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Abstract In this paper, a new integral vorticity boundary condition has been developed and
implemented to compute solution of nonprimitive Navier–Stokes equation. Global integral
vorticity condition which is of primitive character can be considered to be of entirely different
kind compared to other vorticity conditions that are used for computation in literature. The
procedure realized as explicit boundary vorticity conditions imitates the original integral
equation. Themain purpose of this paper is to design an algorithmwhich is easy to implement
and versatile. This algorithm based on the new vorticity integral condition captures accurate
vorticity distribution on the boundary of computational flow field and can be used for both
wall bounded flows as well as flows in open domain. The approach has been arrived at
without utilizing any ghost grid point outside of the computational domain. Convergence
analysis of this alternative vorticity integral condition in combination with semi-discrete
centered difference approximation of linear Stokes equation has been carried out. We have
also computed correct pressure field near the wall, for both attached and separated boundary
layer flows, by using streamfunction and vorticity field variables. The competency of the
proposed boundary methodology vis-a-vis other popular vorticity boundary conditions has
been amply appraised by its use in a model problem that embodies the essential features
of the incompressibility and viscosity. Subsequently the proposed methodology has been
further validated by computing analytical solution of steady Stokes equation. Finally, it has
been applied to three benchmark problems governed by the incompressible Navier–Stokes
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equations, viz. lid driven cavity, backward facing step and flow past a circular cylinder.
The results obtained are in excellent agreement with computational and experimental results
available in literature, thereby establishing efficiency and accuracy of the proposed algorithm.
We were able to accurately predict both vorticity and pressure fields.

Keywords Vorticity integral condition · Vorticity field · Pressure field · Navier–Stokes
equations

Mathematics Subject Classification 65M06 · 65N06 · 76D05 · 76M20

1 Introduction

Primitive variable and streamfunction–vorticity (ψ−ω) formulations ofNavier–Stokes (N–S)
equations are the most sought approaches for computing viscous incompressible fluid flows.
Both approaches have their own advantages and disadvantages. The main advantage with the
primitive variable formulation is that it directly predicts velocity and pressure fields whereas
the ψ−ω formulation has the advantage that it ensures exact and automatic satisfaction
of mass conservation equation. Primitive variable formulation has the traditional difficulty
because of the presence of pressure term in the governing equations. A typical difficulty with
the ψ−ω formulation is that in three dimensions one needs to deal with six unknowns in six
equations in addition to the complexities associated with vorticity boundary conditions. For
flows in two dimensions, ψ−ω formulation is more popular for its computational economy.
The coupled system of the equations for vorticity and streamfunction, which are the transport
equation and the Poisson equation, respectively, gives a scalar representation of the governing
equations and can be used for both steady and unsteady simulations. However the typical
issue arising due to the lack of a clear prescription of the ω on the boundaries persists.
Furtherψ is supplemented by over specification, precisely two, as far as boundary conditions
are concerned. Essentially the velocity boundary condition provides two conditions on the
streamfunction and its normal derivative but none on the vorticity.

Here it is worthwhile to point out that there are two other increasingly popular non-
primitive approaches to tackleN–S equations. The first one is the vorticity–velocity approach.
A complete review of this approachwas carried out byGatski [1]. It is noted that vorticity also
needs to be tackled correctly at the boundary. Moreover in three dimensions this approach
does require solution for six dependent variables. The second non-primitive approach due to
Gupta and Kalita [2] is known as the streamfunction–velocity formulation. In that approach,
although the problem of vorticity boundary condition is obliterated but the formulation leads
to a biharmonic equation.

The subject of the vorticity boundary condition dates back to 1930s. It is well known that
for a wall bounded flow correct and accurate imposition of vorticity boundary condition is
extremely important as the vorticity is conserved at the interior points and transport equation
determines how ω is advected and diffused. It is only the diffusion and advection of the
vorticities produced at no slip boundaries that drive the flow. In literature [3–5] one can find
different classes of methods that have been proposed for correct determination of the vorticity
boundary values.

The first attempt to derive wall vorticity condition can be found in the pioneering work
of Thom [6]. He derived a local formula whose Taylor series expansion indicates first order
accurate approximation of Eq. (2) at the wall. But since then different authors [4,5,7] have
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demonstrated that Thom’s formula, in the context of coupled approaches, is indeed sec-
ond order accurate approximation of the two boundary conditions for ψ and is consistent
with a centered finite difference discretization of the streamfunction–vorticity formulation.
Thom’s formula ever since has been used extensively. With the advent of electronic com-
puters there has been a surge in the derivation of more accurate local boundary conditions.
Many of them have been derived by assuming enough regularity of the flow variables so that
streamfunction–vorticity formulation is valid on the boundary. Note that sufficient condition
to extend ψ−ω formulation from � to �, where � is the domain under consideration, is
that ω is Lipschitz continuous, which is much less a regularity requirement compared to
the assumptions involved in the process of discretization at the internal nodal points. But it
was quickly perceived that the use of higher order discretization in the boundary makes the
overall scheme less stable. Numerical instability was reported in some cases where vorticity
boundary values were specified in terms of streamfunction without a relaxation process on
the boundary. A complete review of the early development of higher order local vorticity
boundary conditions and their stability characteristics can be found in the works of Roache
[3] and Orszag and Israeli [8].

Other physically andmathematically rigorousmeans to circumvent the problem of bound-
ary condition associated with ψ−ω formulation is to use either a biharmonic form of the
N–S equation or to get into amathematically equivalent vorticity integral condition. Although
schemes have been designed for the biharmonic form [9–11], such exertions require to handle
fourth order non-linear equations as compared to the second order equations forψ−ω system.
On the other hand precise mathematical condition on the vorticity, which is fundamentally
more primitive in nature, for the equations of viscous incompressible flow in two and three
dimensions was established by Quartapelle and Valz-Gris [12]. Important contributions on
these global integral vorticity conditions and their implementation were made among others
by Quartapelle et al. [5,12], Chorin [13] and Anderson [14]. In these works the principal
assumption is that the boundary conditions on the velocity induce a constraint on the vortic-
ity. Quartapelle and Valz-Gris [12] make use of this constraint and argue that the space of the
discrete harmonic functions orthogonal to the discrete vorticity field contains exactly asmany
linearly independent functions as the number of boundary points. These linearly independent
functions are then used to obtain the required number of algebraic equations needed to close
the system of equations resulting from the spatial discretization of the vorticity transport
equation. For implicit treatment of the vorticity diffusion term, the system of algebraic equa-
tions corresponding to the boundary points is coupled and implicit, involving vorticity and
the streamfunction, and hence possess difficulty in computing solution. Anderson [14] on the
other hand uses Green’s function in the flow domain to derive conditions which ensure that
as vorticity evolves the constraint is automatically satisfied. The resulting discrete boundary
condition, which is derived by using a discretized form of the Green’s function, ensures that
the constraint is satisfied up to numerical roundoff at every time step. Care is also taken to
ensure that the discrete time difference of the constraint vanishes and the initial vorticity field
satisfies the constraint. All these stipulations ultimately lead to an implicit system connecting
the boundary points and the corresponding solution strategy may be quite involved.

Nevertheless the use of global vorticity integral condition has not been admired well by
the computational fluid dynamics community. This may be partly due to the nonlocal and
nonlinear nature of the global vorticity integral condition. FurtherWeinan and Liu [4] in their
work have shown that many of these global vorticity boundary conditions are actually the
same as some of the local formula. In general implementation of global integral condition
leads to a coupled system of equations involving vorticity and streamfunction at different
boundary points and is much more intricate to implement as compared to the local ones [4].
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The primary aim of this manuscript is to design a new explicit algorithm based on a newly
formulated integral vorticity boundary condition. The algorithm thus designed should be able
to simulate vorticity on the computational boundary under different physical and geometrical
conditions. Further it should be straightforward as far as implementation is concerned.

In this paper we introduce a new rigorous integral vorticity boundary condition and hence
design a family of vorticity boundary algorithms which can be used to develop efficient finite
differencemethods using vorticity as variable. This new algorithm, although contains interior
values of the gradients of ψ , can be realized using an explicit formula. It can be applied with
ease in different geometric settings and is able to tackle both wall bounded and open flow
problems.

In this work we will use an implicit spatially fourth order accurate compact finite dif-
ference scheme for discretizing both vorticity and streamfunction equations. The scheme
[15], developed recently for unsteady convection–diffusion equation with variable convec-
tion coefficients, is second order accurate in time. This scheme carries transport variable and
its first derivatives as the unknowns and enjoys better resolution properties and hence lesser
dissipation error when compared to other compact schemes. The scheme was found to be
quite successful in solving N–S equations.

The rest of this paper is organized into four sections. In Sect. 2we present themathematical
model of boundary condition and the governing equations. Section 3 deals with numerical
implementation including convergence analysis. Results have been discussed in Sect. 4 and
finally in Sect. 5 concluding remarks are offered.

2 Mathematical Model

The streamfunction–vorticity formulation of the N–S equations for incompressible viscous
fluid flows in two dimension can be written as

∂

∂t
ω + J (ω,ψ) = 1

Re
∇2ω, (1)

−∇2ψ = ω, (2)

where J (ω,ψ) = ∂(ω,ψ)

∂(x, y)
is the Jacobian. Hereω is the out-of-plane component of vorticity

vector and ψ is the streamfunction. Further Re = UL
ν

is the Reynolds number based on the
characteristic length L and the characteristic velocity U of the flow.

