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a b s t r a c t

An explicit finite-difference scheme for solving the three-dimensional Maxwell’s equations in non-
staggered grids is presented.We aspire to obtain time-dependent solutions of the Faraday’s and Ampère’s
equations and predict the electric and magnetic fields within the discrete zero-divergence context (or
Gauss’s law). The local conservation laws in Maxwell’s equations are numerically preserved using the
explicit second-order accurate symplectic partitioned Runge–Kutta temporal scheme. Following the
method of lines, the spatial derivative terms in the semi-discretized Faraday’s and Ampère’s equations
are approximated theoretically to obtain a highly accurate numerical phase velocity. The proposed fourth-
order accurate space-centered finite difference schememinimizes the discrepancy between the exact and
numerical phase velocities. Thisminimization process considerably reduces the dispersion and anisotropy
errors normally associated with finite difference time-domain methods. The computational efficiency of
getting the same level of accuracy at less computing time and the ability of preserving the symplectic
property have been numerically demonstrated through several test problems.

© 2016 Published by Elsevier B.V.
1. Introduction

For ideal Maxwell’s equations applied in a region with no
charges and no currents, Gauss’s law is considered as amathemati-
cal constraint imposed on the Faraday’s law and the Ampère’s law.
However, this physical law for magnetism is not always discretely
satisfied due to various kinds of numerical error. These predicted
nonzero-divergence errors in magnetic and electric flux densities
introduce instability while simulating electromagnetic wave prop-
agation by using the Maxwell’s equations. Avoidance of this nu-
merical instability is critical in the development of an effective
solver for Maxwell’s equations [1]. In Gauss’s law, two divergence-
free constraint equations can be numerically satisfied at all time
when solving the Maxwell’s equations in the well known Yee’s
staggered grid system [2]. The generalized Lagrangemultiplier for-
mulation in [3] is an alternative to retain divergence-free condition
in theMaxwell’s equations. A local divergence-freeMaxwell’s solu-
tion can be obtained aswell using the discontinuous Galerkin finite
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element method [4], the space–time hp-discontinuous Galerkin
method [5], and the space–time discontinuous Galerkin Trefftz
method [6]. In this study a schemewith the ability to render a set of
divergence-free electric and magnetic field solutions is developed
in non-staggered (or colocated) grids.

The methods developed for predicting electromagnetic wave
propagation can be classified into the integral and differential
types. The integral methods include method of moments, bound-
ary element method, and fast multipole method. The differential
methods contain finite difference, finite element, finite volume,
pseudospectral, transition line matrix and multiresolution meth-
ods. Among them, the finite difference method developed in time-
domain is comparatively simple and efficient [2] and it is therefore
chosen in the present study.

While approximating the derivative terms using the differential
methods, any form of numerical dissipation error can deteriorate
the solutions. Meanwhile, time-dispersion error can lead to an er-
roneously predicted phase velocity or group velocity. It is therefore
essential to reduce both the numerical dispersion and dissipation
errorswhile approximating the first-order spatial derivative terms.
The appropriate symplectic property preserving approximation of
time derivative terms in the Faraday’s and Ampère’s equations is
therefore required for long-term computation of Maxwell’s equa-
tions.

http://dx.doi.org/10.1016/j.cpc.2016.07.017
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.017&domain=pdf
mailto:twhsheu@ntu.edu.tw
http://dx.doi.org/10.1016/j.cpc.2016.07.017


T.W.H. Sheu et al. / Computer Physics Communications 207 (2016) 258–273 259
When simulating Maxwell’s equations, the accuracy of the
solution predicted from the Finite Difference Time Domain
(FDTD) methods may become questionable in large and small-
scale structures after the computation is executed for a long
time [7]. The predicted errors manifest themselves as numerical
damping and dispersion errors. The decreasing of numerical
accuracy can be also attributed to the anisotropy error. Both of
the dispersion and anisotropy errors are significant since they
exhibit accumulative nature and therefore entail an erroneous
propagation characteristics. Consequently, the resulting amplitude
and phase errors will result in erroneous numerical prediction.
Both of these computational issues in electro-magnetism are
addressed in the current paper via the newly developed FDTD
scheme for two and three dimensions.

