
Available online at www.sciencedirect.com

ScienceDirect

Mathematics and Computers in Simulation 128 (2016) 1–12
www.elsevier.com/locate/matcom

Original articles

Numerical study of long-time Camassa–Holm solution behavior for
soliton transport

C.H. Yua, Tony W.H. Sheub,c,∗

a Ocean College, Zhejiang University, 866 Yuhangtang Road, Hang HangZhou, Zhejiang, People’s Republic of China
b Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, ROC

c Taida Institute of Mathematical Sciences (TIMS), National Taiwan University, Taipei, Taiwan, ROC

Received 5 January 2012; accepted 1 January 2016
Available online 27 April 2016

Abstract

In this paper a three-step solution scheme is employed to numerically explore the long-time solution behavior of the
Camassa–Holm equation. In the present u − P − α formation, we conduct modified equation analysis to eliminate several leading
discretization error terms and perform Fourier analysis for minimizing the wave-like type of error. A three-point seventh-order
spatially accurate combined compact upwind scheme is developed for the approximation of first-order derivative term. For the
purpose of retaining Hamiltonian and multi-symplectic geometric structures in the non-dissipative Camassa–Holm equation, the
adopted time integrator conserves symplecticity. Another main emphasis of this study is to numerically shed light on the scenario
of the soliton transport.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The completely integrable Camassa–Holm (CH) equation [2,3] has received considerable attention during the
past three decades. Given an initial data falling into the Sobolev space H s(Ω), CH equation is locally well-posed
if s > 3/2 [5,7]. Popularity of this Cauchy problem arises from its rich geometric solution structure. Camassa–Holm
equation developed for modeling the permanent wave has a global strong solution [8]. In addition, this equation
permits blow-up solution that models the wave breaking [5,7]. Given an initial data of the H1(ℜ) type, Camassa–Holm
equation is also amenable to global weak solution [10,16].
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The locally non-smooth time evolving CH solution is a direct result of the competition between the nonlinear
compression uux , nonlinear dispersion uuxxx , and possibly the mixed space–time derivative term uxxt . An initially
smooth solution may be compressed to generate a jump in finite time due to the embedded nonlinear terms [2]. In the
presence of peakon solution, the CH solution computed at κ = 0 can exhibit even a discontinuous first derivative at the
wave crest. At these peaks, any numerically introduced high-frequency dispersion error can considerably deteriorate
the simulation quality [20].

To get a better understanding of the nonlinear and dispersive natures numerically in shallow water or in optical
fiber, it is natural to apply a scheme which attains all the rich geometric structures. It is also desired to get the non-
oscillatory solutions near the local peak and cusp solitons. How to preserve wave shape and speed subsequent to
soliton collision and exhibit particle-like behavior in the CH equation is also essential.

The rest of this paper is organized as follows. Section 2 describes the nonlinear CH equation and some of its
remarkable solution features. The classical CH equation is then transformed to its equivalent nonlinear system of
equations that contains only the equation having the reduced differential order and the inhomogeneous Helmholtz
equation. In the proposed solution algorithm, the nonlinear advection equation is first numerically approximated by
the combined compact finite difference scheme. In Section 5 the CH equation will be solved for elucidating the long-
time asymptotic solution behavior in the CH equation. Emphasis will be addressed on the transport of a single soliton
and the interaction of two and three solitons. Finally, some concluding remarks will be drawn in Section 6.

2. Working equation and its fundamentals

In this paper, the following dispersive shallow water equation, known also as the Camassa–Holm (CH) equation,
is studied in a domain x ∈ R for the fluid velocity u(x, t) at t > 0

ut + 2κux − uxxt + 3uux = 2ux uxx + uuxxx . (1)

The coefficient shown above κ (>0) is the critical shallow water wave speed (gh0)
1/2, where g and h0 denote the

gravity and undisturbed water depth. Two cases with κ > 0, which corresponds to have a smooth solitary wave, and
κ = 0, which permits soliton with a sharp peak (or peakon) solution, are investigated. As κ approaches zero, CH
solution becomes less smooth and may generate finally a discontinuity at the peak in the wave slope.

