vices. These implementations have provided evidence which demonstrates the reduction
of computing time [9–15] to these equations. While the reported speedups vary from
author to author, all agree that the application of GPU computing is a worthwhile un-
dertaking. Owing to this and the continued increase in GPU computational power, this
study will also focus on the application of our proposed explicit FDTD scheme capable
of yielding dispersive error-minimization to parallel computation using a single GPU
device.

This paper is organized as follows. In Section 2, some of the distinguished physical
and fruitful mathematical features in the ideal (or lossless) Maxwell’s equations related
to the development of our proposed scheme and code verification are presented together
with two indispensable divergence-free constraint equations. In Section 3, the first-order
spatial derivative terms in Faraday’s and Ampère’s equations are discretized using a
non-staggered grid rather than the conventional staggered grid approach proposed by
Yee [2]. In this paper, the difference between the exact and numerical phase velocities is
minimized to achieve a higher dispersive accuracy. Maxwell’s equations belong to the
class of integrable equations [16] which may be solved in a symplectic manner. Hence,
a symplectic structure-preserving time integrator shall be applied to conserve numerical
symplecticity. Here, we propose the application of the Symplectic Partitioned Runge-
Kutta (SPRK) scheme. The associated derivation of the corresponding stability condition
for the proposed explicit scheme is also given in Section 3. In Section 4, the Nvidia K-20
GPU and the CPU/GPU hybrid architecture are briefly reviewed. Following this, the
GPU parallelization of the method described in Section 3 is shown with a special focus
on the proper arrangement of the global and shared memories which make up the GPU
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architecture. In Section 5, the proposed second-order accurate temporal scheme and the
fourth-order accurate spatial scheme are verified and validated through the application
of multiple benchmark problems. In addition, the performance of the current GPU im-
plementation is detailed and compared with its CPU counterpart. Finally, we will draw
conclusions in Section 6 based on the solutions computed in parallel on non-staggered
grids using a single Nvidia K-20 GPU card.

2 Maxwell’s equations

Maxwell’s equations in lossless media are represented below in terms of the dependent

variables E=
(

Ex,Ey,Ez

)T
and H=

(

Hx,Hy,Hz

)T

∂H

∂t
=− 1

µ
∇×E, (2.1)

∂E

∂t
=

1

ǫ
∇×H. (2.2)

The above equations are coupled with Gauss’s law which consists of two divergence-
free equations ∇·B = 0 and ∇·D = 0. These two divergence-free constraint equations
can be derived directly from Faraday’s law and Ampère’s law for a linear, isotropic and
lossless material provided that the electric current density and electric charge density
terms are neglected. Within the context of differential equations, Gauss’s law is uncon-
ditionally satisfied in case the vectors B and D are both initially divergence-free [17].
The differential set of Maxwell’s equations becomes over-determined in this case. Two
divergence-free equations need to be neglected so that the number of unknowns is equal
to the number of field equations. Eqs. (2.1)-(2.2) are derived under the conditions of
D= ǫE and B=µH, where D denotes the electric flux density and E is the electric field
density. In the proportional constants, ǫ is known as the electric permittivity and µ is the
magnetic permeability. The values of ǫ and µ determine the light speed c (≡ (ε µ)−1/2).

The first Hamiltonian in the bi-Hamiltonian differential system of equations (2.1)-(2.2)
has association with the helicity Hamiltonian H1 given below [18]

H1=
1

2

∫

1

ǫ
H ·∇×H+

1

µ
E·∇×E dΩ. (2.3)

The second quadratic Hamiltonian (or energy density) is expressed as follows [19]

H2=
1

2

∫

µH ·H+ǫE ·E dΩ. (2.4)

The two Hamiltonians given above will be used in this study to indirectly justify the
proposed numerical scheme. Numerical errors computed solely from Faraday’s and
Ampère’s equations may cause the resulting solutions computed from the magnetic and
electric equations to cease being divergence free. To overcome the computational diffi-
culty owing to the omission of Gauss’s law, two gradient terms for the scalar variables Φ1
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and Φ2 are introduced into Eqs. (2.1) and (2.2). The resulting modified Maxwell’s equa-

tions to be applied are expressed as ∂E
∂t − 1

ǫ∇×H+∇Φ1=0 and ∂H
∂t +

1
µ∇×E+∇Φ2=0. The

equations responsible for the two introduced correction potentials are shown in [20]. It is
noted that Φ1 and Φ2 in divergence cleaning technique are governed by ∇2

Φ1=− ∂
∂t (∇·E)

and ∇2
Φ2=− ∂

∂t(∇·H), respectively. In our calculation of the Φ1 and Φ2 values, we com-

puted − ∂
∂t (∇·E) and − ∂

∂t(∇·H) based on the previously computed values of E and H at
(n−1)∆t and (n−2)∆t so that the scheme can be retained to be explicit, which is essential
in the current parallel computation in GPU described in Section 4. As a result, the intro-
duced correction potentials Φ1 and Φ2 are not functions of E and H, thus facilitating the
derivation of the weighting coefficients in Section 3.2.