Theboundary conditions for the above elliptic–parabolic differential systemcanbe derived
by separating the normal and tangential components of the velocity at the boundary. The
boundary conditions for ψ can be written down as

ψ |∂� = a,
∂ψ

∂n

∣
∣
∣
∣
∂�

= b (3)

where � is the domain under consideration and n is the outward unit normal. Thus it appears
that as one transforms from primitive variables to the streamfunction–vorticity form bound-
ary conditions for the vorticity are eluded and two boundary conditions are given for the
streamfunction. Note that this does not mean that the problem is over-determined rather the
system with these boundary conditions is correctly posed. In fact, the system can be solved
in a coupled manner where the vorticity field is required to satisfy solvability condition given
as
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∫

�

ωdV = −
∮

∂�

bds. (4)

Also the problem of lack of boundary condition for vorticity can be circumvented by using
the biharmonic form which eliminates the vorticity variable altogether. However Quartapelle
[5,12] has shown that the equations for the vorticity can be closed by adjoining a constraint
which ensures that the boundary conditions given in Eq. (3) are simultaneously satisfied. We
reproduce the following theorem found in [5,12] for completeness.

Theorem 1 A function ω defined in the plane domain � is such that ω = −∇2ψ , with
ψ |∂� = a, and ∂ψ

∂n

∣
∣
∂�

= b, if and only if
∫

�

ωηdV =
∮

∂�

(

a
∂η

∂n
− bη

)

ds (5)

for any η harmonic in �, i.e. any function η such that ∇2η = 0 in �.

Authors in [5,12] considered the above integral condition to be of primitive type and
concluded that this type of integral condition can be thought of as a new legitimate substitute
for boundary condition required for supplementing the second order parabolic or elliptic
equations beyond Dirichlet and Neumann conditions. Thus the vorticity integral condition
Eq. (5) can be used to serve as a boundary condition for vorticity transport equation (1),
whereas ψ |∂� = a can continue to act as the Dirichlet boundary condition for elliptic
streamfunction equation (2).

The main convolution involved with the application of vorticity integral condition is the
obligation to store as many discrete harmonic functions as the number of boundary points
in the discrete space. These harmonic functions will then lead to a full system of equations
whose order equates the number of boundary points. Finally, at each time step, inversion of
this system provides correct vorticity boundary values. This implicit computation is by and
large quite expensive. To overcome this intricacy we modify Theorem 1 to propose a new
vorticity boundary condition.

Theorem 2 A function ω defined in the plane domain � is such that ω = −∇2ψ , with
ψ |∂� = a, and ∂ψ

∂n

∣
∣
∂�

= b, if and only if
∫

� j

ωdV = −
∮

∂� j∩∂�

bds −
∮

∂� j−∂� j∩∂�

∂ψ

∂n
ds (6)

for any � j ⊆ � where j ∈ J, J being some index set.

Proof Necessary Part: Let ω = −∇2ψ be a function defined over the domain � with
ψ |∂� = a, and ∂ψ

∂n

∣
∣
∂�

= b. Let � j ⊆ � where j ∈ J, J being some index set. Using the
divergence theorem we get

∫

� j

ωdV =
∫

� j

(−∇2ψ)dV

=
∮

∂� j

−∂ψ

∂n
ds

= −
∮

∂� j∩∂�

∂ψ

∂n
ds −

∮

∂� j−∂� j∩∂�

∂ψ

∂n
ds

= −
∮

∂� j∩∂�

bds −
∮

∂� j−∂� j∩∂�

∂ψ

∂n
ds.
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Sufficient Part: Let ω satisfy the condition
∫

� j

ωdV = −
∮

∂� j∩∂�

bds −
∮

∂� j−∂� j∩∂�

∂ψ

∂n
ds

for any � j ⊆ � where j ∈ J, J being an index set. Consider ψ to be the unique solution of
the equation −∇2ψ = ω subject to the condition ψ |∂� = a. Now we have

∫

� j

ωdV =
∫

� j

(−∇2ψ)dV

=
∮

∂� j

−∂ψ

∂n
ds

= −
∮

∂� j∩∂�

∂ψ

∂n
ds −

∮

∂� j−∂� j∩∂�

∂ψ

∂n
ds.

Thus we see that

−
∮

∂� j∩∂�

bds = −
∮

∂� j∩∂�

∂ψ

∂n
ds

⇒
∮

∂� j∩∂�

(

b − ∂ψ

∂n

)

ds = 0.

Finally using the arbitrariness of � j we see that
∂ψ
∂n

∣
∣
∂�

= b. ��
This new vorticity integral condition Eq. (6), although global in nature, can be realized
locally and provides a technique to compute vorticity boundary values explicitly. Hence it
is more suitable for simulating complex flow fields. We will examine this global boundary
condition in different geometric setups involving varied physical situations. The following
section details its implementation.

Here we would like to point out that it may be quite possible to extend this new approach
to three dimensional problems and will be explored in future. Three dimensional form of the
streamfunction–vorticity formulation [16] also endures issues regarding vorticity boundary
condition. Quartapelle and Valz-Gris [12] in their work have successfully generalized the
vorticity integral condition given in the Eq. (5).

3 Numerical Implementation

We present here details of implementing the new vorticity integral condition Eq. (6) in finite
difference setup. To begin with we note that the new condition is a perspective which can be
implemented in varied fashions. The blueprint developed here is in conjunction with ideas
borrowed from the staggered grid approach in finite volume and is explained in rectangular
grid by developing four different schemes corresponding to the four different sub-figures of
the Fig. 1. We begin by considering an elementary rectangular area, marked by black faces,
in the vicinity of the left boundary. The center of the cell, marked using “•”, is deemed at
the mid point of the rectangular area. In this work we delve with four positions of “•” viz.
at distances h

2 ,
h
3 ,

h
4 and h

16 from the boundary as shown in Fig. 1a–d, respectively. The
vorticity value at this center is approximated by taking the weighted mean of the vorticity
values at the boundary and the interior nodes. This mean value is used to approximate the
left hand side of the integral Eq. (6). Estimation of the two integrals on the right hand side of
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Fig. 1 Schematic diagram of four different implementations of vorticity integral condition. Depicted are the
nodes used to compute vorticity at the left boundary. “•” denotes the center of the rectangular cell used to
approximate the boundary condition and “◦” denotes face center at which some of the gradients of stream-
function were estimated. a New 1 Eq. (8), b New 2 Eq. (9), c New 3 Eq. (10), d New 4 Eq. (11)

Eq. (6) requires knowledge of derivatives of ψ at the nodes marked using “◦”; which are in
general not available. Hence these values are required to be approximated or interpolated by
using ψ or its corresponding derivatives available at the vertices. We present below various
techniques for estimating the integrals. The reason for choosing different cell centers is to
provide an idea of how different explicit vorticity boundary conditions can be formulated
based on the integral equation (6). Further we use increasingly narrow cells as such a choice
will test the stability and effectiveness of Eq. (6) from the point of its implementation.
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For the Fig. 1a the integrals are calculated in the simplest possible way. Here ψy at the
top and bottom “◦” nodes are interpolated by using ψy values at the vertices of the rectangle
inside which they sit. For the uniform rectangular grid the vorticity boundary value at (0, j)
can thus be approximated as

hk

2
(ω0, j + ω1, j ) = ψx0, j k − ψx1, j k + h

4
(ψy0, j + ψy1, j + ψy0, j−1 + ψy1, j−1)

−h

4
(ψy0, j + ψy1, j + ψy0, j+1 + ψy1, j+1).

Note that the above equation has been arrived at by approximating integrals of the Eq. (6).
On simplification we obtain

ω0, j = −ω1, j + 2

h
(ψx0, j − ψx1, j ) + 1

k2
(−ψ0, j−1

+ 2ψ0, j − ψ0, j+1 − ψ1, j−1 + 2ψ1, j − ψ1, j+1) (7)

for all 0 < j < jmax . The truncation error corresponding to the Taylor series expansion for
the Eq. (7) is

h2

6
ψxxxx 1

2 , j
− k2

6
ψyyyy 1

2 , j
+ O(h4, k4, h2k2).

Equation (7) can also be replaced by another equivalent form

ω0, j = −ω1, j + 2

h
(ψx0, j − ψx1, j ) + 1

2k
(ψy0, j−1 + ψy1, j−1 − ψy0, j+1 − ψy1, j+1) (8)

for all 0 < j < jmax with corresponding truncation error

h2

6
ψxxxx 1

2 , j
− k2

3
ψyyyy 1

2 , j
+ O(h4, k4, h2k2).

This newly proposed formula will be refereed to as New 1 boundary condition in the
manuscript. If we restrict ourselves to second order central difference approximations to esti-
mate ωi, j and ψxi, j at interior nodes i.e. ωi, j = −(ψi−1, j −2ψi, j +ψi+1, j )/h2 − (ψi, j−1 −
2ψi, j +ψi, j+1)/k2 andψxi, j = (ψi+1, j −ψi−1, j )/2h together with homogeneous boundary
conditions ψ0, j = 0, ψx0, j = 0 then the Eq. (7) can be reduced to

ω0, j = − 2

h2
ψ1, j .

The above simplified form of the vorticity boundary condition, which is valid under a set of
assumptions, will be used for convergence analysis to be carried out in Sect. 3.1.

Another choice for estimating the gradients ψx and ψy , which correspond directly to
the velocity components in the rectangular cartesian grid, is to use the fourth order Padé
approximations which will be detailed once we complete different implementations of the
Eq. (6). Here it is worthwhile to point out that varied approximations of stream function
gradients can be used in conjunction with Eq. (8).

Boundary conditions on the right, bottom and top boundaries can be found likewise and
are written below for totality.

ωimax, j = −ωimax−1, j + 2

h
(ψximax−1, j − ψximax, j )

+ 1

2k
(ψyimax, j−1 + ψyimax−1, j−1 − ψyimax, j+1 − ψyimax−1, j+1)
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for all 0 < j < jmax .

ωi,0 = −ωi,1 + 2

k
(ψyi,0 − ψyi,1) + 1

2h
(ψxi−1,0 + ψxi−1,1 − ψxi+1,0 − ψxi+1,1)

for all 0 < i < imax .

