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a b s t r a c t 

The effect of inserted needle on the subcutaneous interstitial flow is studied. Our goal is to describe 

the physical stress affecting cells during acupuncture needling. The convective Brinkman equations are 

considered to describe the flow through a fibrous medium. Three-dimensional simulations are carried 

out by employing an ALE finite element model. Numerical studies illustrate the acute physical stress 

developed by the implantation of a needle. 
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. Introduction 

In recent years, computational techniques have been widely

sed by researchers to investigate and simulate biological flow

ithin three dimensional context. Applications include blood flow

odels, air flow models in the respiratory tract, interstitial flow

odels, and chemical mediators transport. Most of the structure

nd fluid interactions have been considered with simplified rigid

all or deformable wall models. 

Methods to predict flows that account for moving domains or

omain deformability using the finite element method are based

n fixed mesh methods or moving mesh methods. On the one

and, fixed mesh methods include the immersed boundary formu-

ation [1] which relies on the description of solid phase by adding

 force vector to the governing equations. A similar approach,

nown as the fictitious domain formulation [2,3] , is based on the

se of Lagrange multipliers to enforce kinematic condition on the

olid phase or alternatively based on a penalty method [3] . Both

ethods track solid phase with a characteristic function or a level
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et function. These methods are well adapted to moving bodies in

he fluid or fluid-structure computation with interface of a highly

eometric complexity. The latest method has been implemented

ith FreeFem ++ [4] . On the other hand, moving mesh methods

nclude the Lagrangian method, the moving finite element (MFE)

ethod [5,6] , the deformation map method [7] , the Geometric

onservation Law (GCL) method [8] , the space/time method [9–12] ,

nd the Arbitrarily Lagrangian–Eulerian (ALE) method [13–15] for

he solution of fluid dynamic problems. Note that the space-time

nite element method can also be implemented in FreeFem ++ in

D and 2D. 

Significant progress has been made in recent years in solving

uid-structure interaction problems in deformable domains using

he ALE method. The mathematically rigorous ALE framework has

een well accepted to be applicable to simulate transport phenom-

na in time and allows some freedom in the description of mesh

otion. A theoretical analysis of the ALE method can be found

n [16,17] . However, ALE equations are computationally expensive

hen considering a large domain because of the necessity of con-

inuously updating the geometry of the fluid and structural mesh.

nterface tracking with time discretization also raises some imple-

entation questions. The implementation of the ALE method can

e done in FreeFem ++ [18] . 

Study of biological flows plays a central role in acupunc-

ure research. For a description of the underlying acupuncture

http://dx.doi.org/10.1016/j.compfluid.2016.08.001
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mechanism, one can refer to [19–21] . Interstitial flow models

take into account interstitial fluid, cell membrane interaction, and

fiber interactions [22] . Mastocytes, among other cells, are able

to respond to fluidic stimuli via mechanotransduction pathways

leading to the degranulation and liberation of chemical mediators

[23] . Degranulation mechanisms include interaction of the cell

membrane with interstitial and cytosolic flow [24] . Ion transport

in narrow ion channels is another challenging task to model.

Indeed, degranulation of chemical mediators upon stimulation can

be triggered by a rapid Ca 2+ entry in the cytosol [25] . 

Modeling the three-dimensional interstitial flow in tissues is

extremely challenging for a large number of reasons: a complex

geometry of the tissue, an accurate constitutive description of

the behavior of the tissue, and flow rheology are only few ex-

amples. Macroscopic models developed for incorporating complex

microscopic structure are essential for applications [22,25–28] . In

the context of acupuncture, the interstitial flow has been mod-

eled by the Brinkman equations in two-dimensional fixed domain

[27,28] and two-dimensional deformable domain [19] . 