Eq. (1) can be represented in different mathematical forms. Define the momentum variable m as

m = u − uxx . (2)

This variable belongs to the class of Schwartz functions in the sense that


∞

−∞
(1 + |x |)|m(x)|dx < ∞. One can then

rewrite Eq. (1) in terms of m and the two Hamiltonians H1 and H2 as follows

mt = −(2κ∂ + m∂ + ∂m)
δH1

δm
(3)

mt = −(∂ − ∂3)
δH2

δm
. (4)

Because of the above two compatible descriptions, CH equation, by definition, has the bi-Hamiltonian structure for
the Hamiltonians given below

H1 =
1
2


mudx (5)

H2 =
1
2


u3

+ uu2
x + 2κu2dx . (6)

CH equation can be also represented by the classical Poisson Bracket form mt = {m, H1}, where {A, B} is
defined as

{A, B} =


−
δA

δm
(2κ∂ + m∂ + ∂m)

δB

δm
dx . (7)
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One can rewrite Eq. (1) in terms of the eigenfunction ψ and its associated eigenvalue λ in the following Lax pair form

ψxx =


1
4

+ λ(m + κ)


ψ (8)

ψt =


1

2λ
− u


ψx +

ux

2
ψ + γψ. (9)

In the above, γ is an arbitrary constant. In other words, CH equation can be regarded as the compatibility condition
between Eqs. (8) and (9) since ∂t∂xxψ = ∂xx∂tψ . Because of the available Lax pair, CH equation is completely
integrable.

Given an initial condition u0(x, t = 0) ∈ H1, where H1 denotes the Sobolev space, Eq. (1) has the following
infinite sequence of conservation laws

(∂ − ∂3)
δHn

δm
= (2κ∂ + m∂ + ∂m)

δHn−1

δm
. (10)

In the above, Hn(n = 0,±1,±2, . . . , ) denotes the Hamiltonian.

3. Solution algorithm for solving the CH equation

The third-order spatial derivative term and the mixed space–time derivative term in Eq. (1) were less explored
numerically in comparison with the approximation of first-order derivative term. To avoid approximating these
two higher-order derivative terms, the third-order CH equation is transformed to its equivalent system of equations
containing only the first-order spatial and the temporal derivative terms by introducing the auxiliary variables given
below. One can adopt first the momentum variable m = u − uxx to yield the following u − m formulation [18].

mt + umx + 2ux m = −2κux . (11)

Given the above action-angle variables, the evolution Eq. (1) in time can be used to model the linear transport of m at
the constant speed. Note that CH equation becomes integrable provided that κ > 0 and m(x, t = 0) + κ > 0 [6,9].
As a result, the sum of κ and the Schwartz function m is positive for all t .

One can also transform the original CH equation to get the equivalent u − P formulation given below [18]

ut + uux = −Px (12)

P − Pxx = u2
+

1
2
(ux )

2
+ 2κu. (13)

The above two sets of equations are normally solved subject to the prescribed periodic boundary condition. We
have computationally assessed these two formulations and have drawn the conclusion that the u − P formulation
outperforms the u − m formulation [18].

For the case with peakons and cuspons, it is inevitable to encounter discontinuity in the x-derivative of the solution.
One must therefore avoid approximating ∂u/∂x shown on the right hand side of Eq. (12) and on the left-hand side of
Eq. (13). To this end, Eq. (12) is rewritten to its equivalent equation given below

ut +
1
2
(u2)x = −Px . (14)

To avoid computing the term u2
x in the inhomogeneous Helmholtz equation (13), we should replace u2

x by a term that is
physically continuous even at a jump location in the wave crest. A good candidate is the one shown in the Hamiltonian
H2. The energy density given below is thus taken into account in the current simulation of CH equation [4,13]

α = u2
+ (ux )

2. (15)

One can then easily derive the following transport equation for α in a conservative form as

αt + (uα)x = −Qx (16)

where Q = 2Pu − u3
− 2κu2.
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In summary, the set of equations used to avoid dealing with the computationally challenging terms uxxx , uxxt and
ux (in case of a non-smooth solution) is as follows

ut +
1
2
(u2)x = −Px (17)

P − Pxx = u2/2 + α/2 + 2κu (18)

αt + (uα)x = −Qx . (19)

Within each 1t (≡ tn+1 − tn), the solution un+1 will be computed iteratively from un as follows. Given the time-
accurate convergent solution for u and α at tn = n1t , we compute P from Eq. (18) and then the solution u from
Eq. (17). This is followed by computing Q(=2Pu −u3

−2κu2) and then α from Eq. (19). This process of calculations
will be terminated until the criterion max{|uk+1

− uk
|, |αk+1

− αk
|} ≤ ε (the user’s specified tolerance) is satisfied.