This paper is organized as follows. In Section 2, some of the
distinguished features in the Maxwell’s equations are presented.
In Section 3, the approximation of the first-order spatial derivative
terms in the Faraday’s and Ampère’s equations are rigorously
derived by requiring that the difference between the exact
and numerical phase velocities be minimized. Since Maxwell’s
equations subjected to the lossless condition are Hamiltonian [8],
a symplectic structure-preserving time integrator is applied in
this study to conserve symplecticity in the differential equations
by using the explicit Symplectic Partitioned Runge–Kutta (SPRK)
scheme. In Section 4, the proposed scheme is analyzed in detail
in Fourier space for completeness. In Section 5, the proposed
temporal and spatial schemes are verified and validated by the
chosen test problems. Finally, we will draw conclusions based on
the solutions computed on the non-staggered grids.

2. Working equations

Maxwell’s equations in time domain for electric field E =
Ex, Ey, Ez

T and magnetic field H =

Hx,Hy,Hz

T can be written
in curl operator form as

∂H
∂t

= −
1
µ

∇ × E, (1)

∂E
∂t

=
1
ε

∇ × H. (2)

For a linear, isotropic, and lossless material, in the absence of elec-
tric current density and electric charge density for all time, the
Gauss’s law comprising of the divergence-free constraint equations
∇ · B = 0 and ∇ · D = 0 can be directly derived from Eqs. (1)–(2),
which denote the Faraday’s law and the Ampère’s law, respec-
tively. TheGauss’s law fixes the initial conditions for Eqs. (1) and (2)
and it is always satisfiedwithin the differential context if both vec-
tors B and D are initially divergence-free [4]. Note that Eqs. (1)–(2)
are derived by using the constitutive equations D = εE and B =

µH , where ε = ε0εr andµ = µ0µr . The subscript ‘‘r ’’ shown in the
permittivity and permeability denotes the quantities in free space.
εr and µr stand for the relative permittivity and permeability, re-
spectively. In these constitutive equations, the electric flux den-
sity D is linearly proportional to the electric field density E, where
the proportional constant ε is known as the electric permittivity.
Likewise, the magnetic flux density B relates with the magnetic
field intensityH through the proportional constantµ known as the
magnetic permeability. The values of ε0 andµ0 at vacuum state de-
fine the light speed c (≡ (ε0 µ0)

−1/2). These constitutive equations
and the Ampère and Faraday equations constitute twelve equa-
tions for twelve unknowns B, D,H and E. In this study, the schemes
proposed in Section 3 forMaxwell’s equations are rather restrictive
in a sense that they can be applied only to a homogeneous isotropic
material.
Eqs. (1)–(2) constitute a bi-Hamiltonian differential system
containing two frequently referred Hamiltonians, namely the he-
licity Hamiltonian H1 given below [9]

H1 =
1
2


1
ε
H · ∇ × H +

1
µ
E · ∇ × E dΩ (3)

and the quadratic Hamiltonian given below [10]

H2 =
1
2


µH · H + εE · E dΩ. (4)

Note that Eqs. (1)–(2) permit not only the global conservation law
given by dH1

dt = 0 but also the quadratic conservation law repre-
sented as dH2

dt = 0 provided that electric permittivity andmagnetic
permeability are independent of the spatial variables [11].

3. Numerical method

Maxwell’s equations in simplemedia have symplectic andmul-
tisymplectic structures. Preservation of these invariant properties
prompts us to apply a geometric numerical integration method in
order to satisfy energy conservation law in discrete form and gauge
invariant existing in the Maxwell’s equations [12].