In this paper, a porous medium formulation of the intersti-

tial fluid is presented for modeling mastocyte-needle interaction

in deformable connective tissues. This formulation is based on the

conventional ALE characteristic/Galerkin finite element model for

an unsteady flow thought a porous medium modeled by the in-

compressible Brinkman’s equations in a three-dimensional mov-

ing domain. The motion of the needle in the fluid is taken into

account. The main features of the model can be summarized as

follows: 

1. The loose connective tissue of the hypodermis is constituted

of scattered cells immersed in extracellular matrix. The ex-

tracellular matrix contains relatively sparse fibers and abun-

dant interstitial fluid. The interstitial fluid contains water, ions

and other small molecules. Such a fluid corresponds to plasma

without macromolecules and interacts with the ground sub-

stance, thereby forming a viscous hydrated gel that can stabilize

fiber network [29,30] . 

2. The Darcy law is used to approximate fibers of the media as

a continuum and allows us to compute the actual microscopic

flow phenomena that occur in the fibrous media. 

3. Brinkman’s law then allows us to describe the flow field around

solid bodies such as the embedded cells in extracellular matrix.

4. Transient convective Brinkman’s equations [31–33] are applied

to simulate interstitial flow in a fibrous medium driven by a

moving needle [19] . 

Although the previously stated approach cannot give informa-

tion on microscopic events, it can describe macroscale flow pat-

terns in porous media. Focus is given to the effects of interstitial

fluid flow during implantation of an acupuncture needle until the

tip has reached the desired location within the hypodermis. The

objective of this work is to give a description of the physical stress

(shear stress and pressure) influencing tissue and cells. 

2. Methods 

On a microscopic scale, the interstitial tissues are composed

of fluid, cells, and solid fibers. The interstitial fluid contains wa-

ter, ions and other small molecules. Such a fluid corresponds to

plasma without macromolecules [22] . It interacts with the ground

substance to form a gel-like medium. 

A model taking into account individual fibers and cell adhesion

complexes is already a falsification of the reality. Moreover, it is

very costly from the computational viewpoint. When considering

an organized homogeneous matrix of fibers, computation of such a

model shows the microscopic fluctuations of the fluid shear stress

at the protein level [34] . 
Due to biological complexity, the interstitium is considered as a

uid-filled porous material [22] . The interstitial flow is simulated

sing the incompressible convective Brinkman equation. The phe-

omenological model cannot give information on unneeded micro-

copic events but the Darcy equation can describe macroscale flow

atterns in porous media. 

.1. Flow equations 

The governing equations of the unsteady flow of an incompress-

ble fluid through a porous medium (with mass density ρ , dynamic

iscosity μ, and kinematic viscosity ν = μ/ρ) can be derived as

31–33] : 

ρ

α f 

(
∂ ̄u 

∂t 
+ ū · ∇ 

(
ū 

α f 

))
− μ∇ 

2 ū + 

1 

α f 

∇ (α f p f ) = −μ

P 
ū 

in �(t) , (1)

 · ū = 0 , (2)

¯  (x , 0) = ū 0 (x ) , (3)

here −μ
P ū denotes the Darcy drag, P the Darcy permeability, ū

he averaged velocity vector, and p f the pressure. The averaged ve-

ocity is defined as 

¯  = α f u f , (4)

here u f is the fluid velocity and 

f = 

fluid volume 

total volume 
(5)

s the fluid volume fraction. This volume fraction corresponds to

he effective porosity of the medium. The fluid fractional volume

f is taken as a space-dependent parameter to model the distin-

uished properties around an acupoint. 

