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In this study, an upwinding SPH model with a non-symmetric kernel function is proposed to predict one-
dimensional open channel flows. Due to the application of non-symmetric kernel function biased in favor
of the upstream side, numerical diffusion is intrinsically added into the discretized momentum equation
using SPH. The proposed model thus has shown to have good potential to resolve steep gradient or dis-
continuous solutions without the need of exactly adding artificial viscosity to the discretized equation.
Furthermore, an upwinding coefficient for the determination of the degree of upwinding is derived to
accommodate the dispersion-relation-preserving (DRP) property. In wave number space, the error
between the discretized SPH equations and the original partial differential equations is minimized,
thereby yielding the optimized upwinding coefficient. The proposed model has been validated by solving
four benchmark problems involving non-rectangular cross section, varying channel width, non-uniform
bed slope and hydraulic jump. Comparison of the numerical and exact solutions shows that the proposed
model has the ability of accurately predicting various open channel flows involving complicated trans-
critical flows. The consistency condition of the proposed model is also analyzed theoretically for the sake
of completeness.
� 2017 International Association for Hydro-environment Engineering and Research, Asia Pacific Division.

Published by Elsevier B.V. All rights reserved.
1. Introduction

Open channel flows commonly seen, for example, in river
hydraulics (Szymkiewicz, 1991; Ying et al., 2004; Hsu et al.,
2006; Chen et al., 2015), eco-hydrology (Jadhav and Buchberger,
1995; Anderson et al., 2006), and in hydrodynamics
(Papanicolaou et al., 2004; Diaz et al., 2008) have been predicted
by solving the shallow water equations (SWEs). Owing to the
non-linear hyperbolic property in the shallow water equations, dif-
ferent wave propagation speeds in the flow allow steep gradient or
discontinuous solutions to develop in the open channel flows sub-
ject to a rapidly deformed free surface. The resulting spurious oscil-
lations in the vicinity of steep gradients and discontinuities will
lead to divergent or unphysical solutions. To circumvent this prob-
lem, various discontinuity capturing mesh-based discretization
methods have been developed over the past few decades. For
instance, the MacCormack scheme (Garcia-Navarro and Saviron,
1992) and the Roe’s approximate Riemann solver (Alcrudo et al.,
1992) in finite difference method (FDM), the dissipative Galerkin
scheme (Katopodes, 1984) in finite element method (FEM) and
the total variation diminishing (TVD) scheme (Lin et al., 2003) in
finite volume method (FVM) have been referred. These methods
have been proven to be stable and accurate in the prediction of
open channel flow problems containing sharply varying free
surface.

In addition to the mesh-based methods, some meshless meth-
ods such as the smoothed particle hydrodynamics (SPH) (Liu and
Liu, 2003; Monaghan, 2005; Gomez-Gesteira et al., 2010) have
been recently applied to solve SWEs (the so-called SPH-SWEs
model). Thanks to the Lagrangian nature, SPH method has the fol-
lowing advantages: (1) the mass conservation is satisfied; (2) the
nonlinear convective term of SWEs is instinctively considered;
and (3) the positive water depth is preserved by means of SPH
summation operator even in a wet-dry interface. However, only
few studies focused on the treatment of steep gradient or
.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jher.2017.01.001&domain=pdf
http://dx.doi.org/10.1016/j.jher.2017.01.001
mailto:f94622026@ntu.edu.tw
mailto:tjchang@ntu.edu.tw
mailto:twhsheu@ntu.edu.tw
http://dx.doi.org/10.1016/j.jher.2017.01.001
http://www.sciencedirect.com/science/journal/15706443
http://www.elsevier.com/locate/JHER


14 K.-H. Chang et al. / Journal of Hydro-environment Research 15 (2017) 13–26
discontinuity in open channel flows have been reported. Wang and
Shen (1999), Chang et al. (2011) and Kao and Chang (2012) used
the Monaghan artificial viscosity formulation to investigate various
dam-break flows, respectively. Ata and Soulaimani (2005) pro-
posed a new artificial viscosity formulation based on the Lax-
Friedrichs flux for the dam-break problem with wet bed. Chang
and Chang (2013) utilized the artificial viscosity formulation of
Lax-Friedrichs flux to study non-rectangular and non-prismatic
open channel flows. Besides those, Vacondio et al. (2012b) intro-
duced two-shock Riemann solver into the SPH-SWEs model to sim-
ulate oscillatory flows in a parabolic basin and the dam-break
flows with dry bed.

In the literature, no SPH-SWEs model has exploited the non-
symmetric kernel function to eliminate oscillations resulting from
steep gradient or discontinuous solutions. Inspired by the works of
Brooks and Hughes (1982) and Huang and Sheu (2012), we are led
to learn that use of the upwinding technique can add more or less
numerical diffusion into the flow direction to stabilize solutions.
Hence, we are motivated to follow the same idea and propose in
this study a new upwinding SPH kernel function and implement
it to the SPH-SWEs model, namely the upwinding SPH-SWEs
model, to resolve steep gradients or discontinuities in open chan-
nel flows. The upwinding SPH kernel function can be constructed
by adding a weighted dissipation term to the symmetric SPH ker-
nel functions such as the cubic spline kernel (Liu and Liu, 2003) and
the Wendland kernel (Violeau, 2012). The use of the upwinding
SPH kernel function which introduces damping mechanism to
resolve steep gradient or discontinuous solutions results in a stabi-
lized SPH-SWEs model. In addition, an upwinding coefficient,
which determines the degree of upwinding, needs to be rigorously
determined. The technique of spatial Fourier transformwill be con-
ducted to derive the numerical dispersion relation corresponding
to the discretized SPH equations in wave number space. Both dis-
persion and dissipation errors resulting from the SPH discretization
can be theoretically derived. The discretized SPH model is there-
fore subject to the satisfaction of the dispersion-relation-
preserving (DRP) property (Tam and Webb, 1993; Cheong and
Lee, 2001). The optimized upwinding coefficient thus derived can
yield therefore the smallest dispersive and dissipative errors.

This paper is organized as follows. In Section 2 the model equa-
tions of shallow water including the variables of wetted cross-
section area and water discharge are introduced. Section 3 presents
the proposed upwinding SPH kernel function, the SPH operators
and the upwinding SPH formulation. In Section 4 the consistency
of the proposed model is analyzed theoretically. Finally, four
benchmark cases featuring the non-rectangular cross section, vary-
ing channel width, non-uniform bed slope and hydraulic jump in
open channel flows are solved to verify the proposed approach
against the exact solutions in Section 5.

2. Shallow water equations

The model of SPH-SWEs governs water depth and water veloc-
ity in a rectangular or a prismatic open channel. The wetted cross-
section area and the water discharge are introduced in the pro-
posed SPH-SWEs model aiming at predicting non-rectangular and
non-prismatic channel flows. The Lagrangian form of the SWEs
expressed in terms of the wetted cross-section and the water dis-
charge can be written as follows in Eq. (1) (continuity equation)
and Eq. (2) (momentum equation)

DA
Dt

¼ �A
@u
@x

; ð1Þ

DQ
Dt

¼ �Q
@u
@x

� gA
@dw

@x
þ gAðS0 � Sf Þ: ð2Þ
In the above, D
Dt denotes the total time derivative term

D
Dt ¼ @

@t þ u @
@x

� �
, Q is the water discharge, u is the water velocity

(=Q/A), A is the wetted cross-section area, dw is the water depth,
S0 is the bed slope, Sf is the friction slope (=n2Q2/A2R4/3), n is the
Manning roughness coefficient, R is the hydraulic radius, and g is
the gravitational acceleration.