Following the method of lines, the Hamiltonian system of
equations under current investigation shall be discretized in space
by using a centered finite difference scheme. The symplectic
method is then applied to discretize the resulting ordinary
differential equations in time. In this paper, preservation of the
local and global conservation laws and the discrete divergence-free
(or Gauss) law will be addressed. To get some numerical insights
of the proposed scheme, both of the dispersion analysis and the
modified equation analysis will be performed. Anisotropy analysis
will be also conducted on the proposed symplectic scheme.
Discussion of results is particularly focused on the grid-anisotropy
for the equations ∂Hx

∂t = −
1
µ

∂Ez
∂y ,

∂Hy
∂t =

1
µ

∂Ez
∂x and ∂Ez

∂t =
1
ε

(
∂Hy
∂x −

∂Hx
∂y ).

In 1960, Yee first solved the Maxwell’s equations on staggered
grids [2]. While the strategy of storing the electric and magnetic
field variables at different nodal points makes the boundary
treatment a comparatively easy task and satisfies the Gauss’s law
in the discrete level, a more stringent condition is required for
numerical stability. On the contrary, within the context of finite
difference methods, very few non-staggered Maxwell’s equation
solvers have been proposed with success to accurately predict the
EM wave solutions in the literature[13–15]. Dependent variables
can be also stored in a space–time fashion in discontinuous
Galerkin time domain methods [5,6]. Basis functions can be
properly designed by exploiting the geometric structure behind
the Maxwell’s equations [16]. In the current study, the non-
staggered grid finite difference approach is adopted. The reason
for choosing collocated grid approach is due to its simplicity in
programming and storage management.

3.1. Explicit symplectic partitioned Runge–Kutta temporal scheme

Faraday’s and Ampère’s equations shown in (1)–(2) constitute
a Hamiltonian differential system. Apart from preserving the
symplectic structure along the time direction, we also aim to
develop a scheme of reduced dispersion error. To this end, the
difference between the numerical and exact phase velocities will
be minimized in wavenumber space.

Most of the Hamiltonian systems have a special structure called
separable. Since Maxwell’s equations are separable, an explicit
symplectic partitioned Runge–Kutta time-stepping scheme (or
Verlet scheme) is therefore applied to integrate the differential
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system of equations through the corresponding table for the
respective Faraday’s andAmpère’s equations [17]. In this study, the
following second-order accurate explicit partitioned Runge–Kutta
scheme presented in [18] is adopted to approximate the time
derivative terms

Hn+ 1
2 = Hn

−
dt
2µ

∇ × En, (5)

En+1
= En

+
dt
ε

∇ × Hn+ 1
2 , (6)

Hn+1
= Hn+ 1

2 −
dt
2µ

∇ × En+1. (7)

Note that the above temporal scheme is numerically identical to
the Yee’s leap-frog scheme except for that outlined in the very first
half time step.

3.2. Discretization of spatial derivative terms

Approximation of the spatial derivative terms shown in
Eqs. (5)–(7) is presented below by using the modified equation
analysis given in Section 3.2.1, dispersion analysis given in
Section 3.2.2, and the grid-anisotropy analysis presented in
Section 4.2.

In non-staggered grids, the first-order derivative terms
∂Hn

y
∂x and

∂Hn
x

∂y at an interior node (i, j, k) are approximated by the difference
scheme given below

∂Hy

∂x
|
n
i,j,k =

1
h


a1

Hy|

n
i+3,j,k − Hy|

n
i−3,j,k


+ a2


Hy|

n
i+2,j,k − Hy|

n
i−2,j,k


+ a3


Hy|

n
i+1,j,k − Hy|

n
i−1,j,k


, (8)

∂Hx

∂y
|
n
i,j,k =

1
h


a1

Hx|

n
i,j+3,k − Hx|

n
i,j−3,k


+ a2


Hx|

n
i,j+2,k − Hx|

n
i,j−2,k


+ a3


Hx|

n
i,j+1,k − Hx|

n
i,j−1,k


. (9)

Upon the substitution of Eqs. (8), (9) into the equation for En+1/2
z ,

we perform Taylor series expansion with respect to Ez . The
following equation at an interior point (i, j, k) can be derived