The system of equations (1–2) is applied to the case of a flow

riven by the motion of a needle in the deformable domain �( t )

19] . The domain boundary can be decomposed into four sur-

aces: the needle boundary denoted by �1 , an impervious bound-

ry (wall) denoted by �2 , the mastocyte membrane denoted by

3 , and the open boundary on the sides denoted by �4 . The clas-

ical no-slip condition is applied to the needle surface �1 , the

igid wall �2 , and the cell surface �3 . At the outer boundary �4 

 traction-free boundary condition is prescribed. Thus, the entire

et of boundary conditions reads as 

¯  = v needle , on �1 , (6)

¯  = 0 , on �2 , (7)

¯  = 0 , on �3 , (8)

μ∇ ̄u · n + p f n = 0 , on �4 . (9)

.2. Finite element model 

The governing equations in Section 2.2.1 are solved using the

nite element software FreeFem ++ [35] . This code programs the

iscrete equations derived from the finite element weak formula-

ion of the problem presented in Section 2.2.3 using a characteris-

ic/Galerkin model to stabilize convection terms. 
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Fig. 1. Comparison of the computed and referenced solutions along the line x = −0 . 6 ∗ D (top) and x = 1 . 2 ∗ D (bottom) for the values of u = (u, v ) at t = 

55 
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Fig. 2. Comparison of the computed and referenced solutions along the line x = −0 . 6 ∗ D (top) and x = 1 . 2 ∗ D (bottom) for the values of u = (u, v ) at t = 
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.2.1. Scaling and setting for numerical simulations 

L denotes the characteristic length that is the needle width and

is the characteristic velocity set to be the needle maximum ve-

ocity. Rescaling the variables leads to 

 

′ = 

x 
L , t ′ = 

t 
(L / V) 

, p ′ = 

p f 
(ρV 2 ) 

, u 

′ = 

ū 
V . (10) 

n the resulting dimensionless form, after removing the prime in

he rescaled variables, the dimensionless incompressible convective

rinkman equations read as 

1 

α f 

∂u 

∂t 
+ 

1 

α f 

u · ∇ 

(
u 

α f 

)
− 1 

Re 
∇ 

2 u + 

1 

α f 

∇ (α f p) = − 1 

Da Re 
u , 

(11) 

 · u = 0 . (12) 
here Re is the Reynolds number and Da is the Darcy number. The

revious dimensionless parameters are defined as 

e = 

ρLV 
μ , Da = 

P 
L 2 

. (13) 

n considering the above dimensionless governing equations, the

ormalized boundary conditions on the domain boundary are pre-

cribed as 

 = v on �1 , (14) 

 = 0 on �2 , (15) 

 = 0 on �3 , (16) 

1 

Re 
∇ u · n + pn = 0 on �4 . (17) 
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Fig. 3. The predicted contours of velocity along the z-direction resulting from the needle (blue) motion in interstitial fluid with α f = 0 . 7 , Da = 0 . 321 , and Re = 0 . 103 . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.2.2. ALE implementation on moving meshes 

In the present paper, the ALE framework built in FreeFem ++ is

employed to compute the flow in the moving domain. In the cur-

rent problem setting, the motion of needle is prescribed with re-

spect to time. The boundary of the domain is thus exactly known

at each time so that an area preserving mesh can be precisely gen-

erated. 

The framework of the ALE approach employed is briefly de-

scribed below. Let �( t ) be the domain at each time t with regular

boundary ∂�( t ). In the Eulerian description, the fluid is described

by 

u (x , t) and p(x , t) , ∀ x ∈ �(t) . (18)

To follow a moving domain, one can define the ALE map as 

˜ A : ˜ ω × R 

+ → R 

2 ( ̃ x , t) → 

˜ A ( ̃ x , t) := 

˜ A t , (19)

such that ω(t) = 

˜ A ( ̃  ω , t) , where ˜ ω is the reference computational

domain. Given an ALE field ˜ q : ˜ ω × R 

+ → R , its Eulerian description

is given by 

∀ x ∈ �(t) , q (x , t) = 

˜ q ( ˜ A 

−1 
t (x ) , t) (20)