While simulating EM wave propagation in an open domain, we need to truncate the
potentially infinitely large domain to make simulation feasible due to limitation in com-
putational resources. To practically resolve this issue, either a radiation boundary condi-
tion on the truncated boundary or an artificial boundary of finite length shall be added to
the chosen physical domain so as to absorb all possible outgoing waves. In this study the
computational domain is divided into two parts – in free space, or in a vacuum, the mod-
ified Maxwell’s equations are employed. In the absorbing layer, the following equations
as defined in Berenger’s Perfectly Matched Layer (PML) approach are employed [21,22]:

∂Ex

∂t
=

1

ε

(

∂Hz

∂y
− ∂Hy

∂z
− σy

ε0
Dx+

σx

ε0
Dx

)

− σz

ε0
Ex,

∂Ey

∂t
=

1

ε

(

∂Hx

∂z
− ∂Hz

∂x
− σz

ε0
Dy+

σy

ε0
Dy

)

− σx

ε0
Ey,

∂Ez

∂t
=

1

ε

(

∂Hy

∂x
− ∂Hx

∂y
− σx

ε0
Dz+

σz

ε0
Dz

)

− σy

ε0
Ez,

∂Hx

∂t
=

1

µ

(

∂Ey

∂z
− ∂Ez

∂y
− σy

ε0
Bx+

σx

ε0
Bx

)

− σz

ε0
Hx,

∂Hy

∂t
=

1

µ

(

∂Ez

∂x
− ∂Ex

∂z
− σz

ε0
By+

σy

ε0
By

)

− σx

ε0
Hy,

∂Hz

∂t
=

1

µ

(

∂Ex

∂y
− ∂Ey

∂x
− σx

ε0
Bz+

σz

ε0
Bz

)

− σy

ε0
Hz. (2.5)

In the above equations, σi(i= x,y,z) denote the electric conductivity along the x,y,z di-
rections. The notation ε0 represents the electric permittivity in a vacuum. For additional
information regarding the PML approach, the expressions such as the constitutive rela-
tions are described in additional detail in [21].

3 Numerical method

Unlike most EM wave numerical solution approaches, which have conventionally em-
ployed staggered computational grids, this study focuses on the solution to the Maxwell’s
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equations employing non-staggered grids. This makes the implementation of the solver
on various computational architectures – in serial and in parallel – a relatively simpler
prospect. To avoid the so-called pattern of even-odd (or checkerboard) oscillatory so-
lutions often observed in non-staggered (or collocated) grids, the center-type compact
difference scheme in [20] has been successfully employed. The reason this approach suc-
cessfully avoids the production of oscillatory solutions is because all field solutions at the
reference point of the employed central scheme have their role to play. It is worthy to note
that the tridiagonal system of equations involved in the compact difference scheme [20]
can be effectively solved in parallel on a GPU through the methods of cyclic reduction
(CR) [23], recursive doubling (RD) [24] and the hybrid CR-RD method [25].

3.1 Explicit symplectic partitioned Runge-Kutta temporal scheme

Maxwell’s equations are mathematically separable. This makes a symplectic approach
possible when attempting the numerical solution of said equations in separated form.
The explicit symplectic partitioned Runge-Kutta time-stepping scheme is applied in this
study to integrate Faraday’s and Ampère’s equations [26]. Calculation of En+1 and Hn+1

solutions at t = (n+1)△t from the stably computed solutions at time n∆t is split into
the following steps by using the second-order accurate explicit partitioned Runge-Kutta
scheme as presented in [27]

Hn+ 1
2 =Hn− dt

2µ
∇×En, (3.1)

En+1=En+
dt

ǫ
∇×Hn+ 1

2 , (3.2)

Hn+1=Hn+ 1
2 − dt

2µ
∇×En+1. (3.3)

3.2 Numerical treatment of spatial derivative terms

In addition to the necessity of developing a symplecticity-preserving scheme with the
goal of preserving accuracy in time, this study also aims to reduce the dispersion error
in space. To this end, the difference between the numerical and exact phase velocities
shall be minimized in wavenumber space [28]. To achieve this goal, the spatial deriva-
tive terms shown in (3.1)-(3.3) are approximated by the methods of modified equation
analysis given in Section 3.2.1, dispersion analysis given in Section 3.2.2, and the grid-
anisotropy analysis presented in Section 3.2.3.

At t=n∆t, we can get Hn =Hn− 1
2 − dt

2µ∇×En and, then, Hn+ 1
2 =Hn− 1

2 − dt
2µ∇×En ac-

cording to the following equations

E
n+ 1

2
z =E

n− 1
2

z +
dt

ǫ

(

∂Hn
y

∂x
− ∂Hn

x

∂y

)

, (3.4)
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E
n+ 1

2
x =E

n− 1
2

x +
dt

ǫ

(

∂Hn
z

∂y
−

∂Hn
y

∂z

)

, (3.5)

E
n+ 1

2
y =E

n− 1
2

y +
dt

ǫ

(

∂Hn
x

∂z
− ∂Hn

z

∂x

)

. (3.6)

To get a higher accuracy at a reasonable computational cost, either a compact or a com-
bined compact difference scheme can be applied to effectively reduce numerical errors at
a small wavelength [29]. In this study, we aim to not only reduce the phase error but also
the amplitude error [30]. We mean to achieve this goal of reducing dispersive error by
minimizing errors in the numerical dispersion relation equation [31, 32]. Therefore, we
must first derive the explicit form of the numerical dispersion relation equation in order
to reach this goal.