∂Ez
∂t

|
n
i,j,k +

dt2

24
∂3Ez
∂t3

|
n
i,j,k +

dt4

1920
∂5Ez
∂t5

|
n
i,j,k

+
dt6

322560
∂7Ez
∂t7

|
n
i,j,k + · · ·

=
1
ε


6a1 + 4a2 + 2a3


∂Hy

∂x
|
n
i,j,k

+


9a1 +

8
3
a2 +

1
3
a3


dx2

∂3Hy

∂x3
|
n
i,j,k

+


81
20

a1 +
8
15

a2 +
1
60

a3


dx4

∂5Hy

∂x5
|
n
i,j,k

+


243
280

a1 +
16
315

a2 +
1

2520
a3


dx6

∂7Hy

∂x7
|
n
i,j,k

+ · · ·


−


6a1 + 4a2 + 2a3


∂Hy

∂x
|
n
i,j,k

+


9a1 +

8
3
a2 +

1
3
a3


dx2

∂3Hy

∂x3
|
n
i,j,k
+


81
20

a1 +
8
15

a2 +
1
60

a3


dx4

∂5Hy

∂x5
|
n
i,j,k

+


243
280

a1 +
16
315

a2 +
1

2520
a3


dx6

∂7Hy

∂x7
|
n
i,j,k + · · ·


. (10)

The weighting coefficients a1, a2 and a3 will be determined by
the modified equation analysis and the dispersion analysis given
below.

3.2.1. Modified equation analysis

Higher order temporal terms ∂3Ez
∂t3

, ∂5Ez
∂t5

, ∂7Ez
∂t7

... are rewritten
to their equivalent spatial derivative terms through the Ampère’s
equations ∂Ez

∂t =
1
ε


∂Hy
∂x −

∂Hx
∂y


, ∂Ex

∂t =
1
ε


∂Hz
∂y −

∂Hy
∂z


, and ∂Ey

∂t =

1
ε


∂Hx
∂z −

∂Hz
∂x


to yield the corresponding equations for ∂ iEj

∂t i
(i = 3

and 5, j = x, y, z). By replacing the temporal derivative terms
∂3Ez
∂t3

and ∂5Ez
∂t5

with the spatial derivative terms, one can get the
corresponding equation for (10). In comparison with the equation
∂Ez
∂t =

1
ε


∂Hy
∂x −

∂Hx
∂y


, the following algebraic equations for a1, a2

and a3 can be derived

3a1 + 2a2 + a3 =
1
2
, (11)

and

9a1 +
8
3
a2 +

1
3
a3 −

Cr2

12
(3a1 + 2a2 + a3) = 0. (12)

In the above, the Courant number is defined by Cr =
c∆t
h and h

denotes the grid spacing. The algebraic equations for En+1/2
x and

En+1/2
y can be similarly derived.

3.2.2. Dispersion analysis
Determination of the three introduced weighting coefficients

requires the third algebraic equation. In this study, the dispersion
analysis detailed in [19] is adopted to get the numerical dispersion
relation equation of the proposed scheme. By applying the curl
operator on both sides of the Faraday’s equations and substituting
the resulting equations into the Ampère’s equations, one can
get the second-order wave equation for E, which is 1

c2
∂2E
∂t2

=

∂2E
∂x2

+
∂2E
∂y2

+
∂2E
∂z2

. Next, using the plane wave solution E =

E0exp

I

kxi∆x + kyj∆y + kzk∆z − ωn∆t


, where I =

√
−1, it

is seen that

∂2E
∂t2

= 4


2 sin


ω∆t
2


∆t

2

E, (13)

∂2E
∂x2

= −4

a1 sin (3kx∆x) + a2 sin (2kx∆x) + a3 sin (kx∆x)

∆x

2

E, (14)

∂2E
∂y2

= −4


a1 sin


3ky∆y


+ a2 sin


2ky∆y


+ a3 sin


ky∆y


∆y

2

E, (15)

∂2E
∂z2

= −4

a1 sin (3kz∆z) + a2 sin (2kz∆z) + a3 sin (kz∆z)

∆z

2

E. (16)
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Finally, the following numerical dispersion relation equation can
be derived by substituting all the relations in Eqs. (13)–(16) into
the second-order wave equation for E