3. Upwinding SPH model

Any physical quantity at particle a (/a) can be approximated as
follows within the SPH context.

/a ¼
Z

/ðxÞxðxa � x;hÞdV ffi
Xb¼N

b¼1

mb
/b

Ab
xðrab; haÞ ð3Þ

In the above, mb (= AbVb = AbDx0) is the mass of particle b, Vb

(=Dx0 at the initial state) is the volume of particle b, Ab is the wet-
ted cross-section area of particle b, Dx0 is the initial particle spac-
ing, x is the position of a particle, rab (= |xa � xb|) is the distance
between particles a and b, x(rab, ha) is the symmetric kernel func-
tion of particle a. In this study, ha denotes the smoothing length of
particle a (=1.2 Dx0) and N is the particle number in the support
domain of particle a (=5 in this study due to the smoothing length
being set at 1.2 Dx0).

The standard SPH operator for the first derivative of a physical
quantity at particle a is shown below

@/
@x

� �
a

¼ �
Z

/ðxÞ @xðjxa � xj;hÞ
@x

dx ffi �
Xb¼N

b¼1

mb

Ab
/b

@xðrab;haÞ
@xb

ð4Þ

Note that Eq. (4) cannot properly approximate the first deriva-
tive in the sense that the first derivative vanishes, if the physical
quantity is constatnt. Therefore, an alternative SPH operator for
the first derivative of a physical quantity at particle a is adopted
as follows (Chang and Chang, 2013):

@/
@x

� �
a

¼ 1
Aa

Xb¼N

b¼1

mbð/a � /bÞ
@xðrab; haÞ

@xb
ð5Þ

It is addressed that Eq. (5) is symmetric with respect to a and b.

3.1. Development of new upwinding kernel function

In this study, an upwinding kernel function (W) will be derived
with an aim to resolve oscillations near steep gradient or discon-
tinuous solutions. Our strategy is to modify the symmetric kernel
function (x) by adding a dissipative term (DD), thereby leading to

Wðrab; haÞ ¼ xðrab;haÞ þ DD ð6Þ
Hereafter, we denote W(rab, ha) as W

a
ab, x(rab, ha) as xa

ab,
@Wðrab ;haÞ

@xb

as Wa
ab;x and

@xðrab ;haÞ
@xb

as xa
ab;x.

The following modified dissipative term for particle a has the
form similar to that used by Brooks and Hughes (1982) and
Huang and Sheu (2012).

DD ¼ sauaxa
ab;x ð7Þ

In DD, sa denotes the upwinding coefficient of particle a and
determines the degree of upwinding and ua is the velocity of par-
ticle a. The upwinding kernel function for particle a is therefore
written as

Wa
ab ¼ xa

ab þ sauaxa
ab;x ð8Þ

In the proposed SPH-SWEs model, the upwinding coefficient (s)
which has a great impact on the numerically introduced dispersive
and dissipative errors needs to be rigorously derived. Firstly, SPH
approximates the first derivative of particle a as
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@u
@x

� �
a
¼ 1

Aa

Xb¼N

b¼1

mbðua � ubÞWa
ab;x: ð9Þ

By applying the differential operator on Eq. (8) and substituting
it into Eq. (9), we can get

@u
@x

� �
a

¼ 1
Aa

Xb¼N

b¼1

mbðua � ubÞðxa
ab;x þ sauaxa

ab;xxÞ ð10Þ

Eq. (10) can be further rewritten to the following equation:

@u
@x

� �
a
¼
Xb¼N

b¼1

f bub ð11Þ

where f b ¼ �mbðxa
ab;x þ sanuaxa

ab;xxÞ=Aa when b– a and

f a ¼ �Pb¼N;b–a
b¼1 f b.

We then perform Fourier transform on Eq. (11) (Tam andWebb,
1993; Li, 1997), leading to

ia~u ¼
Xb¼N

b¼1

f be
ialbD

 !
~u ð12Þ

where ~u is the Fourier transform of velocity u, a is the exact wave
number,

D ¼ jx1 � xNj
N � 1

; lb ¼ xb � xa
D

and i ¼
ffiffiffiffiffiffiffi
�1

p

By comparing both sides of Eq. (12), the numerical wave num-
ber (â) can be derived as

â ¼ �i
Xb¼N

b¼1

f be
ialbD ¼ âr � iâi: ð13Þ

Note that âr denotes the real part of the numerical wave num-

ber ¼Pb¼N;b–a
b¼1 f b sinðalbDÞ

� �
and âi is the imaginary part of the

numerical wave number ¼Pb¼N
b¼1 f b cosðalbDÞ

� �
(Li, 1997).

Following the work of Tam and Webb (1993) and Cheong and
Lee (2001), the difference between the exact and numerical wave
numbers is defined as

E ¼ Er þ Ei ¼
Z p=2

0
jkr � kj2dkþ k

Z p=2

0
ki � e� ln 2� k�p

rð Þ2
				

				
2

dk ð14Þ

where Er and Ei are the differences between the real parts and the
imaginary parts of the exact and numerical wave numbers, respec-
tively, k ¼ aD, kr ¼ ârD, ki ¼ âiD, k is the weighted parameter whose
performance is assessed in Appendix B (=1 in this study) and r is
the half-width of Gaussian function (=0.4p in this study).

The value of E is a minimum provided that

@E
@f ct

¼ 0 ct ¼ 1;N but ct–a ð15Þ

Herein, the upwinding coefficient can be derived as Eq. (16) and
the derivation detail is given in Appendix A.

sa ¼ 1
ua

�Pb¼N
b¼1mbðCb � CaÞxa

ab;x þ AaðSr þ kSiÞPb¼N
b¼1mbðCb � CaÞxa

ab;xx

ð16Þ

where Ca ¼ kD sinððla�lct Þp=2Þ
la�lct

þ sinððlaþlct Þp=2Þ
laþlct

h i
;

Cb ¼ D ðkþ 1Þ sinððlb � lctÞp=2Þ
lb � lct

þ ðk� 1Þ sinððlb þ lctÞp=2Þ
lb þ lct


 �
;

Sr ¼ �2
Z p=2

0
k sinðlctkÞdk;
Si ¼�2
Z p=2

0
cosðlctkÞ �e� ln2�ðk�pr Þ2dk; and

@2xðrab;haÞ
@x2b

denotes xa
ab;xx:

Substituting Eq. (16) into Eq. (8), the upwinding kernel function
can be finally expressed as