The first-order derivative terms at any given interior node (i, j,k) are approximated
on non-staggered grids, by the scheme given below:

∂Hy

∂x

∣

∣

∣

n

i,j,k
=

1

h

[

a1

(

Hy|ni+3,j,k−Hy|ni−3,j,k

)

+a2

(

Hy|ni+2,j,k−Hy|ni−2,j,k

)

+a3

(

Hy|ni+1,j,k−Hy|ni−1,j,k

)

]

, (3.7)

∂Hx

∂y

∣

∣

∣

n

i,j,k
=

1

h

[

a1

(

Hx|ni,j+3,k−Hx

∣

∣

∣

n

i,j−3,k

)

+a2

(

Hx|ni,j+2,k−Hy|ni,j−2,k

)

+a3

(

Hx|ni,j+1,k−Hx|ni,j−1,k

)

]

. (3.8)

After substituting (3.7), (3.8) into (3.4) and then expanding the resulting terms using a
Taylor series with respect to Ez, the following equation at an interior point (i, j,k) can be
derived

∂Ez

∂t

∣

∣

∣

n

i,j,k
+

dt2

24

∂3Ez

∂t3

∣

∣

∣

n

i,j,k
+

dt4

1920

∂5Ez

∂t5

∣

∣

∣

n

i,j,k
+

dt6

322560

∂7Ez

∂t7

∣

∣

∣

n

i,j,k
+···

=
1

ǫ

{[(

6a1+4a2+2a3

)

∂Hy

∂x

∣

∣

∣

n

i,j,k
+

(

9a1+
8

3
a2+

1

3
a3

)

dx2 ∂3Hy

∂x3

∣

∣

∣

n

i,j,k

+

(

81

20
a1+

8

15
a2+

1

60
a3

)

dx4 ∂5Hy

∂x5

∣

∣

∣

n

i,j,k
+

(

243

280
a1+

16

315
a2+

1

2520
a3

)

dx6 ∂7Hy

∂x7

∣

∣

∣

n

i,j,k

+···
]

−
[(

6a1+4a2+2a3

)

∂Hy

∂x

∣

∣

∣

n

i,j,k
+

(

9a1+
8

3
a2+

1

3
a3

)

dx2 ∂3Hy

∂x3

∣

∣

∣

n

i,j,k

+

(

81

20
a1+

8

15
a2+

1

60
a3

)

dx4 ∂5Hy

∂x5

∣

∣

∣

n

i,j,k
+

(

243

280
a1+

16

315
a2+

1

2520
a3

)

dx6 ∂7Hy

∂x7

∣

∣

∣

n

i,j,k
+···

]}

.

(3.9)

The three introduced weighting coefficients a1, a2 and a3 are determined by performing
the modified equation analysis and the dispersion analysis described herein. All time
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derivative terms ∂3Ez

∂t3 , ∂5Ez

∂t5 , ∂7Ez

∂t7 ··· shown in (3.9) are replaced first by their equivalent
spatial derivative terms through Ampère’s equations to get the corresponding equations

for
∂iEj

∂ti (i=3 and 5, j= x,y,z). After replacing the high-order temporal derivative terms
∂3Ez

∂t3 and ∂5Ez

∂t5 with the corresponding spatial derivative terms, an equation equivalent to

(3.9) is derived. By comparing the resulting equation with the equation ∂Ez
∂t =

1
ǫ

( ∂Hy

∂x − ∂Hx
∂y

)

,

the equations for a1, a2 and a3 are derived as

3a1+2a2+a3=
1

2
(3.10)

and

9a1+
8

3
a2+

1

3
a3−

Cr2

12
(3a1+2a2+a3)=0, (3.11)

where Cr= c∆t
h denotes the Courant number and h denotes the grid spacing.

Determination of the three undetermined coefficients shown above requires the deriva-
tion of the third algebraic equation. Substitution of the plane wave solution

E=E0exp
(

I
(

kxi∆x+ky j∆y+kzk∆z−ωn∆t
))

,

where I=
√
−1, into the equation given by

∂E

∂t

∣

∣

∣

n

i,j,k
=

En+ 1
2 |i,j,k−En− 1

2 |i,j,k
∆t

and the equations given by

∂E

∂x

∣

∣

∣

n

i,j,k
=

1

h

[

a1

(

E|ni+3,j,k−E|ni−3,j,k

)

+a2

(

E|ni+2,j,k−E|ni−2,j,k

)

+a3

(

E|ni+1,j,k−E|ni−1,j,k

)]

,

∂E

∂y

∣

∣

∣

n

i,j,k
=

1

h

[

a1

(

E|ni,j+3,k−E|ni,j−3,k

)

+a2

(

E|ni,j+2,k−E|ni,j−2,k

)

+a3

(

E|ni,j+1,k−E|ni,j−1,k

)]

,

∂E

∂z

∣

∣

∣

n

i,j,k
=

1

h

[

a1

(

E|ni,j,k+3−E|ni,j,k−3

)

+a2

(

E|ni,j,k+2−E|ni,j,k−2

)

+a3

(

E|ni,j,k+1−E|ni,j,k−1

)]

allows us to obtain ∂E
∂t , ∂E

∂x , ∂E
∂y , and ∂E

∂z and then the equations for ∂2E
∂t2 (= c2(∇

2E
∂x2 +

∇2E
∂y2 +

∇2E
∂z2 )),

∂2E
∂x2 , ∂2E

∂y2 and ∂2E
∂z2 . The numerical dispersion relation equation can be finally derived

as

1

c2

ω2

4

(

sin(ω∆t/2)