1
c2

sin2(ω∆t/2)
∆t2

=


a1 sin(3kx∆x) + a2 sin(2kx∆x) + a3 sin(kx∆x)

∆x

2

+


a1 sin(3ky∆y) + a2 sin(2ky∆y) + a3 sin(ky∆y)

∆y

2

+


a1 sin(3kz∆z) + a2 sin(2kz∆z) + a3 sin(kz∆z)

∆z

2

. (17)

The exact dispersion relation equation is derived by substituting
the plane wave solution into the second-order wave equation
∂2E
∂t2

= c2∇2E, thereby yielding


ω
c

2
= k2x + k2y + k2z . Note that

the wavenumber vector is defined as k =

kx, ky, kz


.

Next, the consistency analysis is conducted from the above
derived numerical dispersion relation equation, which can be
rewritten as follows

1
c2

ω2

4


sin(ω∆t/2)

ω∆t

2

= k2x


3a1

sin(3kx∆x)
3kx∆x

+ 2a2
sin(2kx∆x)

2kx∆x
+ a3

sin(kx∆x)
kx∆x

2

+ k2y


3a1

sin(3ky∆y)
3ky∆y

+ 2a2
sin(2ky∆y)

2ky∆y
+ a3

sin(ky∆y)
ky∆y

2

+ k2z


3a1

sin(3kz∆z)
3kz∆z

+ 2a2
sin(2kz∆z)

2kz∆z

+ a3
sin(kz∆z)

kz∆z

2

. (18)

As ∆t , ∆x, ∆y and ∆z approach zero, Eq. (18) becomes ω2

4c2
=

(3a1+2a2+a3)2k2x+(3a1+2a2+a3)2k2y+(3a1+2a2+a3)2k2z . Thanks
to the equation derived from the modified equation analysis of
second kind, the numerical and exact dispersion relation equations
are identical.

To get an accurate propagation characteristics while solving the
Maxwell’s equations, it is essential to reduce numerical dispersion
error. Numerical dispersion relation equation relates the derived
numerical angular frequency ω with the wavenumber vector k
for the Maxwell’s equations. A higher dispersion accuracy can be
obtained provided that the numerical angular frequency of the
system of Ampère’s and Faraday’s equations has a good match
with the wavenumber. Our strategy of deriving the last algebraic
equation is to develop a scheme whose numerical phase velocity
agrees perfectly with its exact counterpart. To achieve this goal,
the equation in space–time domain (x, t) is transformed to its
corresponding wavenumber-angular frequency space (k, ω).

In contrast to the numerical viewpoint of deriving the
dispersion relation equation by directly relating the numerical
angular frequency with the modified wavenumber, the physical
viewpoint of minimizing the dispersion error is emphasized here.
Phase velocity υp (≡ωnum

k ) and group velocity υg (≡ ∂ωnum
∂k )

are the two most important physical quantities relevant to
the above derived numerical/exact dispersion relation equations.
Phase velocity denotes the velocity at which the phase of a
wave propagates along the direction normal to the propagating
wavefront. The group velocity stands for the velocity at which the
envelop of wave packet propagates in the direction normal to the
constant ω-surface of the dispersion relation [20].
Table 1
Comparison of the L2-error norms at t = 10 for
the component Ez obtained at different integration
parametersm in a domain of 2012 mesh points.

Parameterm L2-error norm of Ez

1/2 2.2340E−04
3/7 5.5748E−04
2/5 3.5673E−04
1/3 6.1732E−04

According to the derived numerical dispersion relation equa-
tion (17) or (18), the associated numerical group velocity mag-
nitude depends on the wavenumber vector k. In this study the
difference between the exact phase velocity and the numerical
phase velocity shall be minimized. Following this line of thought,

we define first the error function as

|
ωnum

k | − |
ωexact

k |

2
. This er-

ror function is then minimized in a weak sense within the integral
range of −mpπ ≤ hk ≤ mpπ

Ep =

 mpπ

−mpπ

ωnum

k

− ωexact

k

2 Wp d(kx∆x) d(ky∆y) d(kz∆z).

(19)

In the above, kx∆x, ky∆y and kz∆z denote the scaled (or modified)
wavenumbers along the x, y and z directions, respectively. Intro-
duction of the weighting function Wp to the above minimization
procedure enables us to integrate the equation for Ep analytically.
The parameter mp ranging from 0 to 0.5 is included to reduce the
aliasing error.