Wa
ab ¼ xa

ab þ
�Pb¼N

b¼1mbðCb � CaÞxa
ab;x þ AaðSr þ kSiÞPb¼N

b¼1mbðCb � CaÞxa
ab;xx

xa
ab;x ð17Þ
3.2. Evaluation of the wetted cross-section area

Commonly, two numerical approaches can be applied to calcu-
late the wetted cross-section area in SPH-SWEs. One can achieve
the goal either through the continuity equation (1) or by virtue
of the SPH summation operator shown in Eq. (3). To avoid a nega-
tive wetted cross-section area, the proposed model adopts the lat-
ter approach to compute the wetted cross-section area of each
particle a. Since the smoothing length is allowed to vary for getting
a more accurate SWEs solution, the smoothing length of particle a
is connected to the wetted cross-section area (Chang and Chang,
2013; Rodriguez-Paz and Bonet, 2005) by virtue of

ha ¼ h0;a
A0;a

Aa

� �1=Dm

ð18Þ

In the above, A0;a and h0;a are the initial wetted cross-section
area and the smoothing length for particle a, respectively, and Dm

is the number of space dimensions (Dm ¼ 1 in this study).
Because of the variable smoothing length, the Newton-Raphson

iterative method is performed to solve the wetted cross-section
area of particle a. The iterative procedure (Chang and Chang,
2013; Rodriguez-Paz and Bonet, 2005) is as follows:

Akþ1
a ¼ Ak

a 1� ReskaDm

ðReskaDm þ ak
aÞ

" #
ð19Þ

with

Reska ¼ Ak
a �

Xb¼N

b¼1

mbxa
ab ð20Þ

where Reska is the residual of particle a at the kth iteration and ak
a is

defined as

ak
a ¼ �

X
b

mbrab
dxa

ab

dr
ð21Þ

Application of the Newton-Raphson iterative procedure will be
terminated provided that

Reskþ1
a

Ak
a

6 10�10 ð22Þ

Moreover, as the problems with steep gradient or discontinuous
bottom profiles are encountered, a balance correction in calculat-
ing the water depths proposed by Vacondio et al. (2013) and Xia
et al. (2013) is commonly used to improve unphysical oscillation
in water depth.

3.3. Approximation of momentum equation

The discretized SPH form of the momentum equation [Eq. (2)]
is derived next to evaluate the rate of water discharge of each
particle a
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DQ
Dt

� �
a
¼ �ua

Xb¼N

b¼1

mbðua � ubÞWx � g
Xb¼N

b¼1

mbðdw;a � dw;bÞxx

þ gAaðS0;a � Sf ;aÞ ð23Þ
where �Wx ¼ �xx þ �s �xxx. Due to the varied smoothing length, we
express �xx ¼ 0:5 � ðxa

ab;x þxb
ab;xÞ, �xxx ¼ 0:5 � ðxa

ab;xx þxb
ab;xxÞ, and

�s ¼ 0:5 � ðsaua þ sbubÞ (Hernquist and Katz, 1989).
As to the bed slope term S0;a shown on the right hand side of Eq.

(23), virtual bed particles are introduced to calculate the bed slope
of particle a (Chang and Chang, 2013; Vacondio et al., 2012a). Fig. 1
shows the schematic of the computational domain. In this study,
the computational domain is divided into three zones, i.e. the
inflow zone (the zone between the inlet boundary and the inflow
boundary), the fluid zone (the zone between the inflow boundary
and the outflow boundary), and the outflow zone (the zone
between the outflow boundary and the outlet boundary). In addi-
tion, four particle types are used, including the inflow particles,
inner particles, outflow particles and virtual bed particles (i.e. rect-
angular points, circle points, diamond points and triangular points,
respectively, shown in Fig. 1). The former three types correspond
respectively to the flow zone, the fluid zone and the outflow zone.
The last type is the computational domain.

Each virtual bed particle has a specified value of the bed slope
and its volume equals Dx0: Then, the bed slope of the inflow/
inner/outflow particle a is computed by incorporating the bed
slope of each virtual bed particle surrounding the inflow/ inner/
outflow particle a into the SPH summation operator as shown
below

S0;a ¼
Xb¼N

b¼1;b2vb
VbS0;b ~xb

ab ð24Þ

Here, the notation ~xb
ab denotes the corrected kernel function as

(Randles and Libersky, 1996)

~xb
ab ¼

xb
abPb¼N

b¼1;b2vbVbxb
ab

ð25Þ

where the subscript vb denotes the virtual bed particle and
hb2vbÞ ¼ 1:2Dx0.

3.4. In/out-flow boundary conditions

Four kinds of boundary conditions can be specified according to
the local flow conditions (or Froude number) at the in/out-flow
boundaries. In the treatment of the in/out-flow boundary condi-
tions, the specified time interval method (Sturm, 2010) is adopted
to compute the unknown variables at in/out-flow boundaries along
the negative and positive characteristic lines LP and RS schematic
in Fig. 2 for every time step. As the subcritical flow occurs at the
inflow boundary (Line LP in Fig. 2), the water discharge is
Fig. 1. Schematic of the investig
prescribed and the water depth is calculated by solving Eq. (26)
iteratively through the Newton-Raphson iteration procedure.

Qp ¼ AP uL þ g
cL

ðdw;P � dw;LÞ þ gðS0;L � Sf ;LÞDt

 �

ð26Þ

As the subcritical flow occurs at the outflow boundary (Line RS
in Fig. 2), the water depth is prescribed and the water discharge is
determined from Eq. (27).

QS ¼ AS uR � g
cR

ðdw;S � dw;RÞ þ gðS0;R � Sf ;RÞDt

 �

ð27Þ

The values of all physical variables at points L and R are deter-
mined by the specified time interval method. For greater details on
this method, one can refer to Federico et al. (2012), Chang and
Chang (2013) and Aristodemo et al. (2015).

Provided that the supercritical flow occurs at the inflow bound-
ary, the water depth and the water discharge are prescribed, while
the water depth and the water discharge are not necessarily to be
specified as those of the supercritical flow at the outflow boundary.

3.5. Time integration scheme

The leap-frog time integration scheme (Bonet and Lok, 1999)
which can conserve linear and angular momentum exactly is used
to update the particle positions and discharge in time, i.e., Eqs. (28)
to (30).

Qnþ1=2
a ¼ Qn�1=2

a þ Dt
dQ
dt

� �n

a
ð28Þ

xnþ1
a ¼ xna þ DtAn

aQ
nþ1=2
a ð29Þ

Qnþ1
a ¼ Qnþ1=2

a þ 0:5Dt
dQ
dt

� �n

a

ð30Þ

Due to the fact that SPH is an explicit method, the chosen time
step (Dt) has to satisfy the CFL condition given below

Dt 6 NCFL �min
Dx0

ua þ
ffiffiffiffiffiffiffiffiffiffiffi
gHd;a

p
 !

ð31Þ

where Hd is the hydraulic depth and NCFL is set to 0.4.