ωi, jmax = −ωi, jmax−1 + 2

k
(ψyi, jmax−1 − ψyi, jmax )

+ 1

2h
(ψxi−1, jmax + ψxi−1, jmax−1 − ψxi+1, jmax − ψxi+1, jmax−1)

for all 0 < i < imax .
Again for the Fig. 1b the vorticity value at the cell center, located at

( h
3 , j

)

, is approximated
as

ω1/3, j = 1

3
(2ω0, j + ω1, j ).

Also ψy value at the top “◦” node is interpolated as

ψy1/3, j+1/2 = 1

3
(2ψy0, j+1/2 + ψy1, j+1/2)

where ψyi, j+1/2 = ψi, j+1−ψi, j
k , i = 0, 1. Similar expression also holds for lower “◦” node.

Finally the ψx2/3, j value at the middle “◦” node is linearly interpolated by using ψx1/2, j =
ψ1, j−ψ0, j

h and ψx1, j . Thus the approximation of integral condition Eq. (6) yields for the left
boundary

ω1/3, j
2h

3
k = ψx0, j k − ψx2/3, j k + ψy1/3, j−1/2

2h

3
− ψy1/3, j+1/2

2h

3

⇒ ω0, j = −1

2
ω1, j + 3

2

[
3

2h

(

ψx0, j −
(
2

3

ψ1, j − ψ0, j

h
+ 1

3
ψx1, j

) )

+ 1

3k2

(

− 2ψ0, j−1 + 4ψ0, j − 2ψ0, j+1 − ψ1, j−1 + 2ψ1, j − ψ1, j+1

)]

(9)

for all 0 < j < jmax . The truncation error for the Eq. (9) is

−h

8
ψxxx 1

3 , j
− k2

8
ψyyyy 1

3 , j
+ O(h2, k4, h2k2)

and we referrer it as New 2.
Similarly for the Fig. 1c, for the cell center located at

( h
4 , j

)

the vorticity boundary
condition on the left boundary may be expressed as

ω0, j = −1

3
ω1, j + 4

3

[
2

h

(

ψx0, j − ψ1, j − ψ0, j

h

)

+ 1

4k2

(

− 3ψ0, j−1 + 6ψ0, j − 3ψ0, j+1 − ψ1, j−1 + 2ψ1, j − ψ1, j+1

)]

(10)

for all 0 < j < jmax . It will be referred as New 3 and its truncation error is

−h

9
ψxxx 1

4 , j
− k2

9
ψyyyy 1

4 , j
+ O(h2, k4, h2k2).
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Finally to evaluate the effectiveness of the vorticity integral condition expressed in Eq.
(6) we consider a very small cell with its center located at

( h
16 , j

)

in the Fig. 1d. For this case
the vorticity boundary condition on the left boundary has been obtained as

ω0, j = − 1

15
ω1, j + 16

15

[
8

h

(

ψx0, j −
(
21

32
ψx0, j + 14

32

ψ1, j − ψ0, j

h
− 3

32
ψx1, j

))

+ 1

16k2

(

− 15ψ0, j−1 + 30ψ0, j − 15ψ0, j+1 − ψ1, j−1 + 2ψ1, j − ψ1, j+1

)]

(11)

for all 0 < j < jmax , with truncation error given by

−7h

45
ψxxx 1

16 , j
− 4k2

45
ψyyyy 1

16 , j
+ O(h2, k4, h2k2).

Note that in the above formula, termed as New 4, the ψx value at the middle “◦” point shown
in Fig. 1d has been quadratically interpolated.

All the above approximations of the vorticity boundary conditions viz. Eqs. (8)–(11) are
explicit. Also since the off-grid unknown values of gradients of ψ and ω involved in all the
formulas are evaluated using a linear reconstruction, they may provide the identical accuracy.
But here it should be pointed out that it will be naive to conclude about the accuracy without
going into a detailed analysis as has been demonstrated by Huang andWetton [7] for Thom’s
formula. Such an effort for these newly developed boundary formulae will indeed be taken up
in future. Presently based on Taylor expansion we can say that Eq. (8) possesses second order
truncation error and the rest first order. In the later part of this section we shall highlight a few
more second order accurate implementations of the integral boundary condition expressed
in Eq. (6).

We intend to discretize the governing equations (1) and (2) using a recently developed
compact spatially fourth and temporally second order accurate scheme [15]. This scheme
which carries gradients of the transport variable as unknowns, also uses the Padé approxi-
mations

ψxi, j =
(

δxψi, j − h2

6
δ2xψxi, j

)

+ O(h4) (12)

and

ψyi, j =
(

δyψi, j − k2

6
δ2yψyi, j

)

+ O(k4). (13)

and hence will be computationally much more efficient in implementing the new vorticity
integral condition. The finite difference approximations of Eqs. (1) and (2), valid at all internal
grid points, can thus be written as

[

Re − δt
(

δ2x + δ2y

)]

ω(n+1)
i, j

=
[

Re + δt
(

δ2x + δ2y

)]

ω(n)
i, j

+ δt

2

[

−
(

δx + Reψ(n+1)
yi, j

)

ω(n+1)
xi, j

−
(

δy − Reψ(n+1)
xi, j

)

ω(n+1)
yi, j

]

+ δt

2

[

−
(

δx + Reψ(n)
yi, j

)

ω(n)
xi, j −

(

δy − Reψ(n)
xi, j

)

ω(n)
yi, j

]

(14)

and
− 2δ2xψi, j − 2δ2yψi, j + δxψxi, j + δyψyi, j = ωi, j (15)
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respectively. The solution strategy for solving Eqs. (14) and (15) consists of two steps: (a)
one outer temporal loop and (b) an inner loop where we employ correcting to convergence
strategy. The system of algebraic equations has been solved by using bi-conjugate gradient
stabilized (BiCGStab) method [17]. The algorithm to time march the solution from (n)th to
(n + 1)th level can be found in [15] and is reproduced below for readers’ convenience.

Algorithm to Time March Solution
We begin by introducing the notations: 	 = (ψ1,1, ψ1,2, ..., ψm,n)

T , ϒ = (ω1,1,

ω1,2, ..., ωm,n)
T for a grid of size m × n. The resulting system of equations correspond-

ing to Eqs. (12), (13), (14) and (15) in matrix form can be written as

M1	
(n)
x = F1

(

	(n)
)

, (16)

M2	
(n)
y = F2

(

	(n)
)

, (17)

M3ϒ
(n+1) = F3

(

ϒ(n), ϒ(n)
x , ϒ(n)

y , 	(n)
x , 	(n)

y , ϒ(n+1)
x , ϒ(n+1)

y , 	(n+1)
x , 	(n+1)

y

)

, (18)

M4	
(n+1) = F3

(

ϒ(n+1), 	(n+1)
x , 	(n+1)

y

)

. (19)

Here M1, M2, M3 and M4 are banded diagonally dominant matrices of dimension mn. The
entire strategy can be summarized in the following algorithm:

1. Begin with 	(n), ϒ(n).
2. Obtain 	

(n)
x and 	

(n)
y using (16) and (17) respectively.

3. Similarly obtain ϒ
(n)
x and ϒ

(n)
y .

4. Take 	(n+1)
old

= 	(n), 	(n+1)
xold = 	

(n)
x , 	(n+1)

yold = 	
(n)
y , ϒ(n+1)

old
= ϒ(n), ϒ(n+1)

xold = ϒ
(n)
x ,

ϒ
(n+1)
yold = ϒ

(n)
y .

5. Correct to ϒ(n+1)
new

using (18).

6. Correct to ϒ
(n+1)
xnew , ϒ(n+1)

ynew using (16), (17) respectively.
7. Correct to 	(n+1)

new
using (19).

8. Correct to 	
(n+1)
xnew , 	(n+1)

ynew using (16), (17) respectively.
9. If ‖	(n+1)

new
− 	(n+1)

old
‖ < ε then 	(n+1) = 	(n+1)

new
, ϒ(n+1) = ϒ(n+1)

new
.

10. 	(n+1)
old

= 	(n+1)
new

, 	
(n+1)
xold = 	

(n+1)
xnew , 	

(n+1)
yold = 	

(n+1)
ynew , ϒ(n+1)

old
= ϒ(n+1)

new
, ϒ

(n+1)
xold =

ϒ
(n+1)
xnew , ϒ(n+1)

yold = ϒ
(n+1)
ynew goto step 5.

Apart from the above fourth order accurate discretizations we will also use, at a few cases,
the standard second order accurate central approximation of the governing equations (1) and
(2). Note that we use second or higher order accurate discretizations at the internal nodal
points to restrict errors, arising out of discretization of internal nodal points, from polluting
the boundary approximation.