The value of Ep is minimized, or min (Ep), by enforcing the
limiting condition given by ∂Ep

∂a3
= 0. The third algebraic equation

for a1, a2 and a3 can thus be derived as follows

−0.00946472 a1 − 0.00787899 a2 + 0.224744 a31
+ 0.0948775 a32 + 0.367829 a22a1

+0.0166091 a33 + 0.107206 a23a1 + 0.261056 a21a3
+ 0.156637 a22a3 − 0.00453852 a3

+ 0.492672 a21a2 + 0.395351 a3a2a1 + 0.0875208 a23a2 = 0. (20)

Eq. (20) derived by minimizing the dispersion error is used
together with the other two algebraic equations (11) and (12)
derived previously from the modified equation analysis of second
kind. From the simulation results tabulated in Table 1, the best
result is obtained at mp =

1
2 . Hence the three introduced

coefficients in Eqs. (8)–(9) are a1 = 0.0164892, a2 = −0.1484569
and a3 = 0.74744617. The resulting space-centered finite
difference scheme is shown to have the spatial accuracy order of
four since ∂Hx

∂x =
∂Hx
∂x |exact − 0.018459h4 ∂5Hx

∂x5
+ O(h6) + · · · .

Before conducting the fundamental studies on the proposed
phase velocity optimized scheme, the derived order of accuracy,
the weighting coefficients, the leading error terms in the modified
equation of second kind, and the best integration parametermp are
summarized in Table 2.

4. Fundamental analyses

The details of the proposed symplecticity-preserving scheme
endowed with the optimized numerical phase velocity for
Maxwell’s equations are explored through the Von Neumann
stability analysis given in Section 4.1 and the anisotropy analysis
given in Section 4.2.
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Fig. 1. (a) Schematic of a wave propagating along a direction defined by the zenith angle θ and the azimuthal angle φ. dΨ (= sin θ dθdφ) denotes the differential solid angle
for a wave along the direction r; (b) Definition of the group velocity angle γ at kz = 0.
Fig. 2. The exact (a) and the numerical (b) angular frequencies are plotted with respect to kx and ky in k = (kx, ky) at ∆t = 0.01, ∆x = ∆y = 0.1; (c) the plot of ωnum with
respect to kx for ky = 0; (d) the plot of ωnum with respect to ky for kx = 0; (e) the plot of ωnum with respect to |k|; (f) the contours of numerical angular frequency.
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Fig. 3. Angular frequencies are plotted with respect to the wave numbers kx and ky . (a) Exact; (b) present numerical phase velocity optimized scheme; (c) box scheme [11];
(d) symplectic scheme [11]; (e) Leapfrog scheme [11]; (f) Yee’s scheme [2].
Table 2
Summary of the characteristics of the derived optimized scheme for ∂Hx

∂x by minimizing the error between the exact and numerical phase velocities.

Minimization Parameter Accuracy order Coefficient of the a1 , a2 and a3
target mp leading error term in in (13)

the modified equation
of 2nd kind

a1 = 0.0164892
Phase velocity 1

2 4 −0.018459 a2 = −0.1484569
a3 = 0.74744617
4.1. Stability analysis

The derivation of the stability condition for the proposed
explicit scheme is initiated with the scaling of field variables by

E =


1
ε
E∗ and H =


1
µ
H∗. We then rewrite Eqs. (1)–(2) for V =

H∗
+ IE∗ in the normalized space as follows with the superscript

‘‘∗’’ being omitted for the sake of simplicity.