4. Fundamental studies on the proposed SPH model

4.1. Upwinding kernel function

In this study, the Wendland kernel (Violeau, 2012), or Eq. (32),
is adopted to be a symmetric kernel function to establish an
upwinding kernel function. The first and second derivatives of
the Wendland function are described below
ated computational domain.
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K.-H. Chang et al. / Journal of Hydro-environment Research 15 (2017) 13–26 17
xðs;hÞ ¼ 3
4h

ð1þ 2sÞ 1� s
2

� �4 0 6 s 6 2
0 s > 2

(
ð32Þ

@xðs;hÞ
@s

¼ 3
4h

�5s 1� s
2

� �3 0 6 s 6 2
0 s > 2

(
ð33Þ

@2xðs; hÞ
@s2

¼ 3
4h

5ð�1þ 2sÞ 1� s
2

� �2 0 6 s 6 2
0 s > 2

(
ð34Þ

where s ¼ r=h.
Here, the property of the integrals of the upwinding kernel

function and its first derivative are investigated. For particle a,
the support domain in one dimension lies between two points
xa � 2ha and xa + 2ha. Eq. (35) shows that the integral of Wa

ab can
be divided into two terms including the integrals of xa

ab and
xa

ab;x; respectively. Besides, Eq. (36), which shows the integral of

Wa
ab;x, can also be divided into two terms including the integrals

of xa
ab;x and xa

ab;xx; respectively. Hence, it can be shown that the
integral of the upwinding kernel function in the support domain
is 1 while the integral of its first derivative in the support domain
is 0.Z xaþ2ha

xa�2ha
Wa

abdxb ¼
Z xaþ2ha

xa�2ha
ðxa

ab þ sauaxa
ab;xÞdxb

¼
Z xaþ2ha

xa�2ha
xa

abdxb þ saua

Z xaþ2ha

xa�2ha
xa

ab;xdxb ¼ 1 ð35Þ

Z xaþ2ha

xa�2ha
Wa

ab;xdxb ¼
Z xaþ2ha

xa�2ha
ðxa

ab;x þ sauaxa
ab;xxÞdxb

¼
Z xaþ2ha

xa�2ha
xa

ab;xdxb þ saua

Z xaþ2ha

xa�2ha
xa

ab;xxdxb ¼ 0

ð36Þ
Fig. 3. The plots of (a) the upwinding kern
Assuming that the velocity of particle a is equal to 1, the
upwinding kernel function and its first derivative under uniform
particle spacings are depicted in Fig. 3. In contrast to the symmet-
ric kernel functions such as Gaussian function (Liu and Liu, 2003),
cubic function (Liu and Liu, 2003) and Wendland function shown
in Fig. 3a, the upwinding kernel function has a larger weight at
the upstream side than that at the downstream side. In addition,
Fig. 3b gives the first derivatives of the four kernel functions. To
compare with the three symmetric kernel functions, the proposed
upwinding kernel function has larger gradient of the first deriva-
tive in the vicinity of xba = 0. The gradient directions at the
upstream and downstream sides of xba = 0 are opposite for the pro-
posed kernel function while the gradient directions at the
upstream and downstream sides of xba = 0 are identical for the
three symmetric kernel functions.

4.2. Numerical wavenumber

In this section, the performance of numerical wavenumbers will
be discussed under the circumstance of uniform particle sizes. Con-
sidering the velocity of a particle as 1, the real part and imaginary
parts of the numerical wavenumber are presented in Fig. 4. In
Fig. 4a, we can find that the numerical wavenumbers are nearly
the same as the exact ones as a4 becomes smaller than 0.4. This
means that the proposed model is adequate to resolve waves with
a wave length larger than the 16 uniform particle spacing. More-
over, Fig. 4b shows that the numerical dissipation given by the pro-
posed model increases as the wavenumber increases. Since the
Gaussian function peak occurs at a4 = p and decays quickly
towards the long wave components, the numerical dissipation is
large for short wave components and its maximum is a4 = pwhile
the numerical dissipation is small for the long wave components.

4.3. Scheme consistency

4.3.1. Consistency in space
Following the work of Quinlan et al. (2006) in studying the spa-

tial consistency, the integral approximation of the first derivative
of a physical quantity of particle a such as Eq. (37) is used herein.

@/
@x

� �
a
ffi �

Z xaþ2ha

xa�2ha
/bW

a
ab;xdxb ð37Þ

In Eq. (37), /b can be expanded in Taylor series about xa, i.e., Eq.
(38). Then, Eq. (37) can be written as Eq. (39).

/b ¼ /a þ Dx
@/
@x

� �
a

þ Dx2

2!
@2/
@x2

 !
a

þ Dx3

3!
@3/
@x3

 !
a

þ � � � ð38Þ
el function and (b) its first derivative.



Fig. 4. Numerical wavenumber. (a) real part; (b) imaginary part.
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@/
@x

� �
a
ffi �/a

Z xaþ2ha

xa�2h
Wa

ab;xdxb �
@/
@x

� �
a

Z xaþ2ha

xa�2h
DxWa

ab; xdxb

� @2/
@x2

 !
a

Z xaþ2ha

xa�2ha

Dx2

2!
Wa

ab; xdxb �
@3/
@x3

 !
a

�
Z xaþ2ha

xa�2ha

Dx3

3!
Wa

ab;xdxb � � � � ð39Þ

where Dx ¼ xb � xa.
By virtue of Eq. (8) and the integration by parts, we can haveZ xaþ2ha

xa�2h
DxWa

ab;xdxb ¼
Z xaþ2ha

xa�2h
Dxðxa

ab;x þ sauaxa
ab;xxÞdxb ¼ �1 ð40Þ

Z xaþ2ha

xa�2ha

Dx2

2!
Wa

ab;xdxb ¼
Z xaþ2ha

xa�2ha

Dx2

2!
ðxa

ab;x þ sauaxa
ab;xxÞdxb ¼ saua

ð41Þ
Z xaþ2ha

xa�2ha

Dx3

3!
Wa

ab;xdxb ¼
Z xaþ2ha

xa�2ha

Dx3

3!
ðxa

ab;x þ sanuaxa
ab;xxÞdxb

¼ �1
2

Z xaþ2ha

xa�2ha
Dx2xa

abdxb ð42Þ

By substituting Eqs. (36), (40), (41) and (42) into Eq. (39), the
integral approximation of ð@/=@xÞa becomes

@/
@x

� �
a
ffi @/

@x

� �
a
� sanua

@2/
@x2

 !
a

þ 1
2

@3/
@x3

 !
a

�
Z xaþ2ha

xa�2ha
Dx2xa

abdxb þ � � � ð43Þ

Definitions of s ¼ Dx
ha

and x̂ ¼ haxa
ab give all kernel integrals of

Eq. (43) in the non-dimensional forms as

@/
@x

� �
a
ffi @/

@x

� �
a
� sanua

@2/
@x2

 !
a

þ h2

2
@3/
@x3

 !
a

Z 2

�2
s2x̂dsþ � � �

¼ @/
@x

� �
a

� saua
@2/
@x2

 !
a

þ Oðh2Þ ð44Þ

Eq. (44) shows that the kernel integrals only depend on the
dimensionless shape of a kernel function in each problem with
all length scales. From Eq. (44), we are led to know that the error
of the integral approximation of the first spatial derivative result-

ing from the proposed model is Oðh2Þ in addition to the numerical
diffusion term �sauað@2/=@x2Þa

� �
.

4.3.2. Consistency in time
For showing the consistency in time in the proposed model,

Qnþ1=2
a is firstly expanded in Taylor series about Qn

a ; leading to

Qnþ1=2
a ¼ Qn

a þ 0:5DtðdQ
dt

Þ
n

a
þ OðDt2Þ ð45Þ

Then, Eq. (46) can be obtained by substituting Eq. (45) into Eq.
(30). It can be realized that the proposed model has the discretized
error in time of the order OðDt2Þ.