ω∆t

)2

=k2
x

(

3a1
sin(3kx∆x)

3kx∆x
+2a2

sin(2kx∆x)

2kx∆x
+a3

sin(kx∆x)

kx∆x

)2

+k2
y

(

3a1
sin(3ky∆y)

3ky∆y
+2a2

sin(2ky∆y)

2ky∆y
+a3

sin(ky∆y)

ky∆y

)2

+k2
z

(

3a1
sin(3kz∆z)

3kz∆z
+2a2

sin(2kz∆z)

2kz∆z
+a3

sin(kz∆z)

kz∆z

)2

. (3.12)
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The wavenumber vector is defined as k=
(

kx,ky,kz

)

. The exact dispersion relation equa-

tion can be similarly derived as
(

ω
c

)2
=k2

x+k2
y+k2

z by substituting the plane wave solution

into the second-order wave equation ∂2E
∂t2 = c2∇2E.

To get accurate propagation characteristics while solving Maxwell’s equations in the
time domain we need to develop a scheme whose numerical phase velocity υp (≡ ωnum

k )
matches well with its exact counterpart. Following this line of thought, the error function

defined as
[

|ωnum
k |−|ωexact

k |
]2

is minimized in a weak sense within the integral range given
below

Ep=
∫ mpπ

−mpπ

[

ωnum

|k| −ωexact

|k| (≡ c)

]2

Wp d(kx∆x) d(ky∆y) d(kz∆z). (3.13)

In the above, kx∆x, ky∆y and kz∆z denote the scaled (or modified) wavenumbers along
the x, y and z directions, respectively. Application of the above weighting function Wp

enables us to integrate Ep analytically for the value of mp in between 0 and 1
2 .

By enforcing the limiting condition given by
∂Ep

∂a3
=0, the third algebraic equation for

the coefficients a1, a2 and a3 can be written as:

−0.00946472 a1−0.00787899 a2+0.224744 a3
1+0.0948775 a3

2+0.367829 a2
2a1

+0.0166091 a3
3+0.107206 a2

3a1+0.261056 a2
1a3+0.156637 a2

2a3−0.00453852 a3

+0.492672 a2
1a2+0.395351 a3a2a1+0.0875208 a2

3a2=0. (3.14)

Eq. (3.14) derived through the minimization of the dispersive error will be used together
with the other two algebraic equations (3.10)-(3.11) derived from the underlying modified
equation analysis of second kind. From the simulation results tabulated in Table 1, mp=

1
2

is chosen and the three coefficients shown in (3.7)-(3.8) can be computed as those shown
in Table 2.

Table 1: Comparison of the computed L2-error norms at t=10 for the component Ez in a domain of 2013 mesh
points at different values of m in (3.11).

parameter m L2−error norm of Ez

1/2 2.2340E-04

3/7 5.5748E-04

2/5 3.5673E-04

1/3 6.1732E-04

Owing to the successful computation of the theoretically derived weighting coeffi-

cients a1, a2 and a3 which are plotted with respect to the wavenumber angle φ≡tan−1
( ky

kx

)

in Fig. 1, the proposed space centered error-optimized scheme has an order of spatial ac-
curacy of four since the derived modified equation can be written as ∂Hx

∂x = ∂Hx
∂x |exact−

0.018459h4 ∂5 Hx

∂x5 +O(h6)+··· .
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Table 2: The coefficients derived in the proposed three dimensional scheme. Note that sin(π
2 −φ) = cosφ,

cos(π
2 −φ)=sinφ, sin( 3π

2 −φ)=−cosφ, cos( 3π
2 −φ)=sinφ, sin(π−φ)=sinφ, cos(π−φ)=−cosφ, sin(−φ)=

−sinφ, cos(−φ)=cosφ.

The weighting coefficients at each grid point can then be calculated by interpolation of
the data shown in Table 2. At each grid location we can compute the local Courant num-
bers Crx and Cry and their corresponding interpolated weighting coefficients as plotted
in Fig. 2. It is worth addressing here that the derived nodally-satisfying DRE (Dispersion
Relation Equation) scheme is the main contribution of the present study. One can fol-
low the theoretical guideline to determine the time increment ∆t according to the user’s
chosen grid spacing.

The stability condition of the proposed explicit scheme, which maintains precision
in time and space through symplecticity and application of the dispersion relation equa-
tion respectively, is derived by considering the equivalent eigenvalue equations. The

https:/www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.OA-2016-0079
Downloaded from https:/www.cambridge.org/core. National Taiwan University Library, on 13 Jun 2017 at 03:01:56, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.OA-2016-0079
https:/www.cambridge.org/core


T. W. H. Sheu et al. / Commun. Comput. Phys., 21 (2017), pp. 1039-1064 1049

×××× ××××××× ××××××× ××××××× ××××××× ××××××× ××××××× ××××××× ×××

×××× ××××××× ××××××× ××××××× ××××××× ××××××× ××××××× ××××××× ×××

×××× ××××××× ××××××× ××××××× ××××××× ××××××× ××××××× ××××××× ×××

φ
0 90 180 270 360

-0.2

0

0.2

0.4

0.6

0.8

θ = 90
θ = 60
θ = 45
θ = 30
θ = 0

×

a3

a1

a2

Figure 1: The theoretically derived coefficients a1, a2 and a3 in (3.7) and (3.8) are plotted with respect to

φ≡ tan−1(
ky

kx
) at different zenith angles θ at Cr=(Cr2

x+Cr2
y+Cr2

z)
1/2=0.2.