4. Numerical schemes

For approximating the time-dependent differential equation (17), in this study the classical semi-discretization
method is adopted. The time derivative term will be approximated before approximating the spatial derivative terms.

4.1. Symplectic scheme for the time derivative term

Since Eq. (1) has a multi-symplectic structure, to get a long-term accurate solution the time-stepping scheme cannot
be arbitrarily applied. In other words, a symplectic structure-preserving numerical integrator should be adopted to
conserve symplecticity for the calculation of the currently investigated Hamiltonian differential system. The sixth-
order accurate symplectic Runge–Kutta scheme [15] is chosen in this study to carry out a long-time integration of the
non-dissipative CH equation:

u(1) = un
+1t


5

36
F (1) +


2
9

+
2c̃

3


F2

+


5

36
+

c̃

3


F3


(20)

u(2) = un
+1t


5

36
−

5c̃

12


F (1) +

2
9

F (2) +


5
36

+
5c̃

12


F (3)


(21)

u(3) = un
+1t


5

36
−

c̃

3


F (1) +


2
9

−
2c̃

3


F (2) +

5
36

F (3)


(22)

un+1
= un

+1t


5

18
F (1) +

4
9

F (2) +
5
18

F (3)


(23)

where c̃ =
√

3/5/2 and F (i) = F(u(i), P̄(i)), i = 1, 2, 3.
In this applied symplectic Runge–Kutta method for the calculation of un+1, Eqs. (20)–(22) are solved implicitly

for u(1), u(2) and u(3). We can then solve the Helmholtz equation (18) to get P(1), P(2) and P(3). Upon reaching
the prescribed convergence criteria (10−9 in the current study), the solution un+1 and then the solution P̄n+1 can be
calculated.

4.2. Three-point seventh-order accurate upwinding combined compact difference (UCCD7) scheme

In the following, the combined compact upwinding scheme will be developed for the approximation of the first-
order derivative term. At each interior grid point, φx , φxx and φxxx are all considered as the working variables so as
to get the spectral-like resolution. Take φ = u as an example, the non-centered combined compact scheme will be

presented in a three-point grid stencil for the approximation of ∂φ
∂x , ∂

2φ

∂x2 and ∂3φ

∂x3 at the grid points i and i ± 1

∂φ

∂x


i
+ a1

∂φ

∂x


i−1

+ h


b1
∂2φ

∂x2


i−1

+ b2
∂2φ

∂x2


i
+ b3

∂2φ

∂x2


i+1


+ h2


c1
∂3φ

∂x3


i−1

+ c3
∂3φ

∂x3


i+1


=

1
h
(d1φi−1 + d2φi + d3φi+1) (24)
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∂2φ

∂x2


i
+

1
h


−

29
16
∂φ

∂x


i−1

+
29
16
∂φ

∂x


i+1


+


−

5
16
∂2φ

∂x2


i−1

−
5

16
∂2φ

∂x2


i+1


+ h


−

1
48
∂3φ

∂x3


i−1

+
1

48
∂3φ

∂x3


i+1


=

1

h2 (4φi−1 − 8φi + 4φi+1) (25)

∂3φ

∂x3


i
+

1

h2


−

105
16

∂φ

∂x


i−1

−
105
16

∂φ

∂x


i+1


+

1
h


−

15
8
∂2φ

∂x2


i−1

+
15
8
∂2φ

∂x2


i+1


+


−

3
16
∂3φ

∂x3


i−1

−
3

16
∂3φ

∂x3


i+1


=

1

h3


105
16
φi−1 −

105
16
φi+1


. (26)

Both of the second-order derivative term ∂2φ/∂x2 and the third-order derivative term ∂3φ/∂x3 are approximated by
the central schemes. These coefficients are determined simply by applying Taylor series expansions for eliminating
their respective leading truncation error terms in the derived modified equations. The resulting formal accuracy orders
become eighth-order and sixth-order, respectively [14].