In this study we are also interested to determine consequences of the new vorticity inte-
gral condition on the post processed pressure field especially near the boundaries. Abdallah
[18] in 1987 derived second order accurate finite difference approximation for the pres-
sure Poisson equation with Neumann boundary conditions. These approximations satisfy
the mathematically necessary compatibility condition and were used in conjunction with the
ψ−ω formulation to compute the pressure field. We will use the formulation of Abdallah to
conclude about the effect of the new integral vorticity boundary condition on the pressure
field.
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3.1 Convergence Analysis

In this sectionwe carry out convergence analysis of the newly developed boundary conditions
applied to the linear system of Stokes equations:

∂ω

∂t
= 1

Re
∇2ω, −∇2ψ = ω. (20)

The nonlinear terms have been neglected for simplicity. The convergence analysis is carried
out following the works of Wang and Liu [19] and Wang [20] and pursues the standard
procedure of consistency, stability and error analysis. We consider a square computational
domain � = [0, 1]2 with h = k = 1/N together with Dirichlet boundary condition ψ = 0
on ∂�. The grid points can then be denoted as {xi = ih, y j = jh, i, j = 0, 1, ..., N }.
Further no-slip boundary condition ∂ψ

∂n = 0 is imposed on all boundaries. The semi-discrete
centered difference approximation of Eq. (20) valid at the interior grid points together with
boundary conditions is

∂ω

∂t
= 1

Re
∇2
hω, −∇2

hψ = ω, ψ |∂� = 0,
∂ψ

∂n

∣
∣
∣
∣
∂�

= 0, (21)

where

∇2
h = D2

x + D2
y,

D2
xψi, j = ψi−1, j − 2ψi, j + ψi+1, j

h2
, D2

yψi, j = ψi, j−1 − 2ψi, j + ψi, j+1

h2
. (22)

Using the above boundary values the newly developed vorticity boundary conditions Eqs.
(8)–(11) are rewritten as

ω0, j = 1

h2
(A1ψ1, j + A2ψ2, j ) (23)

where (A1, A2) are (−2, 0), (−5/2, 1/8), (−10/3, 1/3) and (−58/15, 7/15) for Eqs. (8),
(9), (10) and (11), respectively. Clearly −4 < A1 ≤ −2 and 0 ≤ A2 < 1/2. An equivalent
form of the above relation which facilitates further analysis [19,20] is

ω0, j = 1

h2
(B1ψ1, j + B2h

2D2
xψ1, j ) (24)

with B1 = A1 + 2A2 and B2 = A2. Further subsequent to the works of Wang and Liu [19]
and Wang [20] we introduce the following notations.

Definition 1 The discrete L2-norm and L2-inner product are defined as

‖ ψ ‖= 〈ψ,ψ〉1/2, 〈ψ, φ〉 =
∑

1≤i, j≤N−1

ψi, jφi, j h
2. (25)

For ψ |∂� = 0, the notation ‖ ∇hψ ‖ denotes

‖ ∇hψ ‖2=
N−1
∑

j=1

N−1
∑

i=0

(D+
x ψi, j )

2h2 +
N−1
∑

i=1

N−1
∑

j=0

(D+
y ψi, j )

2h2 (26)

where

D+
x ψi, j = ψi+1, j − ψi, j

h
, D+

y ψi, j = ψi, j+1 − ψi, j

h
. (27)
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3.1.1 Consistency Analysis

Let ψe be the exact solution of the Stokes equation (20) extended smoothly to the domain
[−δ, 1+ δ]2 and ψ i, j = ψe(xi , y j ) for −1 ≤ i, j ≤ N + 1. Considering ωi, j = ∇2

hψ i, j for
0 ≤ i, j ≤ N , Taylor series expansion reveals for all grid points (xi , y j ), 0 ≤ i, j ≤ N

ω = ωe + h2

12
(∂4x + ∂4y )ψe + O(h4) ‖ ψe ‖C6 . (28)

From Eq. (28) we see that for internal grid points (xi , y j ), 1 ≤ i, j ≤ N − 1

∇2
hω = ∇2

hωe + O(h2) ‖ ψe ‖C6 . (29)

Again by using Taylor expansion we get

∇2
hωe = ∇2ωe + O(h2) ‖ ωe ‖C4

= ∇2ωe + O(h2) ‖ ψe ‖C6 . (30)

Equations (29) and (30) lead to

∇2
hω = ∇2ωe + O(h2) ‖ ψe ‖C6 . (31)

For the unsteady term of the Stokes equation (20), we have

∂ω

∂t
− ∂ωe

∂t
= ∂

∂t
∇2
hψe − ∂

∂t
∇2ψe

= (∇2
h − ∇2)

∂ψe

∂t

= O(h2)

∥
∥
∥
∥

∂ψe

∂t

∥
∥
∥
∥
C4

. (32)

Following the work of Wang and Liu [19], it can be shown that
∥
∥
∥
∥

∂ψe

∂t

∥
∥
∥
∥
C4,α

≤ C

∥
∥
∥
∥

∂ωe

∂t

∥
∥
∥
∥
C2,α

≤ C‖ψe‖C6,α (33)

for some α > 0. Equations (32) and (33) together imply

∂ω

∂t
− ∂ωe

∂t
= O(h2)‖ψe‖C6,α . (34)

Finally combining Eqs. (31) and (34) we arrive at

∂ω

∂t
= 1

Re
∇2
hω + O(h2)‖ψe‖C6,α . (35)

Next we proceed to show that the constructed ω is consistent with the newly developed
boundary conditions applied to ψ . Using Taylor series expansion it is easy to see that

1

h2
(A1ψ1, j + A2ψ2, j ) = ωe(0, y j ) + O(h)‖ψe‖C3 . (36)

Combining Eqs. (28) and (36) we get

ω0, j = 1

h2
(A1ψ1, j + A2ψ2, j ) + O(h)‖ψe‖C3 (37)

which completes consistency analysis.
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3.1.2 Stability Analysis

Theorem 3 The numerical scheme (21) together with the vorticity boundary condition (23)
is L2 stable.

Proof Considering inner product of Eq. (21) with ψ we have
〈

ψ,
∂ω

∂t

〉

=
〈

ψ,
1

Re
∇2
hω

〉

⇒ −
〈

ψ,
∂

∂t
∇2
hψ

〉

= 1

Re
(〈∇2

hψ,ω〉 + BT )

⇒ Re

2

d

dt
‖∇hψ‖2 = −‖ω‖2 + BT (38)

where BT = BT 1 + BT 2 + BT 3 + BT 4 is the boundary term. We consider

BT 1 =
N−1
∑

j=1

ψ1, jω0, j (39)

with similar expressions for BT 2, BT 3, BT 4. The details of which may be found in [19,20].
As delineated by Wang and Liu [19] and Wang [20] we use the equivalent form Eq. (24) of
the boundary condition Eq. (23) to bound the term BT . Thus

BT 1 =
N−1
∑

j=1

[

B1
ψ2
1, j

h2
+ B2ψ1, j D

2
xψ1, j

]

≤
N−1
∑

j=1

[

B1
ψ2
1, j

h2
+ B2

(
ψ1, j

2h

)2

+ B2
(

hD2
xψ1, j

)2
]

=
N−1
∑

j=1

[ (

B1 + B2

4

)
ψ2
1, j

h2
+ B2h

2
∣
∣D2

xψ1, j
∣
∣
2
]

. (40)

Using the values of A1 and A2 in the above inequality we finally arrive at

BT 1 ≤ h2

2

N−1
∑

j=1

∣
∣D2

xψ1, j
∣
∣
2
. (41)

Proceeding similarly for BT 2, BT 3 and BT 4 and adding we can show that

BT ≤ 1

2

(
∥
∥D2

xψ
∥
∥
2 +

∥
∥
∥D2

yψ

∥
∥
∥

2
)

≤ 1

2
‖ω‖2. (42)

The last inequality uses the following lemma established by Wang and Liu [19] and is
reproduced here for completeness.

Lemma 1 For any ψ such that ψ |∂� = 0,

∥
∥D2

xψ
∥
∥
2 +

∥
∥
∥D2

yψ

∥
∥
∥

2 ≤
∥
∥
∥

(

D2
x + D2

y

)

ψ

∥
∥
∥

2 = ‖ω‖2. (43)
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Using Eq. (42) in Eq. (38) we finally arrive at

Re
d

dt
‖∇hψ‖2 + ‖ω‖2 ≤ 0. (44)

This completes the stability analysis. ��

3.1.3 Error Estimate

For 0 ≤ i, j ≤ N , let us define

ψ̃i, j = ψi, j − ψ i, j , ω̃i, j = ωi, j − ωi, j . (45)

Subtracting Eq. (35) from Eq. (21), we have

∂ω̃

∂t
= 1

Re
∇2
h ω̃ + F1, −∇2

h ψ̃ = ω̃, ψ̃ |∂� = 0,
∂ψ̃

∂n

∣
∣
∣
∣
∂�

= 0, (46)

where |F1| ≤ Ch2‖ψe‖C6,α . From Eqs. (24) and (37) we have on the boundary

ω̃0, j = 1

h2
(A1ψ̃1, j + A2ψ̃2, j ) + F2. (47)

with F2 ≤ Ch‖ψe‖C3 . Taking inner product of vorticity error relation in Eq. (46) with ψ̃ we
get

〈

ψ̃,
∂ω̃

∂t

〉

=
〈

ψ̃,
1

Re
∇2
h ω̃

〉

+ 〈ψ̃, F1〉

⇒ −
〈

ψ̃,
∂

∂t
∇2
h ψ̃

〉

= 1

Re
(〈∇2

h ψ̃, ω̃〉 + BT ) + 〈ψ̃, F1〉

⇒ 1

2

d

dt
‖∇hψ̃‖2 = 1

Re
(−‖ω̃‖2 + BT ) + 〈ψ̃, F1〉 (48)

where BT = BT 1 + BT 2 + BT 3 + BT 4 is the boundary term decomposed into four parts
as earlier. We now proceed to bound BT in a manner similar to that of Sect. 3.1.2. Here,

BT 1 =
N−1
∑

j=1

ψ̃1, j ω̃0, j

=
N−1
∑

j=1

[

B1
ψ̃2
1, j

h2
+ B2ψ̃1, j D

2
x ψ̃1, j + ψ̃1, j F2

]

≤
N−1
∑

j=1

[ (

B1 + B2

4
+ 1

2

)
ψ̃2
1, j

h2
+ B2h

2
∣
∣D2

x ψ̃1, j
∣
∣
2 + h2

2
|F2|2

]

≤
N−1
∑

j=1

[
h2

2

∣
∣D2

x ψ̃1, j
∣
∣
2 + Ch4‖ψe‖2C3

]

(49)
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since B1 + B2
4 + 1

2 < 0 and 0 ≤ B2 < 1
2 . Thus using h = 1/N we arrive at

BT ≤ 1

2

(
∥
∥D2

x ψ̃
∥
∥
2 +

∥
∥
∥D2

yψ̃

∥
∥
∥

2
)