Qnþ1
a ¼ Qn

a þ Dt
dQ
dt

� �n

a
þ OðDt2Þ ð46Þ
5. Results and discussion

In this section, four benchmark study cases given by MacDonald
et al. (1995) are used to verify the newly proposed upwinding SPH-
SWEs approach. The channel slope and the exact solution of water
depth for each case can be seen in Appendix C. Four combinations
of the in/out-flow boundary conditions, including subcritical
inflow to supercritical outflow, subcritical inflow to subcritical out-
flow, supercritical inflow to supercritical outflow and supercritical
inflow to subcritical outflow are respectively considered in the four
study cases. These four cases involve rectangular and trapezoidal
channels, uniform and non-uniform widths, non-uniform bed
slope, transcritical flow and hydraulic jump. In this study, the
major cause for the occurrence of a hydraulic jump is the variation
of bed elevation instead of in/out-flow boundary conditions, which
are the minor cause. Hence, the Froude numbers at the upstream
and downstream sides in the vicinity of a hydraulic jump govern
the behavior of the hydraulic jump occurring in each case. Table 1
shows the Froude numbers of all the study cases. According to the
classification of hydraulic jump (Federico et al., 2012), the type of
hydraulic jumps formed in all the cases is undular, which is char-
acterized by undulations of the water surface without vortex
dynamics on the crests. Furthermore, the spatial and temporal con-
vergences and the accuracy of the proposed model are discussed in
every study case. All the numerical simulations are performed on
an Intel(R) Core(TM) i7-2600 CPU 3.4 GHz PC equipped with a
4 GB RAM.

The spatial and temporal convergence analyses are conducted
using the simulated results of different resolutions in space and
in time, respectively. Herein, the spatial and the temporal absolute
errors EDx0;1 ;Dx0;2s and EDt1 ;Dt2t obtained on the basis of the water dis-
charge between the simulated results of two initial particle sizes



Table 1
The Froude numbers at the upstream and downstream sides in the vicinity of a
hydraulic jump in each study case.

Case Location

Upstream side Downstream side

1 1.27 0.57
2 1.28 0.38
3 1.59 0.65
4 1.24 0.54

Table 2
The required CPU times of each study case between the upwinding and standard SPH-
SWEs models.

Case Model

Upwinding SPH-SWEs Standard SPH-SWEs

1 (Dx0 ¼ 5 m;Dt ¼ 0:20 s) 11.638 s 5.710 s
2 (Dx0 ¼ 5 m;Dt ¼ 0:20 s) 19.001 s 9.766 s
3 (Dx0 ¼ 5 m;Dt ¼ 0:20 s) 11.076 s 5.226 s
4 (Dx0 ¼ 5 m;Dt ¼ 0:16 s) 13.931 s 6.474 s

Fig. 5. Bed elevation, free surface level and critical level for case 1.
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of Dx0;1 and Dx0;2 and two time steps of Dt1 and Dt2 are defined as
Eqs. (47) and (48), respectively.

EDx0;1 ;Dx0;2
s ¼

Xi¼Ng

i¼1

jQDx0;1
i � QDx0;2

i j ð47Þ

EDt1 ;Dt2
t ¼

Xi¼Ng

i¼1

jQDt1
i � QDt2

i j ð48Þ

where Ng is the number of fixed grids.
Assuming that the spatial and temporal absolute errors are

respectively proportional to the initial particle spacing and the
time step (Ogami, 1999; Shao and Lo, 2003), the spatial and tempo-
ral absolute errors can also be rewritten as Eqs. (49) and (50),
respectively.

EDx0;1 ;Dx0;2
r;s ¼ ksðDx0;1ÞSCOV � ksðDx0;2ÞSCOV ð49Þ

EDt1 ;Dt2r;t ¼ ktðDt1ÞTCOV � ktðDt2ÞTCOV ð50Þ
where SCOV and TCOV are the spatial and temporal convergence
rates, respectively, and ks and kt are two constants.

Three initial particle sizes of Dx0;1, Dx0;2ð¼ bDx0;1Þ and
Dx0;3ð¼ b2Dx0;1Þ and three time steps of Dt1, Dt2ð¼ bDt1Þ and
Dt3ð¼ b2Dt1Þ, where b is a constant, are involved in the evaluation
of the spatial and temporal convergence rates, respectively. Based
on Eqs. (47) to (50), the relation between the two spatial relative
errors, i.e., Eq. (51), and the relation between two temporal relative
errors, i.e., Eq. (52), can be established. Thus, the spatial and tem-
poral convergence rates can be found by virtue of Eqs. (51) and
(52) (Ogami, 1999; Shao and Lo, 2003).

EDx0;1 ;Dx0;2
r;s

EDx0;2 ;Dx0;3
r;s

¼ ðDx0;1ÞSCOV � ðDx0;2ÞSCOV
ðDx0;2ÞSCOV � ðDx0;3ÞSCOV

¼ ðDx0;1ÞSCOV � ðbDx0;1ÞSCOV

ðbDx0;1ÞSCOV � ðb2Dx0;1ÞSCOV
¼ 1

bSCOV ð51Þ

EDt1 ;Dt2
r;t

EDt2 ;Dt3
r;t

¼ ðDt1ÞTCOV � ðDt2ÞTCOV
ðDt2ÞTCOV � ðDt3ÞTCOV

¼ ðDt1ÞTCOV � ðbDt1ÞTCOV

ðbDt1ÞTCOV � ðb2Dt1ÞTCOV

¼ 1
bTCOV ð52Þ

In addition, to investigate the numerical accuracy, the L2 rela-
tive error norm based on the variable / as shown in Eq. (53) is
therefore introduced.

L2ð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi¼Ng

i¼1 ð/simulated
i � /exact

i Þ2Pi¼Ng

i¼1 ð/exact
i Þ2

vuut � 100% ð53Þ

where /simulated and /exact are the simulated results and the exact
solutions, respectively.

The simulated results using the standard SPH-SWEs model,
which involves the Wendlend kernel function and the Monaghan
artificial viscosity formulation such as Eq. (B.1) in which Ca is set
to be 0.5, are also shown in each test case to assess the perfor-
mance of the two different SPH-SWEs models. The required CPU
times of each study case are tabulated in Table 2.
5.1. Case 1: Subcritical? supercritical? subcritical? supercritical
condition

The first study case is of a 1000 m long and 10 m wide rectan-
gular channel with the incoming subcritical flow and the outgoing
supercritical flow. Fig. 5 shows the profiles of the bed elevation,
free surface level and critical level for this case. The flow is subcrit-
ical at the inflow boundary, then changes to the supercritical con-
dition at the x = 300 m, returns to the subcritical condition again at
x = 600 m via hydraulic jump and the flow finally changes to super-
critical condition at the outflow boundary. The only required
boundary condition is the water discharge of 20m3/s specified at
the inflow boundary. The Manning’s roughness coefficient is
0.02 s/m1/3.