1
c

∂V
∂t

= I∇ × V . (21)

Following the work of Taflove and Brodwin [23], the stability
condition for (21) using the proposed symplecticity and dispersion
relation preserving explicit scheme is derived by considering the
following two equivalent eigenvalue equations
∂V
∂t

= λV , (22)

Ic∇ × V = λV . (23)

Eq. (22) is approximated as V n+ 1
2 − V n− 1

2 = λ∆tV n using
the temporal scheme described in Section 3.1. The amplification

factor is defined as G =

 Vn+ 1
2

Vn

. One can then easily derive the

equation G2
− (λ∆t)G − 1 = 0 to get the values of G1,2 =

λ∆t
2 ±


1 +


λ∆t
2

2 1
2
. The explicit scheme is conditionally stable

provided that Re (λ) = 0, thereby leading to |Im (λ)| ≤
2

∆t .
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Fig. 4. The contours of (ωnum−ωexcat )
ωexcat

× 100% are plotted with respect to kx and ky among the five investigated schemes. (a) The present phase velocity optimized scheme; (b)
box scheme [11]; (c) symplectic scheme [11]; (d) Leapfrog scheme [11]; (e) Yee’s scheme [2].
Substitution of the equation ∂V
∂t = λV into (23) yields 1

c
∂V
∂t =

I∇ × V or ν


∂Vz
∂y −

∂Vy
∂z


= λVx, ν


∂Vx
∂z −

∂Vz
∂x


= λVy, and

ν


∂Vy
∂x −

∂Vx
∂y


= λVz . These equations can be recast into the

matrix equation F V = 0, where

F =


−λ −2c

Fz
∆z

2c
Fy
∆y

2c
Fz
∆z

−λ −2c
Fx
∆x

−2c
Fy
∆y

2c
Fx
∆x

−λ

 . (24)

In the above, Fx = a1 sin (3kx∆x) + a2 sin (2kx∆x) + a3 sin (kx∆x),
Fy = a1 sin


3ky∆y


+ a2 sin


2ky∆y


+ a3 sin


ky∆y


, and Fz =

a1 sin (3kz∆z)+a2 sin (2kz∆z)+a3 sin (kz∆z). The unique solution
V is obtained from F V = 0, provided that the determinant of

F is equal to zero, thereby leading to λ2
= −4c2


F2x

∆x2
+

F2y
∆y2


.

For all the possible wavenumbers kx, ky and kz , the condition,
i.e. Re (λ) = 0, is necessary in order to get the stability condition

given by |Im (λ)| ≤ 2c


max(F2x )
∆x2

+
max(F2y )

∆y2
+

max(F2z )
∆z2

 1
2

.

Subjected to the constraint equation given by |Im (λ)| ≤
2

∆t ,
the convergent solution is sought under the condition of ∆t ≤

1
c


max(F2x )

∆x2
+

max(F2y )
∆y2

+
max(F2z )

∆z2

−
1
2

. By plugging the previously

derived coefficients a1, a2 and a3 into the above inequality
equation, the stability condition, ∆t ≤ 0.673844 h

c for the
conditionally stable explicit scheme for the three-dimensional
Maxwell’s equations is derived. Through this Von-Neumann
stability analysis, the maximum allowable ∆t of the present
scheme is larger than that of the Yee’s scheme. Subjected to
the stability condition and the consistency property shown in
Section 3.2.2, we claim that the proposed consistent and stable
scheme is convergent [24].

4.2. Investigation into the scheme anisotropy

In the analysis of the three-dimensional EM wave numerical
method, the two angles φ and θ shown schematically in Fig. 1
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Fig. 5. The exact and numerical group velocity angles γ are plotted with respect to the wavenumber angle φ at different modified wavenumbers. (a) The present numerical
phase velocity optimized scheme; (b) scheme comparison at kh =

π
4 ; (c) scheme comparison at kh =

π
2 ; (d) scheme comparison at kh =

3π
4 .
are used to express the wavenumber vector k = (kx, ky, kz) =

|k|(sin θ cosφ, sin θ sinφ, cos θ), where θ and φ are denoted
as the zenith and azimuthal angles, respectively. The previously
derived numerical dispersion relation equation can be rewritten
in terms of the polar coordinates as follows

sin2(ωnum∆t/2) = Cr2x (a1 sin(3k sin θ cosφ∆x)