+ Ch3‖ψe‖2C3

≤ 1

2
‖ω̃‖2 + Ch3‖ψe‖2C3 (50)

where we have used the Lemma 1 [19] which also holds for ψ̃ . Also

|〈ψ̃, F1〉| ≤ ‖ψ̃‖2
2

+ ‖F1‖2
2

. (51)

Using Eqs. (50) and (51) in Eq. (48) we get

d

dt
‖∇hψ̃‖2 ≤ ‖ψ̃‖2 − ‖ω̃‖2

Re
+ ‖F1‖2 + Ch3‖ψe‖2C3 . (52)

Application of Poincare inequality for ψ̃ implies

d

dt
‖∇hψ̃‖2 ≤ C‖∇hψ̃‖2 − ‖ω̃‖2

Re
+ ‖F1‖2 + Ch3‖ψe‖2C3 . (53)

Finally using Gronwall inequality to Eq. (53) we arrive at

‖∇hψ̃‖2 ≤ eCt
∫ t

0
e−Ct

(

− ‖ω̃‖2
Re

+ ‖F1‖2 + Ch3‖ψe‖2C3

)

dt

⇒ ‖∇hψ̃‖2 + 1

Re

∫ t

0
‖ω̃‖2dt ≤ CeCt

∫ t

0
e−Ct

(

h4‖ψe‖2C6,α + h3‖ψe‖2C3

)

dt. (54)

Hence

‖∇hψ̃‖ + 1√
Re

( ∫ T

0
‖ω̃‖2dt

) 1
2 ≤ CeCT h

3
2

(

h
1
2 ‖ψe‖L∞([0,T ],C6,α) + ‖ψe‖L∞([0,T ],C3)

)

.

(55)

Thus we have established the following theorem:

Theorem 4 Let ψe ∈ L∞([0, T ];C6,α(�)), ωe be the exact solution of the Stokes equation
(20) and ψh, ωh be the approximate solution of the numerical scheme Eq. (21) with vorticity
boundary formula Eq. (23), then we have

‖∇h(ψe − ψh)‖L∞([0,T ],L2) + 1√
Re

‖ωe − ωh‖L2([0,T ],L2)

≤ CeCT h
3
2

(

h
1
2 ‖ψe‖L∞([0,T ],C6,α) + ‖ψe‖L∞([0,T ],C3)

)

. (56)

3.2 Comparison with Existing Local Boundary Conditions

Prior to the application of the four vorticity boundary conditions Eqs. (8)–(11) developed
here, it is important to point out how these boundary conditions compare with the existing
local boundary conditions. We also intend to highlight here the essential differences between
the newly developed philosophy vis-a-vis some commonly used conditions. For totality we
consider the following six boundary conditions.
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1. Thom 1933 [6]:

ω0, j = 2

h2
(ψ0, j − ψ1, j + hψx0, j ) − ψyy0, j . (57)

2. Wilkes–Pearson 1965 [21]:

ω0, j = 1

2h2
(7ψ0, j − 8ψ1, j + ψ2, j + 6hψx0, j ) − ψyy0, j . (58)

3. Orszag–Israeli 1974 [8]:

ω0, j = 1

13h2
(34ψ0, j − 35ψ1, j + ψ3, j + 32hψx0, j ) − ψyy0, j . (59)

4. Briley 1971 [22]:

ω0, j = 1

18h2
(85ψ0, j − 108ψ1, j + 27ψ2, j − 4ψ3, j + 66hψx0, j ) − ψyy0, j . (60)

5. Woods 1954 [23]:

ω0, j = −1

2
ω1, j + 3

h2
(ψ0, j − ψ1, j + hψx0, j ) − 3

2

(

ψyy0, j + h

3
ψxyy0, j

)

. (61)

6. D’Alessio–Dennis 1994 [24]:

ω0, j = −4

3
ω1, j + 1

3
ω2, j + 4

h2
(ψ0, j − ψ1, j + hψx0, j ) − 2

(

ψyy0, j + h

3
ψxyy0, j

)

.

(62)

As noted in some of the previous works [5,14] all the above vorticity boundary conditions
can be derived by exploiting the relationship between the vorticity and streamfunction viz.
the elliptic vorticity equation (2) at the left boundary. In case of partial differential equations
the boundary conditions and the initial conditions are as significant as that of the governing
equation in computing the solution. It is quite elegant to incorporate both the boundary
condition and the governing equations to derive the boundary discretization formula. Also
judging from the fact that one can obtain reasonable results with some of these schemes, they
continue to be popular in the computational fluid dynamics community [25,26], we can infer
that they must implicitly satisfy some specific vorticity boundary requirements. One of the
motivations of this work is also to shed some light on this issue as well. Specifically in this
work we make use of vorticity integral condition Eq. (6) which is applicable on the boundary
and also explore it vis-a-vis well known vorticity boundary conditions.

Using Taylor series expansion we see that the Thom’s condition Eq. (57) reduces to

ω0, j = −(ψxx0, j + ψyy0, j ) + O(h).

This indicates that it is a first order accurate approximation of Eq. (2) at the point (0, j). But
this first order accuracy for the Thom’s formula is oftenmisleading as can be clearly seen from
the numerical and analytical works presented in [4,5,7]. As will be seen later in Sect. 4 there
is a close correspondence between the results produced by the newly developed formula Eq.
(8) and the Thom’s condition Eq. (57). Thus we shall like to investigate them in more details.
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Consider a numerical schemewhich uses second order central differencing to estimate normal
derivatives at grid points adjacent to the boundary viz., ψxx1, j = (ψ0, j − 2ψ1, j + ψ2, j )/h2

and ψx1, j = (ψ2, j −ψ0, j )/2h. These approximations employed in the formula Eq. (8) yield

ω0, j = 2

h2
(ψ0, j − ψ1, j + hψx0, j ) − 1

2k
(ψy0, j+1 − ψy0, j−1)

+
[

ψyy1, j − 1

2k
(ψy1, j+1 − ψy1, j−1)

]

.

Although a detailed analysis may be necessary but a second order estimate of ψyyi, j by
(ψyi, j+1 − ψyi, j−1)/2k reveals that for any numerical scheme the Eq. (8) approaches Thom’s
condition Eq. (57) and as such it should not be surprising if the results are comparable. Of
course for computational methods using higher order discretization at interior grid points the
results obtained by Eqs. (8) and (57) are expected to differ on the boundaries as the boundary
condition New 1 will be different from Thom’s condition.

Again Taylor expansion renders both the Wilkes–Pearson’s condition Eq. (58) and the
Orszag–Israeli condition Eq. (59) to reduce to second order approximation

ω0, j = −(ψxx0, j + ψyy0, j ) + O(h2)

of the Eq. (2); whereas the Briley Eq. (60) gives still higher third order accurate approxi-
mation of the same equation at the left boundary. Orszag and Israeli [8] originally designed
formulation for the homogeneous boundary condition by matching the eigenvalues of finite
difference approximation with the exact one for unsteady Stokes equation. The scheme pre-
sented here is an extension of the same for the inhomogeneous problem. With the vorticity
integral condition Eq. (6), the success of the four boundary conditions Eqs. (57)–(60) may
be ascribed as an approximation of the equation

ωε, j2εhk = ψx0, j k − ψx2ε, j k + ψyε, j−1/22εh − ψyε, j+1/22εh (63)

with ε being taken to be a small number. Equation (63) is the completion of the Eq. (6) with
a cell of length 2ε.

We now proceed to the remaining two boundary conditions given by Wood [23] and
D’Alessio and Dennis [24]. It is interesting to note that the Taylor series expansions of the
Wood’s boundary condition Eq. (61) and D’Alessio–Dennis Eq. (62) yield

ω1/3, j = −(ψxx1/3, j + ψyy1/3, j ) + O(h2)

with the leading error terms h2
12 (2ωxx1/3, j −ψxxxx1/3, j ) and− h2

12ψxxxx1/3, j , respectively. Mak-
ing use of the relations

3

2h
(ψx0, j − ψx2/3, j ) = 2

h2
(ψ0, j − ψ1, j + hψx0, j ) + O(h2)

and

1

k
(ψy1/3, j+1/2 − ψy1/3, j−1/2) = ψyy0, j + h

3
ψxyy0, j + O(h2, k2)

we see that Eqs. (61) and (62) can be conceptualized as

ω1/3, j
2h

3
k = ψx0, j k − ψx2/3, j k + ψy1/3, j−1/2

2h

3
− ψy1/3, j+1/2

2h

3
. (64)
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Equation (64) is the identical particular form of the vorticity integral condition Eq. (6) from
which Eq. (9) was deduced by using a different discretization procedure. Although Eq. (9) is
of first order accuracy but Eqs. (61) and (62) are second order implementations albeit with
different associated error terms.

4 Results and Discussion

4.1 Problem 1: A Model Problem for Unsteady Incompressible Flow

We first implement the vorticity integral condition given by the Eq. (6) for the unsteady two
dimensional Stokes equation (20) in a domain [−1, 1]× [0, 2π]. The problem contemplated
is a two-dimensional linear model which satisfies the no-slip boundary condition in the x-
direction and the periodic boundary condition along the y-direction and admits exact solution

u(x, y, t) = û(x)eI y+σ t , v(x, y, t) = v̂(x)eI y+σ t , p(x, y, t) = p̂(x)eI y+σ t

where I = √−1. This model exemplifies the essential features of the incompressibility and
viscosity of the Navier–Stokes equations [4,27]. In terms of vorticity and streamfunction the
exact solution is

ω = I

(
d2û

dx2
(x) − û(x)

)

eI y+σ t , ψ = −I û(x)eI y+σ t .