In this study case, the initial particle spacings, namely 5 m,
10 m and 20 m, are used to calculate the spatial convergence rate
through Eq. (51) while Eq. (52) gives the temporal convergence
rate considering the time steps of 0.2 s, 0.4 s and 0.8 s. The spatial
convergence rate is 1.93 and the temporal convergence rate is 1.11.
The calculated rates of convergence in space and in time corre-
spond to Eqs. (44) and (46), respectively. The simulated profiles
of the water depth and discharge along the channel with
Dx0 = 5 m and Dt = 0.2 s are presented in Fig. 6. In Fig. 6a of the
simulated profile of water depth, oscillation occurs in the vicinity
of hydraulic jump using the standard SPH-SWEs model. This is
not the case using the proposed model. Also, oscillations in water
discharge caused by the standard SPH-SWEs model are large than
those predicted from the proposed model in Fig. 6b. Furthermore,
L2(dw) and L2(Q) are calculated as 3.2% and 1.1% through Eq. (53),
respectively. It can be found that the simulated results show good
agreement with the exact solutions.



Fig. 6. The simulated profiles of (a) water depth; (b) water dischrage for case 1.

Fig. 7. Bed elevation, free surface level and critical level for case 2.
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5.2. Case 2: Subcritical? supercritical? subcritical condition

A trapezoidal channel of length 1000 m, bottomwidth 10 m and
side slope 1 is conducted as the second study case. The bed eleva-
tion, free surface level and critical level are depicted in Fig. 7. Sub-
critical flow starts at the inflow boundary, changing smoothly to
supercritical flow at x = 300 m, back to subcritical flow at
x = 600 m and the subcritical flow remains unchanged at the out-
flow boundary. A hydraulic jump at x = 600 m resulting from the
bed slope turns to be milder. Owing to subcritical flows at both
Fig. 8. The simulated profiles of (a) water de
the in/out-flow boundaries, the inflow water discharge 20m3/s
and the outflow water depth 1.349963 m are determined to be
the in/out-flow boundary conditions for this case. To describe
rough channel bed, the Manning’s roughness coefficient is set to
be 0.02 s/m1/3.

To discuss the spatial and temporal rates of convergence
respectively, three initial particle spacings including 20 m, 10 m
and 5 m and three time steps concerning 0.2 s, 0.1 s and 0.05 s
are applied respectively. Through Eqs. (51) and (52), the spatial
and temporal convergence rates are calculated as 2.36 and 1.12,
which are consistent with Eqs. (44) and (46). In addition, Fig. 8
exhibits the simulated profiles of water depth and discharge in
Dx0 = 5 m and Dt = 0.2 s. In comparison with the exact solutions,
it can be seen that the two investigated SPH-SWEs models give
good prediction of the hydraulic jump in Fig. 8a while the proposed
model suffers a lesser oscillation in water discharge in Fig. 8b. Eq.
(53) leads to L2(dw) of 2.1% and L2(Q) of 1.0% for the proposed
model. The proposed model is capable of predicting the channel
flow with the subcritical inflow and subcritical outflow conditions
accurately.

5.3. Case 3: Supercritical? subcritical? supercritical condition

In the third study case, we investigate a rectangular channel
flow subject to supercritical inflow and supercritical outflow con-
ditions. The rectangular channel of length 1000 m and width
10 m has the Manning’s roughness coefficient of 0.02 s/m1/3.

Fig. 9 shows that bed elevation, free surface level and critical
level for the third case. From Fig. 9, it can be seen that supercritical
pth and (b) water dischrage for case 2.



Fig. 9. Bed elevation, free surface level and critical level for case 3.
Fig. 11. The varying channel widths for case 4.

Fig. 12. Bed elevation, free surface level and critical level for case 4.
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flow changes to subcritical flow at x = 500 m via hydraulic jump
and then it returns to supercritical flow at x = 600 m soon. The
inflow boundary conditions of water depth of the 0.543853 m
and water discharge of the 20 m3/s are given herein.

Firstly, we select the initial particle spacings of 20 m, 10 m and
5 m and the time steps of 0.2 s, 0.1 s and 0.05 s, respectively, to
perform the convergence analyses in space and time using Eqs.
(51) and (52), respectively. The spatial convergence rate is 0.85
while the temporal convergence rate is 1.23. Owing to the particle
discretization error introduced into the formulation, the calculated
spatial rate of convergence is significantly less than that shown in
Eq. (44). In the following, the accuracy of the proposed model in
this case is performed. Fig. 10 shows the simulated water depth
and discharge at Dx0 = 5 m and Dt = 0.2 s. The standard SPH-
SWEs model overestimates the hydraulic jump peak and generates
a slightly larger oscillation in water discharge. In contrast, the sim-
ulated results using the proposed model agree very well with the
exact solutions in this case study. Moreover, L2(dw) and L2(Q) for
the proposed model are predicted as 2.7% and 0.4%, respectively,
by means of Eq. (53).
5.4. Case 4: Supercritical ? subcritical condition

The combination of the supercritical inflow and subcritical flow
is taken as the fourth study case. In addition to the channels of uni-
form width, the proposed model is herein tested in a 1000 m long
rectangular channel with varying widths. Fig. 11 shows the profile
of the channel width for this case. In addition, bed elevation, free
Fig. 10. The simulated profiles of (a) water d
surface level and critical level for the non-uniform width channel
are described in Fig. 12. The flow at the inflow boundary is super-
critical, via hydraulic jump the investigated flow changes to be
subcritical at x = 500 m. The water depth of 0.641667 m and the
water discharge of 20m3/s at the inflow boundary and the water
depth of 1.125 m at the outflow boundary are prescribed. The
channel has a rough bed with the Manning’s roughness coefficient
of 0.02 s/m1/3.

Three initial particle sizes, namely, 20 m, 10 m and 5 m and
three time steps, namely, 0.16 s, 0.08 s and 0.04 s are considered
epth and (b) water dischrage for case 3.



Fig. 13. The simulated profiles of (a) water depth and (b) water dischrage for case 4.

Fig. B.1. The initial profile of water depth in a dam-break flowwith a wet-wet front.
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to calculate the spatial and temporal rates of convergence. The spa-
tial and temporal convergence rates calculated through Eqs. (51)
and (52) are 0.94 and 1.21, respectively. It can also be found that
the particle discretization has a significant effect on the calculated
spatial rate of convergence in this case. Fig. 13 shows the simulated
water depth and discharge profiles at Dx0 = 5 m and Dt = 0.16 s. To
compare with the exact solutions, it appears that the height of
hydraulic jump is overestimated by the standard SPH-SWEs model
while the proposed model can capture hydraulic jump more accu-
rately. In addition, slightly severe oscillations in water discharge
can be detected in the standard SPH-SWEs model. The predicted
L2(dw) of 1.4% and L2(Q) of 0.3% given by Eq. (53) illustrate that
the proposed model can be applied to get a good prediction of
the non-uniform width channel flow with supercritical inflow
and subcritical outflow conditions.Fig. B.1
6. Concluding remarks

The aim of this study is to construct an upwinding kernel func-
tion in the SPH-SWEs model to capture sharp surface in open chan-
nel flows. In the proposed model, the upwinding coefficient
determined at the condition of yielding the smallest numerical dis-
persive and dissipative errors in wave space has been shown to be
able to add a proper numerical diffusion to smear steep gradient or
discontinuity in free surface flows. In addition to rectangular and
trapezoidal channels, uniform and non-uniform widths, non-
uniform bed slope, transcritical flow and hydraulic jump, combina-
tion of four in/out-flow boundary conditions has been considered
to verify the proposed model. The simulated results show good
agreement with the exact solutions. To compare with the standard
SPH-SWEs model, the proposed model can not only capture
hydraulic jump more accurately but also suffers less oscillation
problem in water discharge near hydraulic jump. Furthermore,
the convergence analysis has been performed theoretically and
numerically. It can be found that the calculated temporal rates of
convergence are close to the theoretical rates while the calculated
spatial rates of convergence are less than the theoretical rates
under the particle discretization. To sum up, the present upwind-
ing SPH-SWEs model has shown its capability to model complex
transcritical open channel flows permitting the formation of
hydraulic jump.