× × × ×
×

×
×

×

Cr (=(Crx
2+Cry

2+Crz
2)1/2)
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Figure 2: The values of a1, a2 and a3 are plotted with respect to Cr=(Cr2
x+Cr2

y+Cr2
z)

1/2 for the Courant

number ranging from 0.1 to 0.8 using the proposed phase velocity optimized scheme at, for example, θ=φ= π
4 .

proposed conditionally stable explicit scheme is subject to the constraint

∆t≤ 1

c

(

max(F2
x )

∆x2
+

max(F2
y )

∆y2
+

max(F2
z )

∆z2

)− 1
2

,

where

Fx = a1sin(3kx△x)+a2 sin(2kx△x)+a3 sin(kx△x),

Fy= a1sin(3ky△y)+a2 sin(2ky△y)+a3 sin(ky△y),

Fz= a1 sin(3kz△z)+a2 sin(2kz△z)+a3 sin(kz△z).
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By substituting the previously derived coefficients a1, a2 and a3 into the above inequality
equation, the stability condition for the current scheme developed for the calculation of
three dimensional Maxwell’s equations is ∆t≤0.673844 h

c .

4 GPU parallelization of Maxwell’s equations

The explicit dispersion-relation-equation preserving scheme developed in Section 3 for
solving the Maxwell’s equations is suitable for parallel implementation. The reason is
that the update of electric field components requires only the available magnetic field
values, and vice versa. The explicit and relatively local nature of the difference scheme
makes it ideal for application on vector computing platforms such as Graphics Process-
ing Units (GPUs). With this in mind, we have implemented the Maxwell equation solver
described here for execution on the Nvidia Tesla K20 GPU device with the target of re-
ducing the time required for the numerical solution of the three-dimensional equations.
The implementation contained herein was performed using Nividia’s Compute Unified
Device Architecture (CUDA).

4.1 Description of GPU K-20 architecture

Nvidia’s Tesla K20 Computing GPU device contains thirteen streaming multiprocessor
(SMX units), each of which contains a large number of cores with the clock frequency
of 700M Hz. Specifically, each SMX contains 192 single precision scalar processors (SPs)
and 64 double precision scalar processors (DPs) capable of performing arithmetic com-
putations across varying precisions. In addition, each SMX contains 32 SFUs (Special
Function Units) and 48 KB of on-chip shared memory. This shared memory makes it pos-
sible for threads running simultaneously within the SMX to access the same local cache.
This is possible in CUDA since threads – which serve as the basic execution unit on the
device – are grouped into blocks of threads (i.e. groups of threads) which are executed
on SMX’s. The number and structure of threads within each block may vary depending
on the user needs and the number of registers required by the kernels which contain the
information executed by each thread. The typical number of threads is between 64 to
1024 per block. Seeing as there are 13 SMXs contained within a single K20 GPU device,
an efficient parallel computation on the device will ensure that each SMX is computa-
tionally occupied during runtime. It is meant that we may have thousands of threads
running concurrently – distributed across the SMX’s – if the computational scale is large
enough and each thread is kept busy long enough. The scale of this parallelization con-
trasts with conventional shared memory parallelization where a single workstation may
only execute 8-32 threads simultaneously. As mentioned earlier, each block of threads is
executed in a single SMX, meaning that each of the threads in this block has access to the
same shared memory cache, which is located on-chip as opposed to the GPU’s standard
form of data storage – global memory – which is off-chip. The lifetime of this local cache
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is the same as the lifetime of the block, since it is cleared in preparation for the next block
of threads to be executed upon it.

Unlike the various layers of memory and cache available to conventional CPU archi-
tectures – which is several MBs in size – computation on the GPU device uses its global
memory as the main storage medium due to the low size and volatility of the smaller on-
chip caches. The lowest level memory on the GPU device is the local memory – which
is on-chip – which is available to single threads, very small in size and has the same life-
time as a thread. The only permanent means of storing data on the GPU device is within
global memory, or through the application of texture memory (which will not be investi-
gated here). Unfortunately, the high latency of global memory may have negative impact
on the parallel performance of the GPU device. The access pattern of computations in-
volving global memory also plays a role in determining the efficiency and speed of global
memory use. Hence, in order to increase performance on the GPU, we aim to increase
the number of computations performed using data contained within the on-chip caches,
such as shared memory.

4.2 Solution algorithm implemented in CPU/GPU

The solver proposed in this study is implemented through a parallelized Fortran code.
At the highest level, the resulting application is executed through calculation across a
large number of thread blocks by the streaming multiprocessor units contained within the
GPU device. Within each block, the threads are further subdivided into smaller groups
of threads known as ”warps” during the execution on the SMX. Hence, the number of
threads contained within each block is usually a multiple of the number of threads con-
tained within each warp. In the computations employed within this study, which are
performed on the Nvidia Tesla K20 GPU device, we employ the maximum number of
threads per block, which is 1024. Each warp contains 32 threads.