We consider the antisymmetric exact solution corresponding to

û(x) = sinμ
sinh x

sinh 1
− sinμx

with μ = 4.423863790876 and σ = −ν(μ2 + 1), ν being the kinematic viscosity.
The systemof equations inEq. (20) is discretized byusing the standard secondorder central

difference operators as far as the space derivatives are concerned. For the time derivative
implicit Crank–Nicolson has been employed. We solve the flow in a grid of size 64 × 199
with a time step 0.001 for Re = 100. A small time step has been considered to reduce the
influence of time discretization. We carry out computations for all the ten vorticity boundary
conditions discussed earlier. In the Fig. 2a the difference between the real part of exact and
computed vorticity values has been plotted along the line y = π

4 at time t = 1.0. In this figure
we see that the newly developed vorticity boundary condition given by the Eq. (8) executes
exactly similar to that of Thom formula Eq. (57). Here the second boundary condition Eq.
(9) performs better. All the remaining boundary conditions demonstrate better execution.
To get an enhanced idea of the remaining boundary conditions we plot a closeup view in
the Fig. 2b. Although the results are comparable clearly the boundary condition given in
Eq. (10) shows better accuracy compared to the other ones. What is interesting to note is
that the boundary condition developed by considering cell center at x = 1

16 given by Eq.
(11) yields a less accurate solution at the boundary compared to the condition developed by
taking cell center at x = 1

4 . This may be attributed to the associated truncation error. Also the
schemes of Orszag–Israeli Eq. (59) and D’Alessio–Dennis Eq. (62) perform well. As it has
been noted earlier the scheme due to D’Alessio and Dennis can be interpreted as adhering to
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Fig. 2 Problem 1: Error in the real part of the exact and computed vorticity values along the line y = π
4 at

time t = 1.0. a Full view, b closeup view

the philosophy expressed by the Eq. (6) whereas the scheme of Orszag and Israeli has been
specifically developed for the particular type of problem investigated here.

4.2 Problem 2: A Problem with Analytic Solution for Steady Stokes Equation

To verify the order of accuracy of the different boundary conditions we cogitate the steady
state form of the Stokes system Eq. (20) in a unit square domain � = [0, 1]2. The problem
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Table 1 Problem 2: G.R.E . in steady state ω field

49 × 49 Order 97 × 97 Order 193 × 193

Thom [6] 6.062 × 10−4 2.03 1.487 × 10−4 2.02 3.655 × 10−5

Wilkes–Pearson [21] 1.093 × 10−4 2.10 2.541 × 10−5 2.06 6.102 × 10−6

Orszag–Israeli [8] 1.797 × 10−4 2.11 4.166 × 10−5 2.07 9.925 × 10−6

Briley [22] 1.120 × 10−4 2.12 2.579 × 10−5 2.07 6.151 × 10−6

Woods [23] 1.128 × 10−4 2.12 2.590 × 10−5 2.07 6.164 × 10−6

D’Alessio–Dennis [24] 1.132 × 10−4 2.13 2.594 × 10−5 2.07 6.169 × 10−6

New 1, Eq. (8) 6.064 × 10−4 2.03 1.488 × 10−4 2.03 3.655 × 10−5

New 2, Eq. (9) 4.150 × 10−4 2.05 1.005 × 10−4 2.04 2.451 × 10−5

New 3, Eq. (10) 1.792 × 10−4 2.21 4.162 × 10−5 1.96 9.920 × 10−6

New 4, Eq. (11) 1.069 × 10−4 2.12 2.466 × 10−5 2.07 5.880 × 10−6

Comparison of results obtained using different boundary conditions

Table 2 Problem 2: G.R.E . in steady state ψ field

49 × 49 Order 97 × 97 Order 193 × 193

Thom [6] 2.220 × 10−5 1.96 5.690 × 10−6 1.98 1.440 × 10−6

Wilkes–Pearson [21] 2.236 × 10−7 3.34 2.202 × 10−8 1.68 6.858 × 10−9

Orszag–Israeli [8] 5.766 × 10−6 2.00 1.439 × 10−6 2.00 3.593 × 10−7

Briley [22] 1.013 × 10−7 1.56 3.443 × 10−8 1.75 1.022 × 10−8

Woods [23] 1.856 × 10−7 2.03 4.536 × 10−8 1.97 1.157 × 10−8

D’Alessio–Dennis [24] 1.829 × 10−7 1.95 4.715 × 10−8 1.98 1.195 × 10−8

New 1, Eq. (8) 2.183 × 10−5 1.95 5.642 × 10−6 1.97 1.434 × 10−6

New 2, Eq. (9) 1.485 × 10−5 1.96 3.795 × 10−6 1.98 9.589 × 10−7

New 3, Eq. (10) 5.664 × 10−6 1.98 1.426 × 10−6 1.99 3.577 × 10−7

New 4, Eq. (11) 1.158 × 10−6 2.13 2.637 × 10−7 2.07 6.286 × 10−8

Comparison of results obtained using different boundary conditions

admits an analytical solution given by ω = 2ex sin y, ψ = −xex sin y [5]. The boundary
conditions ψ |∂� and ∂ψ

∂n

∣
∣
∂�

can be obtained from the analytical solution. Here again we
consider second order discretization and compute solutions in three different uniform grids
viz. 49× 49, 97× 97 and 193× 193. Note that the steady system of equations contemplated
here is coupled via boundary conditions which are provided only for streamfunction and its
normal gradient. In our calculations we demand the residual be less than 10−10 and assume
that the steady state has been reached if difference between two successive iterations happens
to be less than 10−15. Following Napolitano et al. [5] we define the general relative error in
computing u(x, y) as:

G.R.E .(u) = ‖uc − ue‖L1

‖ue‖L1
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Table 3 Problem 2: B.R.E . in steady state boundary ω values

49 × 49 Order 97 × 97 Order 193 × 193

Thom [6] 1.855 × 10−3 1.71 5.679 × 10−4 1.75 1.687 × 10−4

Wilkes–Pearson [21] 8.766 × 10−5 1.97 2.243 × 10−5 1.97 5.708 × 10−6

Orszag–Israeli [8] 5.080 × 10−4 1.73 1.522 × 10−4 1.77 4.457 × 10−5

Briley [22] 9.082 × 10−5 1.98 2.299 × 10−5 1.99 5.796 × 10−6

Woods [23] 9.288 × 10−5 1.99 2.328 × 10−5 1.99 5.838 × 10−6

D’Alessio–Dennis [24] 9.357 × 10−5 2.00 2.339 × 10−5 2.00 5.841×10−6

New 1, Eq. (8) 1.791 × 10−3 1.70 5.507 × 10−4 1.75 1.642 × 10−4

New 2, Eq. (9) 1.284 × 10−3 1.71 3.904 × 10−4 1.76 1.154 × 10−4

New 3, Eq. (10) 5.139 × 10−4 1.73 1.540 × 10−4 1.77 4.507 × 10−5

New 4, Eq. (11) 1.335 × 10−4 1.82 3.785 × 10−5 1.83 1.063 × 10−5

Comparison of results obtained using different boundary conditions

where uc and ue denote the computed and exact solutions. Similarly boundary relative error
B.R.E .(u) is defined as:

B.R.E .(u) = ‖ucb − ueb‖L1

‖ueb‖L1

where ucb and ueb denote the computed and exact solutions at the boundary points only.
G.R.E .(ω) and G.R.E .(ψ) have been shown in the Tables 1 and 2, respectively. From these
tables it is clear that all the formulations show second order of convergence irrespective
of theoretical orders. Although the new formulation Eq. (11) is able to produce the lowest
error for all the grids as far as the ω field is concerned but for computed ψ field error is
the lowest with Wilkes–Pearson’s method [21]. From the Table 3 we see that as far as the
B.R.E .(ω) is concerned all methods show different orders of convergence. Finally in the
Fig. 3a, b we present the computed difference between the exact and numerical vorticity
values along the horizontal center line. As was earlier observed in Problem 1, here also we
see that the boundary condition given by Eq. (8) performs exactly similar to that of Thom’s
formula Eq. (57) and the second boundary condition Eq. (9) performs marginally better than
these two. A zoomed view provided in Fig. 3b suggests that overall the fourth boundary
condition Eq. (11) is better than other boundary conditions. Here we see that the boundary
condition due to Orszag and Israeli [8] produces less accuracy and is clustered with the result
produced byWoods [23]. All the other schemes seem to produce little bit better results and are
clustered together. Note that the approach of Woods [23] given by Eq. (60) and the approach
of D’Alessio andDennis [24] given in Eq. (61) providemuch lesser errors than those obtained
using Eq. (9). This result can be explained in the light of our earlier observations in Sect. 3.2
that Eqs. (60) and (61) are indeed second order implementations of the new vorticity integral
condition Eq. (6).