Appendix A

The process of deriving the upwinding coefficient is detailed

herein. Firstly, substitution of ar ¼
Pb¼N;b–a

b¼1 f b sinðalbDÞ and

ai ¼
Pb¼N

b¼1 f b cosðalbDÞ into Eq. (14) yields

E ¼ Er þ Ei

¼
Z p=2

0
j m
b¼N;b–a

b¼1
f b sinðklbÞD� kj2dk

þ k
Z p=2

0
j
Xb¼N

b¼1

f b cosðklbÞD� e� ln 2�ðk�pr Þ2 j2dk ðA:1Þ

To differentiate Eq. (A.1) by f ct , where ct ¼ 1 to N but ct–a; the
terms of @Er=@f ct and @Ei=@f ct can thus be given as Eqs. (A.2) and
(A.3), resectively.

@Er
@f ct

¼ R p=20

@

Xb¼N;b–a

b¼1

f b sinðklbÞD�k

 !2

@f ct
dk

¼ R p=20 2
Xb¼N;b–a

b¼1

f b sinðklbÞD� k

 !
sinðklctÞDdk

¼ D
Xb¼N;b–a

b¼1

f bD
R p=2
0 2 sinðklbÞ sinðklctÞdk� 2

R p=2
0 k sinðklctÞddk

" #

¼ D
Xb¼N;b–a

b¼1

f bDð
R p=2
0 ðcosðlb � lctÞk� cosðlb þ lctÞkÞdkÞ þ Sr

" #

¼ D
Xb¼N;b–a

b¼1

f b
sinðlb�lct Þp=2

lb�lct
� sinðlbþlct Þp=2

lbþlct

� �
Dþ Sr

" #

ðA:2Þ
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@Ei
@f ct

¼R p=20

@

Xb¼N

b¼1

f b cosðklbÞD�e
�ln2� k�p

rð Þ2
 !2

@f ct
dk

¼R p=20 2
Xb¼N

b¼1

f bcosðklbÞD�e�ln2� k�p
rð Þ2

 !
cosðklctÞDdk

¼D
Xb¼N

b¼1

f bD
R p=2
0 2cosðklbÞcosðklctÞdk�2

R p=2
0 e�ln2� k�p

rð Þ2 cosðklctÞdk
" #

¼D
Xb¼N

b¼1

f bD
R p=2
0 ðcosðlb� lctÞkþcosðlbþ lctÞkÞdk�2

R p=2
0 e�ln2� k�p

rð Þ2 cosðklctÞdk
" #

¼D
Xb¼N

b¼1

f b
sinðlb�lct Þp=2

lb�lct
þ sinðlbþlct Þp=2

lbþlct

� �
DþSi

" #

ðA:3Þ

Using the definition of f a ¼ �Pb¼N;b–a
b¼1 f b together with Eqs. (A.2)

and (A.3), Eq. (15) becomes as

@E
@f ct

¼ @Er
@f ct

þ k @Ei
@f ct

¼
Xb¼N;b–a

b¼1

f b
sinðlb�lct Þp=2

lb�lct
� sinðlbþlct Þp=2

lbþlct

h i
Dþ Sr

þk
Xb¼N

b¼1

f b
sinðlb�lct Þp=2

lb�lct
þ sinðlbþlct Þp=2

lbþlct

h i
Dþ kSi

¼
Xb¼N;b–a

b¼1

f bCbDþ f aCaDþ ðSr þ kSiÞ

¼
Xb¼N;b–a

b¼1

f bCbD�
Xb¼N;b–a

b¼1

f bCaDþ ðSr þ kSiÞ

¼
Xb¼N;b–a

b¼1

f bðCb � CaÞDþ ðSr þ kSiÞ ¼ 0

ðA:4Þ

In the above,

Ca ¼ kD
sinððla � lctÞp=2Þ

la � lct
þ sinððla þ lctÞp=2Þ

la þ lct


 �
;

Cb ¼ D ðkþ 1Þ sinððlb � lctÞp=2Þ
lb � lct

þ ðk� 1Þ sinððlb þ lctÞp=2Þ
lb þ lct


 �
;

Sr ¼ �2
Z p=2

0
k sinðlctkÞdk;

Si ¼ �2
Z p=2

0
cosðlctkÞ � e� ln 2�ðk�pr Þ2dk:

Because of f b ¼ �mbðxa
ab;x þ sauaxa

ab;xxÞ=Aa; Eq. (A.4) can be
expressed as Eq. (A.5) and finally simple algebraic manipulations
can lead to the upwinding coefficient such as Eq. (16).

Xb¼N;b–a

b¼1

½�mbðxa
ab;x þ sauaxa

ab;xxÞ=Aa�ðCb � CaÞDþ ðSr þ kSiÞ ¼ 0

ðA:5Þ
Appendix B

One of the attractive advantages in SPH is that the wet-dry
interface can be automatically described without a special treat-
ment. Hence, the dam break flow has become a benchmark prob-
lem to exhibit the ability of SPH. Herein, the dam break flow
with a wet-wet front is used to assess the performance of different
values of the weighted parameter k in the proposed upwinding
SPH-SWEs model against the exact solutions (Stoker, 1992) and
the numerical solutions (the standard SPH-SWEs model). In the
standard SPH-SWEs model, the artificial viscosity formulation such
as Eq. (B.1) is applied in this study (Monaghan, 1985; De Leffe et al.,
2010).

Y
ab

¼ �Ca

Xb¼N

b¼1

Vb
�A��c��h�ðuab �xabÞ

r2
ab

�xx uab � xab < 0

Y
ab

¼ 0 uab � xab P 0

8>>><
>>>:

ðB:1Þ

where Vb is the volume of particle b, �xx is the average of the first
derivative of the symmetric kernel function, uab ¼ ua � ub,
xab ¼ xa � xb, �A ¼ 0:5ðAa þ AbÞ, �c ¼ 0:5ðca þ cbÞ, �h ¼ 0:5ðha þ hbÞ,
rab ¼ jxa � xbj and Ca is the parameter (0 6 Ca 6 1).

In this case, a dam break flow with a wet-wet front on a hori-
zontal and frictionless bottom is discussed. Fig. B.1 shows the ini-
tial profile of water depth of this case. A water column of 10 m
height and 1000 m length at the upstream side of the dam and a
water column of 5 m height and 1000 m length at the downstream
side of the dam are adopted to preserve mass in the computational
domain. Herein, the weighted parameter k of 1.0, 0.5 and 0.3 and
the parameter Ca of 0.5, 0.7 and 1.0 are considered, respectively.
The initial particle spacing at the upstream side is set to be 5 m
while the one at the downstream side is specified to be 10 m.
Hence, the total number of particles such as 300 is involved in sim-
ulation. The initial smoothing length is assumed to be twice the
length of the initial particle spacing, i.e., h ¼ 2Dx0. In addition,
the time step of 0.008 s is chosen.