Determination of the eight weighting coefficients in (24) is started by performing Taylor series expansion on φi−1,

φi+1, ∂φ
∂x |i−1, ∂φ

∂x |i ,
∂2φ

∂x2 |i−1, ∂
2φ

∂x2 |i ,
∂2φ

∂x2 |i+1, ∂
3φ

∂x3 |i−1 and ∂3φ

∂x3 |i+1 with respect to φi . The leading eight truncation errors
in the derived modified equation are eliminated to get the following set of algebraic equations

d1 + d2 + d3 = 0 (27)

−a1 − d1 + d3 = 1 (28)

2a1 + d1 + d3 − 2b1 − 2b2 − 2b3 = 0 (29)

d1 − d3 − 6b1 + 6b3 + 6c1 + 6c3 + 3a1 = 0 (30)

d1 + d3 − 12b1 − 12b3 + 24c1 − 24c3 + 4a1 = 0 (31)

d1 − d3 − 20b1 + 20b3 + 60c1 + 60c3 + 5a1 = 0 (32)

d1 + d3 − 30b1 − 30b3 + 120c1 − 120c3 + 6a1 = 0 (33)

d1 − d3 − 42b1 + 42b3 + 210c1 + 210c3 + 7a1 = 0. (34)

One more algebraic equation is needed for us to uniquely determine all the nine introduced coefficients shown in (24)
for the approximation of φx . Our strategy of maximizing dispersive accuracy is to match the numerical modified (or
scaled) wavenumber with its analytical counterpart [19]. To this end, the following Fourier transform and its inverse
of φx is applied

φ̃(β) =
1

2π


+∞

−∞

φ(x)e−iβx dx (35)

φ(x) =


+∞

−∞

φ̃(β)eiβx dβ. (36)

Note that the notation i shown above is equal to
√

−1.

In the chosen three-point grid stencil, the high-order upwinding compact scheme is developed by performing the
Fourier transform on each term shown in Eqs. (24)–(26). The expressions of the actual (or exact) wavenumber β for
these equations can be derived as follows

iβh(a1 exp(−iβh)+ 1) ≃ (d1 exp(−iβh)+ d2 + d3 exp(iβh))− (iβh)2

× (b1 exp(−iβh)+ b2 + b3 exp(iβh))− (iβh)3(c1 exp(−iβh)+ c3 exp(iβh)) (37)

iβh


−

29
16

exp(−iβh)+
29
16

exp(iβh)


≃ 4 exp(−iβh)− 8 + 4 exp(iβh)− (iβh)2

×


−

5
16

exp(−iβh)+ 1 −
5
16

exp(iβh)


− (iβh)3


−

1
48

exp(−iβh)+
1

48
exp(iβh)


(38)
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iβh


−

105
16

exp(−iβh)−
105
16

exp(iβh)


≃


105
16

exp(−iβh)−
105
16

exp(iβh)


− (iβh)2

×


−

15
8

exp(−iβh)+
15
8

exp(iβh)


− (iβh)3


−

3
16

exp(−iβh)+ 1 −
3

16
exp(iβh)


. (39)

In an approximation sense, the effective (or numerical) scaled wave numbers β ′h, β ′′h and β ′′′h are made to render
the same expressions as those shown on the right-hand sides of Eqs. (37)–(39) [19]. As a result, β ′h, β ′′h and β ′′′h
can be expressed as follows:

iβ ′h(a1 exp(−iβh)+ 1) = d1 exp(−iβh)+ d2 + d3 exp(iβh)

− (iβ ′′h)2(b1 exp(−iβh)+ b2 + b3 exp(iβh))− (iβ ′′′h)3(c1 exp(−iβh)+ c3 exp(iβh)) (40)

iβ ′h


−

29
16

exp(−iβh)+
29
16

exp(iβh)