We choose the following three canonical problems to validate the new boundary condition
for flows governed by incompressible N–S equations. Apart from comparing the streamfunc-
tion and vorticity fields we also look forward to analyzing the pressure contours calculated
directly using the streamfunction and vorticity values.
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Fig. 3 Problem 2: Difference between the exact and computed vorticity values along the horizontal center
line at steady state. a Full view, b closeup view

4.3 Problem 3: Lid Driven Cavity Flow

Wepresent here the computed solutions for Re = 100, 1000, 5000 and10,000. For Re = 100,
the solution is computed separately using a 65× 65 grid with the newly developed boundary
conditions Eqs. (8), (9), (10) and (11). For the sake of comparison we have also computed
using Thom [6], Wilkes–Pearson [21], Orszag–Israli [8], Briley [22] andWoods [23] bound-
ary conditions. The boundary condition D’Alessio–Dennis [24] has not been considered
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Fig. 4 Problem 3: Absolute and relative difference in vorticity and total pressure computed using different
boundary conditions with respect to the solution computed using the boundary condition Eq. (8) at the bottom
wall for Re = 100. a Absolute difference in vorticity. b Relative difference in vorticity. c Absolute difference
in total pressure. d Relative difference in total pressure

as it uses a non compact stencil for vorticity and our computations are being carried out
with a fourth order compact formulation [15]. Absolute and relative differences in vortic-
ity at the bottom wall are presented in Fig. 4a, b, respectively. In the absence of analytical
solution the above mentioned absolute and relative differences have been calculated with
reference to the solution obtained using boundary condition Eq. (8). Similarly the absolute
and relative differences in total pressure at the bottomwall are presented in Fig. 4c, d, respec-
tively. We repeat the above computations for the right boundary in the Fig. 5. From these
figures it is seen that as we resort to higher order compact discretization for derivatives,
maximum difference is recorded with respect to the Thom formula [6] and is followed by
New 4 in both absolute and relative terms. Here it should be noted that for previous two
problems results obtained by New 1 and Thom were similar since all the derivatives were
discretized by using second order central differences and is in conformity with our theo-
retical analysis. Overall pattern is similar for all the newly developed boundary conditions
and the boundary condition of Orszag–Israeli [8]. From Fig. 4 it can be seen that for both
vorticity and pressure at the bottom wall, differences between values computed using the
boundary conditions New 1, Eq. (8) and Wilkes–Pearson [21] is much less. The same holds

123



276 J Sci Comput (2017) 72:252–290

Absolute difference

y

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102
0

0.2

0.4

0.6

0.8

1

New 2
New 3
New 4
Thom
Wilkes-Pearson
Orszag-Israeli
Briley
Woods

(a)
Relative difference

y

10-6 10-5 10-4 10-3 10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1

New 2
New 3
New 4
Thom
Wilkes-Pearson
Orszag-Israeli
Briley
Woods

(b)

Absolute difference

y

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102
0

0.2

0.4

0.6

0.8

1

New 2
New 3
New 4
Thom
Wilkes-Pearson
Orszag-Israeli
Briley
Woods

(c)
Relative difference

y

10-5 10-4 10-3 10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1

New 2
New 3
New 4
Thom
Wilkes-Pearson
Orszag-Israeli
Briley
Woods

(d)

Fig. 5 Problem 3: Absolute and relative difference in vorticity and total pressure computed using different
boundary conditions with respect to the solution computed using boundary condition Eq. (8) at the right wall
for Re = 100. a Absolute difference in vorticity. b Relative difference in vorticity. c Absolute difference in
total pressure. d Relative difference in total pressure

for Briley’s [22] condition to a large extent. In the absence of singularity the maximum
difference in both absolute and relative terms lies within the extremities for the bottom of
the cavity as seen in Fig. 4. But the presence of singularity introduces maximum error at
the top right corner and is evident from the Fig. 5. Next in Table 4 we present proper-
ties of primary, secondary and tertiary vortices for this problem for Re = 100 and 5000.
For Re = 5000 the solution has been computed using 129 × 129 grid. Here results have
been obtained using above mentioned nine different boundary conditions in conjunction
with the scheme developed in [15]. The findings have been compared with the benchmark
result of Ghia et al. [28]. Comparison with other benchmark results available in the literature
has been avoided as the numerical solution is reliant on the scheme being used apart from
boundary treatment. Although in our computation the scheme is identical we can observe
differences in the strengths of the vortices with the variation in the boundary condition imple-
mentation. This table establishes the importance of correct boundary condition in accurate
simulation of incompressible flow. The solvability condition presented in Eq. (4) is of funda-

123



J Sci Comput (2017) 72:252–290 277

Table 4 Problem 3: Properties of the primary, secondary and tertiary vortices for the lid-driven square cavity
for Re = 100 and Re = 5000

Vortex Re = 100 Re = 5000 Boundary condition/reference

Primary ψmin ψmin

−0.103532 −0.122755 New 1 (8)

−0.103500 −0.122697 New 2 (9)

−0.103499 −0.122694 New 3 (10)

−0.103484 −0.122580 New 4 (11)

−0.103427 −0.122069 Thom [6]

−0.103535 −0.123356 Wilkes–Pearson [21]

−0.103524 −0.123326 Orszag–Israeli [8]

−0.103499 −0.122619 Briley [22]

−0.103517 −0.122718 Woods [23]

−0.103423 −0.118966 Ghia et al. [28]

Secondary ψmax ψmax

TL – 1.49634 × 10−3 New 1 (8)

– 1.53096 × 10−3 New 2 (9)

– 1.52320 × 10−3 New 3 (10)

– 1.53229 × 10−3 New 4 (11)

– 1.60083 × 10−3 Thom [6]

– 1.51372 × 10−3 Wilkes–Pearson [21]

– 1.55492 × 10−3 Orszag–Israeli [8]

– 1.47458 × 10−3 Briley [22]

– 1.48979 × 10−3 Woods [23]

– 1.45641 × 10−3 Ghia et al. [28]

Secondary ψmax ψmax

BL 1.81582 × 10−6 1.39069 × 10−3 New 1 (8)

2.03833 × 10−6 1.40455 × 10−3 New 2 (9)

1.99225 × 10−6 1.39742 × 10−3 New 3 (10)

2.06675 × 10−6 1.40557 × 10−3 New 4 (11)

2.60324 × 10−6 1.42606 × 10−3 Thom [6]

1.82818 × 10−6 1.40607 × 10−3 Wilkes–Pearson [21]

2.07410 × 10−6 1.41897 × 10−3 Orszag–Israeli [8]

1.72088 × 10−6 1.38859 × 10−3 Briley [22]

1.69788 × 10−6 1.39032 × 10−3 Woods [23]

1.74877 × 10−6 1.36119 × 10−3 Ghia et al. [28]

Secondary ψmax ψmax

BR 1.26848 × 10−5 3.09818 × 10−3 New 1 (8)

1.35258 × 10−5 3.13662 × 10−3 New 2 (9)

1.33691 × 10−5 3.13638 × 10−3 New 3 (10)

1.36647 × 10−5 3.15017 × 10−3 New 4 (11)

1.15849 × 10−5 3.25299 × 10−3 Thom [6]
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Table 4 continued

Vortex Re = 100 Re = 5000 Boundary condition/reference

1.26952 × 10−5 3.11696 × 10−3 Wilkes–Pearson [21]

1.35566 × 10−5 3.16957 × 10−3 Orszag–Israeli [8]

1.24492 × 10−5 3.07721 × 10−3 Briley [22]

1.24208 × 10−5 3.09243 × 10−3 Woods [23]

1.25374 × 10−5 3.08358 × 10−3 Ghia et al. [28]

Tertiary ψmin ψmin

BR – −1.50447 × 10−6 New 1 (8)

– −1.80420 × 10−6 New 2 (9)

– −1.73974 × 10−6 New 3 (10)

– −1.86192 × 10−6 New 4 (11)

– −3.06109 × 10−6 Thom [6]

– −1.55771 × 10−6 Wilkes–Pearson [21]

– −1.96847 × 10−6 Orszag–Israeli [8]

– −1.38191 × 10−6 Briley [22]

– −1.41558 × 10−6 Woods [23]

– −1.43226 × 10−6 Ghia et al. [28]

Grid size 65 × 65 129 × 129 Present computation

129 × 129 257 × 257 Ghia et al. [28]

Table 5 Problem 3: Error extent
to which solvability condition Eq.
(4) has been satisfied for
Re = 100 and 5000

Boundary condition Re = 100 Re = 5000

Thom [6] 0.00922 0.00525

Wilkes–Pearson [21] 0.00439 0.00070

Orszag–Israeli [8] 0.00378 0.00318

Briley [22] 0.00577 0.00904

Woods [23] 0.00719 0.00431

New 1, Eq. (8) 0.00242 0.00540

New 2, Eq. (9) 0.00373 0.00106

New 3, Eq. (10) 0.00414 0.00268

New 4, Eq. (11) 0.00455 0.00401

mental importance in ψ−ω formulation and it has to be taken into account properly by any
approach dealing with vorticity boundary condition. Table 5 we present the extent of abso-
lute error to which this solvability condition has been satisfied at the steady state reached
using the four newly developed vorticity conditions as well as other boundary conditions
for Re = 100 and 5000. It is hearting to see that all the newly developed conditions per-
form well and produce relatively less error for Re = 100. For Re = 5000 the conditions
New 2 and New 3 satisfy solvability condition to a large extent but Wilkes–Pearson [21]
shows least error. This clearly establishes inherent potential of some of the well known
vorticity boundary conditions. Finally we present streamline, vorticity and static pressure
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Problem 3: Results for Re = 100 computed using 65× 65 grid (left) and Re = 5000 computed using
257 × 257 grid (right). a, b Streamfunction. c, d Vorticity. e, f Static pressure

contours in Fig. 6 for Re = 100 and 5000 computed using the boundary condition Eq.
(11).