In ALE framework, the computational domain velocity (or ALE

velocity or grid velocity) is defined as 

˜ a ( ̃ x , t) = 

∂ ˜ A 

∂t 
( ̃ x , t) , ∀ ̃

 x ∈ ˜ ω , (21)

so that we can get 

a (x , t) = 

˜ a ( ˜ A 

−1 
t , t) . (22)
he ALE time-derivative is defined as 

∂q 

∂t 

∣∣∣∣
˜ A 
= 

d 

d t 
q ( ˜ A ( ̃ x , t) , t) , (23)

nd the following identity holds 

∂q 

∂t 

∣∣∣∣
˜ A 
= (a · ∇ ) q + 

∂q 

∂t 
. (24)

A general method is used to construct the mapping or, equiva-

ently, the domain velocity a . The domain velocity is computed by

olving the following Laplace equation subjected to the Dirichlet

oundary condition [36] 

∇ 

2 a = 0 , a | ∂�
= v . (25)

In the ALE framework, the equations 11 –(12) , subject to a pre-

cribed needle motion, become 

∂(u /α f ) 

∂t 

∣∣∣∣
˜ A 
+ 

((
u 

α f 

−a 

)
·∇ 

)
u 

α f 

− 1 

Re 
∇ 

2 u + 

1 

α f 

∇ (α f p) 

= − u 

Da Re 
, (26)

 · u = 0 . (27)

he solutions u and p are sought subject to the initial condition

3) and the boundary conditions 7 –(9) described in Section 2.2.1 . 
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Fig. 4. The predicted contours of velocity along the z-direction resulting from the needle (blue) motion in interstitial fluid with α f = 0 . 7 , Da = 0 . 321 , and Re = 0 . 103 . (For 
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.2.3. Finite element discretization 

The convective incompressible Brinkman equations are approxi-

ated with the method of characteristics for the nonlinear convec-

ion term and a Galerkin method for the rest of the spatial deriva-

ive terms. The time discretization gives 

1 

	t 

(
u 

n +1 

α f 

−
(

u 

n 

α f 

)
◦ X 

n 

)
− 1 

Re 
∇ 

2 u 

n +1 + 

1 

α f 

∇ (α f p 
n +1 ) 

= − u 

n +1 

Da Re 
, (28) 

 · u 

n +1 + εp n +1 = 0 , (29) 

n �n +1 . Note that X 

n is approximated by X 

n ≈ x −
u n 

α f 
− a n 

)
(x ) 	t . Note that a small stabilization parameter epsilon

s introduced following the so-called artificial compressibility

ethod introduced in [37] and [38] . 

For all ϕ ∈ H 

1/2 ( �1 ), let us introduce the product space 

 ϕ = 

{
(w , q ) ∈ [ H 

1 (�)] 2 × L 2 (�) , w = ϕ on �1 , w = 0 on �2 

}
. 

(30) 

et 

(a, b) = 

∫ 
n +1 

ab d x . (31) 

� b
he weak formulation becomes the following finite dimensional

inear system: find (u 

n +1 , p n +1 ) ∈ V g such that 

1 

	t 

(
u 

n +1 

α f 

−
(

u 

n 

α f 

)
◦ X 

n , w 

)
+ 

1 

Re 

(
1 

α f 

∇ u 

n +1 , ∇ w 

)

−
(

α f p 
n +1 , ∇ ·

(
w 

α f 

))
+ 

1 

Da Re 

(
u 

n +1 , w 

)
= 0 , 

(∇ · u 

n +1 , q 
)

+ ε 
(

p n +1 , q 
)

= 0 , 

(32) 

or all ( w , q ) ∈ V 0 . 

The Taylor–Hood P 2 –P 1 elements are adopted to ensure sat-

sfaction of the LBB stability condition [39] . Note that temporal

ccuracy order of the presented characteristic/Galerkin method is

ne. Meshes are generated within FreeFem ++ and mesh adapta-

ion is performed prior to simulations so as to improve mesh qual-

ty around the needle and the cell. 