≃ 4 exp(−iβh)− 8 + 4 exp(iβh)− (iβ ′′h)2

×


−

5
16

exp(−iβh)+ 1 −
5

16
exp(iβh)


− (iβ ′′′h)3


−

1
48

exp(−iβh)+
1

48
exp(iβh)


(41)

iβ ′h


−

105
16

exp(−iβh)−
105
16

exp(iβh)


≃


105
16

exp(−iβh)−
105
16

exp(iβh)


− (iβ ′′h)2

×


−

15
8

exp(−iβh)+
15
8

exp(iβh)


− (iβ ′′′h)3


−

3
16

exp(−iβh)+ 1 −
3

16
exp(iβh)


. (42)

By solving Eqs. (40)–(42), the expression of β ′h can be derived in terms of the complex functions.
In the numerical modified (or scaled) wavenumber β ′h, its real and imaginary parts are responsible respectively

for the dispersion error (phase error) and the dissipation error (amplitude error). To get a better dispersive accuracy
for β ′, we demand that βh ≈ ℜ[β ′h] where ℜ[βh] denotes the real part of β ′h. This means that the magnitude of the
integrated error function E(β) defined below should be a very small and positive magnitude over the chosen range of
integration

E(β) =

 π/2

−π/2
[W (βh − ℜ[β ′(h)])]2d(βh). (43)

The weighting function W in (43) is the denominator of (βh − ℜ[βh]) [1].
To make the error function defined in −π/2 ≤ βh ≤ π/2 to be positive and minimum, the extreme condition

∂E/∂d1 = 0 is performed to minimize the numerical wavenumber error in Fourier analysis. The resulting
constraint equation will be solved together with another eight previously derived algebraic equations derived from
the modified equation analysis. This approach enables us not only to get a higher dissipation accuracy but also
an improved dispersion accuracy. The resulting nine introduced unknowns can be uniquely determined as a1 =

1.1875, b1 = 0.23643236, b2 = −0.27774699, b3 = −0.01356764, c1 = 0.01894044, c3 = 0.00189289, d1 =

−2.33613227, d2 = 2.48476453 and d3 = −0.14863227. The upwinding scheme developed above in a stencil of
three grid points i − 1, i and i + 1 for ∂φ/∂x = 0 has the spatial accuracy order of seventh because of the following
derived modified equation

∂φ

∂x
=
∂φ

∂x


exact

− 0.65175737 × 10−5h7 ∂
8φ

∂x8 + 0.81653294 × 10−7h9 ∂
10φ

∂x10 + H.O.T. (44)

When u < 0, we can similarly derive the following non-centered combined compact scheme in a three-point grid
stencil containing the grid points i and i ± 1

∂φ

∂x


i
+ 1.1875

∂φ

∂x


i−1

+ h


0.01356764

∂2φ

∂x2


i−1

+ 0.27774699
∂2φ

∂x2


i
− 0.23643236

∂2φ

∂x2


i+1


+ h2


0.00189289

∂3φ

∂x3


i−1

+ 0.01894044
∂3φ

∂x3


i+1


=

1
h
(0.14863227φi−1 − 2.48476453φi + 2.33613227φi+1) . (45)
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For developing an efficient and accurate numerical scheme for the inhomogeneous Helmholtz equation (13) or (18),
the sixth-order accurate compact scheme presented in [18] will be adopted to get the following three-point equation.

Pi+1 −


2 + h2k̄ +

1
12

h4k̄2
+

1
360

h6k̄3


Pi + Pi−1

= h2 fi +
1
12

h4


k̄ fi +
∂2 fi

∂x2


+

1
360

h6


k̄2 fi + k̄
∂2 fi

∂x2 +
∂4 fi

∂x4


. (46)

The corresponding modified equation for ∂
2 P
∂x2 − k̄ P = −( u2

2 +
α
2 + 2κu)(≡ f ) shown below confirms the proposed

sixth-order accurate three-point stencil compact scheme

∂2 P

∂x2 − k P = f +
h6

20160
∂8 P

∂x8 +
h8

1814400
∂10 P

∂x10 + · · · + H.O.T. (47)