We compare convergence behavior of the four newly developed boundary conditions
given by the Eqs. (8), (9), (10), (11) with other established boundary conditions in Figs. 7
and 8. Corresponding relative CPU times have been charted in Table 6. In Figs. 7a and 8a
convergence history corresponding to the first time step for Re = 100 and Re = 1000,
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Fig. 7 Problem 3: Convergence history corresponding to Re = 100 for a first time step using unsteady code,
b steady code

respectively, have been portrayed. These figures depict max- norm correction in stream-
function field with respect to each inner iteration starting with zero initial condition for ψ .
For Re = 100 it is seen that amongst the newly developed conditions New 2 takes the
least number of iteration whereas the formula New 1 takes the greatest number of iterations
and hence relative CPU time as seen in Table 6. Overall boundary condition of Thom [6]
and Orszag–Israeli [8] are found to be best whereas Briley [22] and Woods [23] condi-
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Fig. 8 Problem 3: Convergence history corresponding to Re = 1000 for a first time step using unsteady code,
b steady code

tions lag behind. For Re = 1000 the formula New 1 takes the highest number of iterations
among the newly developed ones but here the difference between the number of iterations
taken by different schemes is less. A slightly higher CPU time consumption is reported in
Table 6 for New 2 vis-a-vis New 1 boundary condition. This may be attributed to higher
computational complexity involved in each iteration of New 2. We have also developed
steady code for the lid driven cavity problem in conjunction with all the boundary condi-
tions. The codes thus developed have been tested and convergence histories corresponding
to different boundary conditions have been shown in Figs. 7b and 8b for Re = 100 and
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Table 6 Problem 3: CPU-time comparison for various boundary conditions (relative values with New 1 as
reference) in four different cases

Boundary condition Re = 100 Re = 1000

Unsteady (1st time step) Steady Unsteady (1st time step) Steady

New 1, Eq. (8) 1.0 1.0 1.0 1.0

New 2, Eq. (9) 0.767 0.995 1.003 1.047

New 3, Eq. (10) 0.870 1.035 0.957 1.499

New 4, Eq. (11) 0.913 1.028 0.967 1.043

Thom [6] 0.654 1.179 0.998 0.999

Briley [22] 1.973 1.097 1.027 1.090

Wilkes–Pearson [21] 0.908 1.125 1.003 1.046

Orszag–Israeli [8] 0.625 1.151 1.014 1.083

Woods [23] 1.276 1.098 1.012 1.093

Re = 1000, respectively. Here figures depict max- norm correction in streamfunction field
with respect to each iteration till the steady state has been reached. For the steady problem it
can be said that overall New 1 performs best for both the Re values and is closely followed
by the conditions New 2 and New 4. From Table 6 one can infer that for both the steady
cases CPU times consumed by the newly developed boundary conditions are less than those
accounted for the established boundary conditions with the exception of New 3 applied to
Re = 1000.

Finally we compute with Re = 10,000 where an unsteady periodic flow is expected.
We carry out our simulation using 129 × 129 grid with newly developed boundary condi-
tions Eqs. (8) and (11). For both the boundary conditions an eventual periodic state with
time period 1.65 has been found. In Fig. 9a we present the error extent of the solvability
condition Eq. (4) for the entire period. From the figure it is clear that error is much lower
for the boundary condition Eq. (11) as compared to boundary condition Eq. (8). In Fig. 9b
we present the phase portrait of u and v velocities which establishes the periodic nature.
Streamlines and total pressure contours at periodic state obtained using Eq. (8) have been
presented in Figs. 10a and 10b, respectively. Whereas the results obtained via Eq. (11) at
corresponding time can be found in Figs. 10c and 10d, respectively. A vorticity resolution
check is carried out in Fig. 11 for Re = 10,000. In this figure we have depicted vorticity
contours computed using two fine grids 257 × 257 and 513 × 513. It is seen that artificial
numerical oscillation associated with the point of singularity at the top left corner signifi-
cantly reduces with the decrease in grid spacing and the plots have good match. The above
results clearly establish that our newly developed integral vorticity condition is competent
for high Re simulation.

4.4 Problem 4: Backward Facing Step Problem

Next we consider the flow over the backward-facing step in a channel. This problem is
specifically chosen to test the applicability of the newly developed philosophy in open
inflow and outflow situations. For this problem we employ compact discretization [15]
in a multi-block structured grid. Sketch of the flow configuration along with the defi-
nition of length scales has been presented in Fig. 12. The backward-facing step has an
expansion ratio H/h = 2.0, h = 0.5 over which the flow that develops in the upstream
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Fig. 9 Problem 3: a Extent to which solvability condition has been satisfied for Re = 10,000, b phase portrait
of u versus v at the point (2/16, 13/16) Re = 10,000

suddenly expands into a downstream channel. For this flow problem the Reynolds num-
ber is defined as Re = 2hUavg

ν
, Uavg being the average velocity at the inlet. At the inlet a

parabolic velocity profile u = 12y(1 − 2y), v = 0 has been prescribed and at the outlet
convective boundary condition, given by ∂φ

∂t + Uavg
∂φ
∂x = 0, with φ standing for ψ , ψx

and ψy , has been applied. For vorticity we use the boundary condition given by Eq. (8)
at all the boundaries. This approach used for vorticity is new vis-a-vis approach adopted
elsewhere [29,30]. An uniform grid with �x = 0.04 and �y = 0.02 has been used. We
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Fig. 10 Problem 3: Contours at periodic state for Re = 10,000 a streamfunction computed using New 1,
b total pressure computed using New 1, c streamfunction computed using New 4, d total pressure computed
using New 4

compute solutions to arrive at steady state for Re = 100 and 800 by taking Lu = 6h
and Ld = 34h. The streamfunction, vorticity and static pressure field have been shown
in Fig. 13. A quantitative comparison of our results, obtained using the fourth order com-
pact scheme developed by Sen [15], with that of Chiang and Sheu [29] has been done in
Table 7. This comparison indicates validity of our newly developed boundary condition for
vorticity.

4.5 Problem 5: Flow over a Circular Cylinder

Finally we consider flow past an impulsively started circular cylinder to verify the applicabil-
ity of the newly developed boundary condition in open flowproblems. The schematic diagram
of the flow is shown in Fig. 14. We consider R∞ ≈ 21 and use a conformal transformation
x = 1

2e
πξ cosπη, y = 1

2e
πξ sin πη to transform the physical domain into a rectangular
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Fig. 11 Problem 3: Resolution check for vorticity contours at Re = 10,000 computed using New 1 with grid
a 257 × 257, b 513 × 513
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Fig. 12 Problem 4: Schematic diagram of the flow configuration and the definition of length scales

computational domain. Under such a transformation the streamfunction–vorticity formula-
tion in Eqs. (1)–(2) is invariant up to a scaling factor, which enables the use of the scheme
developed by Sen [15] in Cartesian grid. For streamfunction we use potential boundary con-
dition in the upstream and convective boundary condition, appropriately translated onto the
ξ–η plane, along the downstream far field. On the surface of the cylinder we set ψ = 0.
For vorticity we use the newly developed boundary condition given by Eq. (8) at both the
solid surface and the far field. No distinction has been made between the vorticity boundary
conditions at upstream and downstream. To the best of our knowledge this is probably for
the first time that identical vorticity boundary condition has been applied on all boundaries
to simulate flow past an impulsively started circular cylinder. The Reynolds number for the
flow is based on the diameter and we simulate flow for Re = 100 and 1000 using grids
121 × 201 and 169 × 281, respectively. For Re = 100 we use δt = 0.01 whereas for
Re = 1000, δt = 0.002 has been considered for accurate simulation. A qualitative com-
parison of Strouhal numbers, drag and lift coefficients of the periodic state of flow for both
the Reynolds numbers with the benchmark results available in the literature has been carried
out in Table 8. A good quantitative comparison can be seen. To get an insight into the flow
evolution under the new vorticity boundary condition we depict the time advancement of
the drag and lift coefficients in Fig. 15. We present the streamlines and vorticity contours
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Fig. 13 Problem 4: Results for Re = 100 (left) and 800 (right). a, b Streamfunction. c, d Vorticity. e, f Static
pressure

Table 7 Problem 4: Properties
of the wall eddy for Re = 100
and 800

Wall Re 100 800

Lower Eddy centre (x, y) (0.52, −0.22) (3.2, −0.2)

ψvalue −0.0273 −0.0338

Recirculation length x1 1.48 5.88

1.63 [29] 6.08 [29]

Upper Eddy Centre (x, y) – (7.28, 0.32)

–

ψvalue – 0.5067

–

Separation point x4 – 4.72

– 4.75 [29]

Reattachment point x5 – 10.28

– 10.52 [29]

for the flows once the periodic state has been reached in Fig. 16. It can be seen that the
new vorticity boundary condition is quite effective in creating vortices in the vicinity of the
cylinder and is also able to convect the vortices out of the computational field at the far field
boundary.
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Fig. 14 Problem 5: Schematic diagram of the flow configuration

Table 8 Problem 5: Comparison of Strouhal numbers, drag and lift coefficients of the periodic flow

Re Reference St CD CL

100 Le et al. [31] 0.160 1.37 ± 0.009 ±0.323

Berthelsen and

Faltinsen et al. [32] 0.169 1.38 ± 0.010 ±0.340

Wang et al. [33] 0.170 1.379 ±0.357

Present study 0.165 1.398 ± 0.007 ±0.207

1000 Chou and Huang [34] 0.22 1.39 ± 0.18 ±0.922

Cheng et al. [35] 0.206 1.22 ± 0.15 ±1.1

Qian and Vezza [36] 0.240 1.52 ± 0.22 ±1.41

Present study 0.236 1.506 ± 0.172 ±0.986
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Fig. 16 Problem 5: Results for Re = 100 (left) and 1000 (right). a, b Streamfunction. c, d Vorticity

5 Conclusion

In this workwe have designed an algorithm to implement a newly developed vorticity integral
condition which can be used to compute solution of nonprimitive Navier–Stokes system. In
this process we have established a modified vorticity boundary condition. This new condition
can be realized using an explicit formula. It can tackle both the wall bounded and open
flow problems with ease. Various different implementations of this integral condition in
juxtaposition to the finite volume approach have been outlined. Stability and convergence
analysis of the boundary discretization procedures are also carried out. These approaches have
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been compared with as many as six existing local boundary conditions. We have also shown
that this new integral condition has linkages with some of the existing vorticity boundary
conditions. Amodel problem that embodies the essential features of the incompressibility and
viscosity has been used to reveal important characteristics of the new formulation. For all the
three different benchmark problems, discussed in this work, the newly developed algorithm
has been found to be quite suitable. It is worthwhile to note that probably for the first time
identical conditions for computing vorticity have been used on all boundaries for flow past
impulsively started circular cylinder. The newly developed algorithm permits smooth and
precise convalescence of vorticity. In addition we have also obtained correct pressure field
for both the attached and separated boundary layer flows.
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