.3. Validation 

Let the interaction of an oscillating circular cylinder with a fluid

t rest be considered. The problem is to find the velocity vector

eld u and the pressure p of a flow satisfying the incompress-

ble Navier–Stokes equations in the domain � = [ −l , l ] × [ −h, h ]

ith no-slip boundary conditions on the cylinder and traction-free

oundary condition on the border of the physical domain. 
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Fig. 5. The predicted pressure contours on the needle and cell surface as the needle moves toward the cell with α f = 0 . 7 , Da = 0 . 321 , and Re = 0 . 103 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The predicted streamlines and shear stress on the cell surface as the needle 

moves toward the cell with α f = 0 . 7 , Da = 0 . 321 , and Re = 0 . 103 . 
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The horizontal velocity of the cylinder of diameter D is given by

u c (t) = −U cos (2 π f t) , where U = 2 π A f . At each time step, the

mesh is moved according to the displacement a 	t , where a is the

solution of (25) . As soon as the mesh is moved, the computed a n 

and u 

n , that are defined in the previous mesh, are then pushed

to the new mesh without interpolation following the scheme pro-

posed in [18] . 

Numerical simulation of flow is carried out for Re = 100 and

KC := 

U 
D f 

= 5 , where U = 1 , D = 1 , T := 1 / f = 5 , and A = 5 / 2 π . In

Figs. 1 and 2 , good comparison between the computed solution

and experimental data from [40] is shown at two different times

that correspond to the phases 7 π /6 and 11 π /6. 

3. Results 

In the present work, the needling direction is perpendicular to

the skin surface. In practice, it is possible that the needling di-

rection is oblique to the skin surface. The simulation results show

that the insertion of an acupuncture needle can influence intersti-

tial fluid flow. The computed velocity field shows that at a location

away from the needle, the effect of the stress field on the mesh-

work vanishes ( Fig. 3 ). Furthermore, when the needle reaches its

maximum speed, the interstitial pressure gradient becomes higher

at a location close to the needle tip ( Fig. 4 ). The changes in the

interstitial fluid flow and the high pressure gradient can affect the

activities of the mastocyte pools in the stimulated area. Local mas-

tocyte pools can be activated in regions close to the needle and re-

main granulated outside this region of triggered mechanical stress.

Another subject of interest is the effects of the fluidic stimuli

on an interstitial cell. Local mechanical forces can trigger the acti-

vation of mechanoresponsive proteins on the cell surface [20,41] so

that Ca ++ is allowed to enter the cytosol via pressure and shear

stress gated ion channels. Simulations are carried out by consid-

ering fixed cells and no-slip boundary condition prescribed at the

cell surface. Fig. 5 shows the pressure contours on the surface of a

cell added closely to the needle. Fig. 6 shows the streamlines and

the shear stress along the cell surface. The pressure and the shear

stress on the cell surface appear to be higher in the region closest
o the needle tip. Fluctuation of the pressure and the time varying

hear stress suggest that the whole cell surface could be stimu-

ated. Mastocytes have been shown to respond to fluid shear stress

41] . These local mechanical forces participate in the activation of

echanoresponsive proteins on the cell surface [20] so that Ca ++ 

s allowed to enter the cytosol via pressure and shear stress gated

on channels. 

. Conclusions 

The proposed three-dimensional ALE finite element model is

ble to describe the interstitial flow and pressure from the macro-

copic point of view when a needle is inserted and moved within

he hypodermis. High local fluid pressure and shear stress on cells

re most likely to appear near the needle tip region. However, the
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roposed method does not model the deformation of the extracel-

ular matrix and only the effect of interstitial flow is considered.

hen considering the rotation of the needle, a large deformation

f tissues is observed with the twisting of the fibers around the

eedle, that in turn makes the corresponding change in intersti-

ial flow. A fluid/structure model taking into account the mechan-

cs of the fibers should then be considered. This study has shown

hat the numerical prediction of the interstitial pressure and shear

tress is an essential tool to gain a better understanding of the ac-

ivity involved in acupuncture needling. 
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