5. Numerical results

In this study the CH equation will be solved for the case with the initial solution, which is not only sufficiently
smooth but is also rapidly decaying at the two infinite ends |x | → ∞. This investigated initial condition is also
subjected to u0(x)− u0xx (x)+ κ > 0 or m0 + κ > 0 for all x ∈ R. Given this initial condition u0(x, t = 0), the CH
solution u(x, t) exists [6]. According to [12], there are four sectors in the (x, t) half-plane t > 0, in which the leading
term of the longtime asymptotics of u(x, t) behaves differently, depending on the magnitudes of c = x/t : (I) c > 2,
(II) c < 2, (III) − 1/4 < c < 0 and (IV) c < −1/4. In the solitonic solution sector (I), only the solution of the
soliton type is seen. Upon passing over the narrow transition region |x/t − 2| t2/3 < c, oscillatory solution becomes
exhibited. The first oscillatory region defined in [11] extends up to x/t = 0. In the sector between −1/4 < x/t < 0,
another kind of oscillatory solution is described in [11]. Beyond the narrow region of the transition fan defined by
|x/t + 1/4| t2/3 < c, CH solution becomes rapidly decaying in the sector x/t < −1/4. Only the case with a single
soliton solution will be considered in this paper. The other three solutions in sectors (II)–(IV) will be our future study.

The proposed phase accurate and symplecticity optimized scheme will be validated first by solving the CH equation
at κ = 1.0 in Section 5.1.1 and at κ = 0.2 in Section 5.1.2 for the single soliton solution. Soliton–soliton interaction
problem will be solved in Section 5.2 and three-soliton interaction problem will be solved in Section 5.3. For the
validation purpose, the following Hamiltonians will be plotted against time for each test problem

H0 =


udx (48)

H1 =
1
2


(u2

+ u2
x )dx =


αdx (49)

H2 =
1
2


(u3

+ uu2
x + 2κu2)dx =


uαdx . (50)

5.1. One soliton problem

5.1.1. κ = 1
Given k ∈ (0, 1/2) and κ , we have the corresponding single soliton solution given below in the “soliton” region,

or sector (I)

usol(x − κct) =
32κk2

(1 − 4k2)2

α(y(x − κct))

(1 + α(y(x − κct)))2 +
16k2

1−4k2α(y(x − κct))
. (51)

In the above, α(y) =
ŷ2

2k e−2ky , c =
1

2(1/4−k2)
∈ (2,∞), and x = y + log

1+α(y) 1+2k
1−2k

1+α(y) 1−2k
1+2k

. The expression of γ̂ is a function

of 0.2−k
0.2+k .
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Fig. 1. Comparison of the predicted time-varying CH solutions in a domain of 256 grids at (a) k = 0.1, κ = 1.0 and γ̂ = 0.1; (b) k = 0.15, κ = 1.0
and γ̂ = 0.02164.

Fig. 2. The computed Hamiltonians H0, H1 and H2 against time for the one soliton problem investigated at (a) k = 0.1 and κ = 1.0; (b) k = 0.15
and κ = 1.0.

Fig. 3. Comparison of the time-varying CH solutions computed in a domain of 256 grids at (a) k = 0.1, κ = 0.2 and γ̂ = 0.3333;
(b) k = 0.15, κ = 0.2 and γ̂ = 0.1429.

In Fig. 1(a)–(b), we can see that the time-evolving soliton solutions u(x, t) predicted in 256 grids at k = 0.1 and
0.15 are compared excellently with the analytic results given in [12]. The Hamiltonians for the two investigated values
of k are plotted respectively in Fig. 2(a)–(b). The unchanged Hamiltonians in time exhibit the globally non-dissipative
solution behavior in the single soliton region.

5.1.2. κ = 0.2
In this section, the CH equation defined in −400 ≤ x ≤ 400 will be solved in 256 grids at k = 0.1 and k = 0.15.

We make a direct comparison between our simulated results with the analytic results given in [12] for the CH solutions
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Fig. 4. The computed Hamiltonians H0, H1 and H2 against time for the one soliton problem investigated at (a) k = 0.1 and κ = 0.2; (b) k = 0.15
and κ = 0.2.