Considering the 3D EM wave simulation employing 1213 grid points as an example,
the arrangement of blocks and threads for the calculation of the first order derivative
terms is schematically shown in Fig. 3. A grid is organized as a 3D array of blocks and
each block is organized as a 2D array of threads. As discussed earlier, the performance
of the parallel CUDA implementation on the GPU depends highly on the size of blocks
and the number of threads per block as this is related to the total number of blocks to be
distributed across the SMXs during computation. Generally speaking, in the work con-
tained in this study, a good strategy was for determining the target number of threads Nt

and warps Nw was to follow the rule of Nt
Nw

=32n, where n is an integer. Therefore, assum-

ing our simulation of EM wave propagation employed 1213 mesh points, the number of
blocks would be 82∗121 with each block containing a 16∗16 two-dimensional array of
threads. As part of the study into the efficiency of our parallel implementation on GPU,
performance data for various thread and block arrangements for our currently proposed
solver can be seen in Table 3.

With regard to the Nvidia Tesla K20c and our specific application, each SMX accom-
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Figure 3: Schematic of the employed CPU-GPU architecture. A grid is organized as a 3D array of blocks while
in each block it is organized as a 2D array of threads.

Table 3: Comparison of the computing times at t= 1000 ∆t in four different arrangements of the blocks per
grid and the threads per block.

blocks of a grid threads of a block Time(s)

8×8×121 16×16×1 117.7910

8×8×61 16×16×2 127.5680

8×4×121 16×32×1 128.6950

4×4×121 32×32×1 127.2910

modates up to 596 blocks, thereby permitting the total simultaneously executing thread
number to be 152576. In Fig. 4 the correspondence between the hardware structure and
CUDA programming is illustrated. Each block carrying out thread execution has 256
threads marked with the thread id number. As mentioned above, there is a difference in
latency for the global (off-chip) and shared (on-chip) memory – for the global memory,
the Load/Store time (LD/S) is 800 cycles which is much slower than shared memory (80
cycles). Such a large discrepancy in the needed LD/ST times sheds light on the neces-
sity of exploiting shared memory. Effective utilization of shared memory, together with
a proper determination of the number of blocks and the number of threads per block, are
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Figure 4: Schematic of the relation of K20c (hardware) with the CUDA program. Note that t0,··· ,tn denote
the thread Id numbers. The thread blocks #1, 2, ··· constitute a block grid. CUDA contains block grid, thread
block, and threads.

the keys to increasing the overall performance of algorithms such as the one proposed on
Tesla K20c.

5 Numerical results

To demonstrate the applicability of the proposed solver, we first need to verify the pro-
posed error-minimized high-order parallel scheme implemented on the GPU while solv-
ing Maxwell’s equations and then compare the computed results against the analytical
solutions available. Following comparison against analytical solutions – which are of-
ten too simplistic for practical demonstration – the computer code is further validated
through the Mie scattering benchmark problem. Finally, an application will be demon-
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strated – in this case, a three-dimensional waveguide problem – and the results reported
together with the parallel computational performance.

5.1 Verification studies

The proposed explicit symplectic PRK scheme developed in non-staggered grids is veri-
fied by solving the three dimensional Maxwell’s equations amenable to the exact solution
in a cube of −π≤x≤π, −π≤y≤π and −π≤z≤π. The solution sought at µ=1 and ǫ=1
is subject to the initial solenoidal solutions

Ex(x,y,z,0)=Ey(x,y,z,0)=Ez(x,y,z,0)=0,

Hx(x,y,z,0)=cos(x+y+z),

Hy(x,y,z,0)=
1

2
(−1+

√
3)cos(x+y+z),

Hz(x,y,z,0)=−1

2
(1+

√
3)cos(x+y+z).

The exact electric and magnetic field solutions to Eqs. (2.1)-(2.2) are given by

Ex(x,y,z,t)=sin(
√

3t)sin(x+y+z),

Ey(x,y,z,t)=−1

2
(1+

√
3)sin(

√
3t)sin(x+y+z),

Ez(x,y,z,t)=
1

2
(−1+

√
3)sin(

√
3t)sin(x+y+z),

Hx(x,y,z,t)=cos(
√

3t)cos(x+y+z),

Hy(x,y,z,t)=
1

2
(−1+

√
3)cos(

√
3t)cos(x+y+z),

Hz(x,y,z,t)=−1

2
(1+

√
3)cos(

√
3t)cos(x+y+z).

The spatial rate of convergence is computed first at ∆t=10−5, which is much smaller
than the grid sizes chosen as ∆x=∆y=∆z=π/5,π/10,π/15 and π/20 in this study. From
the predicted L2-error norms tabulated in Table 4(a) one can see that there is only a very

Table 4: The predicted L2 errors and the corresponding for the analytical test problem investigated in Section
5.1. (a) spatial rates of convergence (sroc); (b) temporal rates of convergence (troc).

(a)

meshes L2− error norm of Ez sroc

10×10×10 1.8366E-05 -

20×20×20 1.2339E-06 3.8957

30×30×30 8.5169E-08 3.8567

40×40×40 5.3609E-09 3.9897

(b)

∆t L2− error norm of Ez troc

1/1000 2.04514E-02 -

1/2000 5.17849E-03 1.9816

1/3000 1.32417E-03 1.9674

1/4000 3.79144E-04 1.8043
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Figure 5: The computed and exact energy densities, shown in (2.3)-(2.4), are plotted with respect to time for
the analytical problem in Section 5.1 using the proposed phase velocity optimized compact difference scheme.
(a) Hamiltonian function; (b) Energy density.