Figs. B.2 and B.3 exhibit the simulated profiles of water depth
and velocity at t = 60 s, respectively. From Fig. B.2a to c and
Fig. B.3a to c, it can be seen that the oscillations in water depth
and velocity near the bore (in the vicinity of x = 1500 m) will be
suppressed as the value of the weighted parameter k is decreased
because the weighted parameter k controls the weights between
the dispersion error (Er) and dissipation error (Ei) over finite parti-
cles. A smaller value of the weighted parameter k, i.e., large weight
on the dispersion error, can produce smoother simulated profiles
of water depth and velocity in this case. On the other hand, the
parameter Ca dominates the magnitude of the artificial viscous
force in the standard SPH-SWEs model. In Fig. B.2d to f and
Fig. B.3d to f, the larger value of the parameter Ca of 1.0 can elim-
inate large portion of the oscillations in water depth and velocity,
especially near the bore. However, as a comparison of the proposed
upwinding SPH-SWEs model (Figs. B.2c and B.3c), in Fig. B.2. f and
Fig. B.3 f, the reflective waves in water depth and velocity are gen-
erated in the expansion region (in the vicinity of x = 670 m) and
less oscillations in water depth and velocity still exist near the
bore. On the whole, the proposed upwinding SPH-SWEs model
yields a better simulated result against the exact solution.

Appendix C

The slopes and exact solutions for the four study cases are given
herein following the work of MacDonald et al. (1995).

Study case 1

The slope of the uniform rectangular channel in the first study
case is expressed as follows:

S0ðxÞ ¼ 1� Q2

gB2dwðxÞ

 !
d0
wðxÞ þ Q2n2 ð2dwðxÞ þ BÞ4=3

ðBdwðxÞÞ10=3
ðC:1Þ

where the water discharge Q = 20m3/s, the bottom width B = 10 m,
the Manning’s roughness coefficient n = 0.02, the exact solution of
water depth dwðxÞ is given as below and d0

wðxÞ is its first derivative
with respect to x.



Fig. B.2. The profiles of water depth in a dam-break flow with a wet-wet front, (a)–(c) from the upwinding SPH-SWEs model and (d)–(f) from the standard SPH-SWEs model.
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dwðxÞ ¼

4
g

� �1=3
1� tanh x

1000 � 3
10

� �� �
0 6 x 6 300

4
g

� �1=3
1� 1

6 tanh 6 x
1000 � 3

10

� �� �� 

300 < x 6 600

d̂wðxÞ 600 < x 6 1000

8>>>><
>>>>:

ðC:2Þ
In the above,

d̂wðxÞ ¼ 4
g

� �1=3

k1 þ k2 exp �10
x

1000
� 3
5

� �� �


þ k3 exp �20
x

1000
� 3
5

� �� �
þ k4 exp �30

x
1000

� 3
5

� �� ��
ðC:3Þ
where k1 = 0.900000, k2 = 0.382537, k3 = 2.131437 and k4 =
-2.237556.

Study case 2

In the second study case, the slope of the uniform trapezoidal
channel is written as

S0ðxÞ¼ 1� Q2ðBþ2dwðxÞzÞ
gðBþdwðxÞzÞ3dðxÞ3

" #
d0
wðxÞþ

Q2n2ðBþ2dwðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þz2

p Þ4=3

ðBþdwðxÞzÞ10=3dðxÞ10=3
ðC:4Þ

where the water discharge Q = 20m3/s, the bottom width B = 10 m,
the side slope z = 1 the Manning’s roughness coefficient n = 0.02, the
exact solution of water depth dwðxÞ is given as



Fig. B.3. The profiles of velocity in a dam-break flow with a wet-wet front, (a)–(c) from the upwinding SPH-SWEs model and (d)–(f) from the standard SPH-SWEs model.
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dwðxÞ ¼
0:723449 1� tanh x

1000 � 3
10

� �� �
0 6 x 6 300

0:723449 1� 1
6 tanh 6 x

1000 � 3
10

� �� �� 

300 < x 6 600

d̂wðxÞ 600 < x 6 1000

8><
>:

ðC:5Þ
In the above,

d̂wðxÞ ¼ k1 þ k2 exp �20
x

1000
� 3
5

� �� �

þ k3 exp �40
x

1000
� 3
5

� �� �

þ k4 exp �60
x

1000
� 3
5

� �� �
þ k5 exp

x
1000

� 1
� �

ðC:6Þ
where k1 = 0.750000, k2 = -0.111051, k3 = 0.026876, k4 = -0.217567
and k5 = 0.600000.

Study case 3

For the third study case, the slope of the uniform rectangular
channel is given by

S0ðxÞ ¼ 1� Q2

gB2dwðxÞ

 !
d0
xðxÞ þ Q2n2 ð2dwðxÞ þ BÞ4=3

ðBdwðxÞÞ10=3
ðC:7Þ

where the water discharge Q = 20m3/s, the bottom width B = 10 m,
the Manning’s roughness coefficient n = 0.02, the exact solution of
water depth dwðxÞ is given as
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dwðxÞ ¼
4
g

� �1=3
9
10 � 1

6 exp �x
250

� �� �
0 6 x 6 500

d̂wðxÞ 500 < x 6 1000

8<
: ðC:8Þ

In the above,

d̂wðxÞ ¼ 4
g

� �1=3

k1 þ k2 exp �10
x

1000
� 1
2

� �� �


þ k3 exp �20
x

1000
� 1
2

� �� �
þ k4 exp �30

x
1000

� 1
2

� �� ��
ðC:9Þ

where k1 = 0.900000, k2 = -0.901807, k3 = 4.373858 and
k4 = -3.238569.

Study case 4

For the non-uniform rectangular channel in the fourth study
case, the slope is expressed as

S0ðxÞ ¼ 1� Q2

gBðxÞ2dwðxÞ3
 !

d0
wðxÞ þ

Q2n2ðBðxÞ þ 2dwðxÞÞ4=3
ðBðxÞdwðxÞÞ10=3

� Q2B0ðxÞ
gBðxÞ3dwðxÞ2

ðC:10Þ

where the water discharge Q = 20m3/s, the Manning’s roughness
coefficient n = 0.02, the varying channel width B(x) and the exact
solution of water depth to dwðxÞ are given below respectively.

BðxÞ ¼ 10� 64
x

1000

� �2
� 2

x
1000

� �3
þ x

1000

� �4� �
ðC:11Þ

and

d̂wðxÞ ¼
� 1

40 þ 1

1þ2 x
1000�1

2ð Þ2 0 6 x 6 500

d̂wðxÞ 500 < x 6 1000

8<
: ðC:12Þ

In the above,

d̂wðxÞ ¼ k1 þ k2 exp �30
x

1000
� 1
2

� �� �

þ k3 exp �60
x

1000
� 1
2

� �� �

þ k4 exp �90
x

1000
� 1
2

� �� �
þ k5 exp

x
4000

� 1
4

� �
ðC:13Þ

where k1 = 0.000000, k2 = 0.769035, k3 = -0.755596, k4 = 0.106813
and k5 = 1.125000
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