Fig. 5. The soliton–soliton solutions computed at different times in a domain of 2048 grids. (a) t = 0; (b) t = 350; (c) t = 9900; (d) t = 10 400;
(e) t = 11 400; (f) t = 12 900.
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Fig. 6. Plot of the Hamiltonians H0, H1 and H2 against time for the investigated soliton–soliton problem in Section 5.2.

predicted in sector (I) at κ = 0.2. Good agreement shown in Fig. 3(a)–(b) shows the proper application of the current
prediction method to get the long-time solution behavior of the CH equation. We, as before, plot the computed values
of the Hamiltonians in (48)–(50) against time at k = 0.1 and k = 0.15 in Fig. 4(a)–(b) to exhibit the globally
non-dissipative soliton scenario.

5.2. Soliton–soliton interaction problem

Based on the proposed u − P − α formulation, Eq. (1) is then solved at κ = 1.0 for a pair of solitons. The initial
two solitons shown in Fig. 5(a) are generated by Eq. (51) at k = 0.04 and k = 0.06. The resulting values of c for the
two investigated values of k are 0.4171 and 0.2653.

The results for this soliton–soliton case are computed in a domain of 2048 uniform mesh points. Fig. 5(b)–(d)
display the process of soliton collision at three different times. One can observe that the two-soliton solution regains
its shape after the collision, resulting in only a phase shift. For the validation purpose, the computed values of the
three unchanged Hamiltonians are also plotted against time in Fig. 6.

5.3. Three-soliton interaction problem

We then consider the case of three solitons propagating along the same direction [17]. The three-soliton solution
for the CH equation (1) is represented in a parametric form given below [17]

u(y, t) =
∂

∂t
ln


P

Q


, x(y, t) =

y

k
+ ln


P

Q


. (52)

The above two functions P and Q are defined by

P(y, t) = 1 + eξ1−η1 + eξ2−η2 + eξ3−η3 + eξ1−η1eξ2−η2 A12 + eξ1−η1 eξ3−η3 A13

+ eξ2−η2eξ3−η3 A23 + eξ1−η1eξ2−η2eξ3−η3 A12 A13 A23 (53)

Q(y, t) = 1 + eξ1+η1 + eξ2+η2 + eξ3+η3 + eξ1+η1eξ2+η2 A12 + eξ1+η1eξ3+η3 A13

+ eξ2+η2eξ3+η3 A23 + eξ1+η1eξ2+η2eξ3+η3 A12 A13 A23 (54)

where ξi = pi (y − κci t), ci =
2κ2

1−κ2 p2
i
, ηi = ln( 1+κpi

1−κpi
) for i = 1, 2, 3 and Ai j = (

pi −p j
pi +p j

)2, 1 ≤ i ≤ j ≤ 3. The

Camassa–Holm equation will be solved at c1 = 1.6, c2 = 0.6, c3 = 0.5, κ = (0.24)4 in a domain with the specified
periodic boundary conditions.
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Fig. 7. The three-soliton solutions computed at different times in a domain of 4096 grids. (a) t = 0.0; (b) t = 2.0; (c) t = 3.5; (d) t = 7.0;
(e) t = 9.0; (f) t = 15.0.

In Fig. 7, the time-evolving three-soliton solutions predicted in a domain of 4096 uniformly discretized grids are
plotted. The switching scenario is clearly revealed without showing wave breaking. This three-soliton problem is
thus known to have a global solution. In addition, the higher peakon is seen to move faster than the lower one. The
Hamiltonians shown in Fig. 8 are unchanged all the time.

6. Concluding remarks

In the proposed u − P − α formulation for solving the Camassa–Holm equation, the time derivative term is
approximated by the sixth-order accurate implicit symplectic Runge–Kutta scheme to retain the conserved properties
in the non-dissipative Camassa–Holm equation. For the first-order spatial derivative terms shown in the equation, the
dispersion error generated from the proposed seventh-order accurate upwind combined compact scheme is minimized.
Based on the currently simulated results, we know that one-way propagation solitons proceed an elastic interaction in
the non-dissipative CH equation.
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Fig. 8. Plot of the Hamiltonians H0, H1 and H2 against time for the investigated three-soliton problem in Section 5.3.
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