Table 5: Comparison of the computing times and speedups in CPU and GPU when performing computations
in different meshes at the time t= 1000 ∆t.

meshes CPU time(s) with GPU time(s) Speedup

81×81×81 1270.21 67.03 18.95

121×121×121 5900.42 117.79 50.55

161×161×161 20994.74 215.26 97.53

201×201×201 94568.75 486.70 194.31

small difference between the predicted spatial rate of convergence and the theoretically
derived fourth-order accuracy. The temporal rate of convergence tabulated in Table 4(b)
is also seen to be very closed to the theoretical order, which is second order.

The Hamiltonian defined in (2.3) and the energy density given in (2.4) are computed
from the predicted solutions of E and H for additional theoretical justification of the
proposed scheme. One can conclude from the results shown in Fig. 5 that the computed
Hamiltonian and energy density are deemed to change little with time. The predicted
norms of ∇·H and ∇·E are also plotted with respect to time to ensure that Gauss’s law
is indeed satisfied discretely. In Fig. 6, the predicted magnetic field predicted by the
proposed scheme is essentially divergence-free. We also assess the proposed scheme,
which has equally accurate solutions computed at each spatial point, with four other
commonly referenced schemes in terms of the required CPU times for the same predicted
L2-error norm. The results shown in Tables 5 and 6 justify the choice of the proposed
scheme for the solution to the Maxwell equations.
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Figure 6: The computed L2-norm of ∇·H is plotted with respect to time using the present explicit partitioned
Runge-Kutta symplectic scheme.

Table 6: Comparison of the required CPU times using the present scheme with the optimized phase velocity
and the 2D Yee’s scheme given in [2]. Note that these schemes yield approximately the same L2-error norm, at
time t=10, at completely different grid resolutions.

present Yee [2]

L2−error norm grid CPU time (s) L2−error norm grid CPU time (s)

8.7962E-03 41×41 0.1092 8.3483E-03 181×181 4.9608

4.0657E-03 51×51 0.2028 4.8228E-03 251×251 13.0261

2.0981E-03 61×61 0.3276 3.0141E-03 341×341 33.0092

5.2 Mie scattering problem

The diameter of a dielectric cylinder under current study is 126.56 nm. As shown in
Fig. 7(a), this isotropic cylinder located at the center of a cube with volume of 7203 nm3

has ǫr =12.1104. The cross-sectional area in this case is 760×760 nm2. For this bench-
mark problem, an incident x-polarized plane wave with amplitude of 0.5 v

m and angular

frequency of 13.263 rad
s propagates rightward according to the one-dimensional Maxwell

equations ∂Ez
∂t = 1

ǫ∇×H, ∂H
∂t =− 1

µ∇×E.

In the presence of a single dielectric cylinder, the incident wave is scattered so that the
total field/scattered field formulation is adopted. The physical domain is divided into the
regions known as the total field, scattered field, and the uni-axial perfectly matched layer
to absorb waves. The results are calculated at the same Courant number Cr=0.2, which
corresponds to the specified time increment ∆t=0.0026685 f s. The three-dimensional
results of Ez are plotted in Figs. 7(b)-(f) at the cutting plane z=0 nm.
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Figure 7: (a) Schematic of the 3D Mie scattering problem; The predicted time-varying contours Ez (z=0) at
the cutting plane containing a cylindrical scatter. (b) time step=560 (2.8 f s); (c) time step=760 (3.8 f s); (d)
time step=1350 (4.25 f s); (e) time step=1600 (5.8 f s); (f) time step=1900 (9 f s).
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5.3 Photonic crystal L-shaped bent waveguide problem

To demonstrate the practicality of the scheme, a waveguide application problem is demon-
strated. In this problem, a group of dielectric pillars are placed within a domain contain-
ing a L-shaped defect channel. The relative permittivity of the medium is set at 1 and
the dielectric constant of the pillars is assumed to be ǫr =11.56. The waveguide with the
width w

a =2 has been defected by taking one vertical pillar and one row pillar away from
the otherwise uniformly distributed lattice. Light with a frequency belonging to the pho-
tonic band gap is confined to the three-dimensional L-shaped defect channel. At the start
of the problem (t=0), a transverse magnetic wave incident into the domain propagates
rightward. In this case, the pillar radius is chosen to be 0.2a, where the lattice constant
a (=515 nm) denotes the length between the centroids of two adjacent pillars. The L-
shaped waveguide problem is simulated at ∆t=0.05337 f s in a domain discretized into
a uniform grid with spacing of 57.1429 nm. The uni-axial perfectly matched layer en-
closing the scatter field is applied to avoid unphysical wave re-entering into the domain.
Fig. 8 shows the time-evolution of Ez contours computed at the normalized frequency
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Figure 8: The contours of Ez (z=0) predicted at the cutting plane and at different times. (a) time step=575
(30.68775 f s); (b) time step= 1075 (57.37275 f s); (c) time step= 1750 (93.3975 f s); (d) time step= 2325
(124.08525 f s).
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computational cell. The field amplitude is monitored at points
. The guide is located five lattice constants from the

edge of the cell. Bottom panel: Field amplitude recorded at
, as a function of time. The pulses reflected by

and transmitted through the bend, as well as the pulses reflected

frequency. The results are shown in the top two panels
in Fig. 2. The excellent agreement between the trans-

mission and reflection coefficients obtained from the
different pulses demonstrates the consistency of our ap-

proach [9]. The transmission and reflection coefficients

do add up to unity for every frequency in the gap,
which confirms that there is no observable radiation

loss, in spite of the close proximity of the waveguide
FIG. 2(color). Top two panels: Spectral profile of six input

(b)

Figure 9: The computed Ez field values at the time t=124.08525 f s in the PC-based L-shape waveguide at the
normalized frequency 0.353(c/a). (a) Present; (b) Mekis et al. [33].

=0.353 ( c
a ) (or wavelength = 1458.92 nm), where c denotes the speed of light.

The optical wave is seen to propagate through the ninety degree bend and the elec-
tric field is concentrated mostly in the defect channel. Comparison of the current three-
dimensional result with the two-dimensional result of Mekis et al. [33] is illustrated in
Fig. 9.

5.4 Simulation of a photonic crystal waveguide spatial mode converter

To accelerate the speed of information processing in an optical system, there is a growing
interest in employing ever-improving multiple spatial modes on, for example, on-chip
applications [34]. For these optical communication systems, their basic building blocks
are to perform spatial mode manipulation effectively in a sense that one waveguide mode
can be transferred to another with a high conversion efficiency.

In this study we considered the extremely compact photonic crystal waveguide mode
converter employed before in [34], aiming at converting the fundamental even-symmetric
waveguide mode into the second odd-symmetric mode. The structure under current in-
vestigation, which is described schematically in Fig. 10, consists of photonic crystal of
silicon rods with ǫr =12 of radius 0.2a in air with ǫr =1. To enable mode conversion, two
lines of rods are purposely removed, thereby leading to input and output waveguide
subject to out-of-plane electric fields. The aim of this study is to numerically investigate
how and whether this mode-converter device can convert fundamentally even modes on
a square lattice with lattice constant a=623.875 nm.

In this numerical study, simulations were carried out in a cubic domain of length 6000
nm containing 191 uniformly distributed nodal points along the x, y and z directions. For
avoiding non-physical wave reflection from the inflow boundary, both layers to account
for the scatter field and CPML are attached.
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(a) (b)

Figure 10: (a) Schematic of the problem in Section 5.4; (b) Schematic of the physical field of interest and the
surrounding scatter field (SF) and absorbing field (CPML).

As shown in Fig. 10, the incident right-running wave has been electrically polarized
with a normalized center of 0.4025 c/a. This input mode passes through the defect region
(or coupler regime) marked in grey and converts its mode to the output mode. The
simulated CPU/GPU results using the proposed three-dimensional GPU parallelized EM
wave code are compared with several results of Liu et al. [24] at the catting plane z=85.
One can observe from Figs. 11-14 good agreement with the reference solution in [24],
confirming that the scheme proposed here may be applied to solve the solution of the
Maxwell equations for the design of a waveguide converter.

(a) (b)

Figure 11: The computed Ez field values at the time t= 135.38677 f s in the Victor’s design waveguide at the
normalized frequency 0.4025(c/a). (a) Present; (b) Victor Li’s. [34].
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(a) (b)

Figure 12: The computed Ez field values at the time t = 133.92 f s in the Victor’s design waveguide at the
normalized frequency 0.4025(c/a). (a) Present; (b) Victor Li’s. [34].

(a) (b)

Figure 13: The computed Ez field values at the time t=138.346677 f s in the Victor’s design waveguide at the
normalized frequency 0.4025(c/a). (a) Present; (b) Victor Li’s. [34].

6 Conclusions

A high-order FDTD scheme has been developed using a three-point grid stencil for the
numerical solution to the three-dimensional Maxwell’s equations using computations ap-
plied on a non-staggered Cartesian grid. In this research, our first aim was to numerically
preserve symplecticity and conserve Hamiltonians as required for increased temporal
and spatial accuracy. To retain these theoretical properties in our solution to Maxwell’s
equations for large-scale transient computations, the explicit partitioned Runge-Kutta
symplectic time integrator is applied together with the space-centered scheme. To in-
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(a) (b)

Figure 14: The computed Ez field values at the time t= 131.86677 f s in the Victor’s design waveguide at the
normalized frequency 0.4025(c/a). (a) Present; (b) Victor Li’s. [34].

crease the dispersive accuracy essential to a correct prediction of wave propagation, the
discrepancy between the numerical and exact phase velocities is minimized. The numeri-
cally verified temporally second-order and spatially fourth-order accurate compact finite
difference scheme developed here is then also shown to satisfy the discrete Gauss’ law (or
divergence-free magnetic and electric fields). The solutions computed from the analytical
and benchmark problems for the verification and validation purposes have been shown
to agree very well with the exact solutions (where available) and reference benchmark
numerical solutions.

The explicit scheme proposed here features satisfaction of the dispersion relation
equation for Maxwell’s equations and has been implemented in parallel using Graphics
Processing Units (GPU) using Nvidia’s CUDA. In this study, the parallel implementation
is described and simulations are executed on a single Nvidia K-20 card, demonstrating
a considerable gain in speedup when compared to the serial CPU calculation using a
single CPU core. The results from this study demonstrate that one may solve the three
dimensional Maxwell’s equations in reasonable computational time due to the combined
exploitation of a high-order scheme with minimal error on phase velocity and paral-
lelization on the GPU, reducing the simulation time considerably and thus allowing the
proposed solver to be applied to practical design-related tasks.
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