+ a2 sin(2k sin θ cosφ∆x) + a3 sin(k sin θ cosφ∆x))2

+ Cr2y (a1 sin(3k sin θ sinφ∆y) + a2 sin(2k sin θ sinφ∆y)

+ a3 sin(k sin θ sinφ∆y))2

+ Cr2z (a1 sin(3k cos θ∆z) + a2 sin(2k cos θ∆z)

+ a3 sin(k cos θ∆z))2 . (25)

The above equation shows that the numerical angular frequency
ωnum varies with the angle of wavenumber vector and the Courant
numbers Crx (≡ c∆t

∆x ), Cry (≡ c∆t
∆y ) and Crz (≡ c∆t

∆z ).
We set θ = π/2 to simplify the anisotropy analysis. This

angle is then substituted into the dispersion relation equation
that accounts for the numerical angular frequency. Both of the
exact and numerical angular frequencies are plotted with respect
to kx and ky in Fig. 2(a) and (b) within the two-dimensional
context for simplicity. In Fig. 2(c)–(e), one can see that the
numerical dispersion surface ωnum is equal to that of the exact
dispersion near the origin of k = (kx, ky) = |k|(cosφ, sinφ),

where φ = tan−1


ky
kx


is shown schematically in Fig. 1(a). As the

wavenumber is further away from the origin of (kx, ky) plane,
the observed discrepancy between the numerical and the exact
angular frequencies indicates the occurrence of unphysical waves
in the numerical solutions [25]. The contours of ωnum are also
plotted with respect to kx and ky in Fig. 2(f). For the sake of
comparison, the numerical angular frequencies of the proposed
scheme and the other four schemes are plotted with respect to kx
and ky in Fig. 3. The error contours of the schemes are compared in
Fig. 4.

We also derive the numerical group velocity optimized
scheme from Eq. (25). The wave solution predicted from the
proposed scheme with its numerical group velocity depends
not only on the magnitude of the wavenumber vector k, or
|k|, but also on the direction of wavenumber vector k, or

tan−1


ky
kx


. The numerical error related to the derived grid-

anisotropy [19] causes the predicted wave propagating not only
at an incorrect velocity but also in a wrong direction. To get a
better understanding of the anisotropy error, we consider, for
example, a plane wave propagating along a direction, which has
the unit vector (sin θ ′ cosφ′, sin θ ′ sinφ′, cos θ ′) in the spherical
coordinate system (r, θ ′, φ′), in the following error analysis.

Within the two-dimensional context, the angle of group
velocity vector can be expressed by a single angle, which is γ
schematically shown in Fig. 1(b). The numerical group velocity
derived in the two-dimensional domain can then be expressed as

υg


≡

∂ωnum
∂k


= |υg |(cos γ , sin γ ), where γ = tan−1

 
υg


y

υg


x


.

The exact and numerical group velocity angles γ are then plotted
with respect to the wavenumber angle φ in Fig. 5. One can clearly
find that in the low modified wavenumber regime, the predicted
angle of group velocity agrees very well with the angle of exact
wavenumber vector, which is π

4 as shown in Fig. 3(a). With an
increased value of kh, the resulting discrepancy between the exact,
which is γ

φ
= 1, and the predicted ratio of γ

φ
increases accordingly.
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Fig. 6. The exact andnumerical group velocitymagnitudes are plottedwith respect to thewavenumber angleφ at differentmodifiedwavenumbers. (a) the present numerical
phase velocity optimized scheme; (b) scheme comparison at kh =

π
4 ; (c) scheme comparison at kh =

π
2 ; (d) scheme comparison at kh =

3π
4 .
Fig. 7. The contours of ωnum = 6 are plotted with respect to kx and ky at different values of the Courant number for different schemes. (a) Cr = 0.1, 0.2, 0.4, 0.6; (b)
Cr = 0.1; (c) Cr = 0.4; (d) Cr = 0.6.
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Table 3
The dispersion relation equations and their spatial orders of accuracy for the proposed and other four schemes. Schemes 1,
2, 3, 4, 5 denote the current, box [11], symplectic [11], leapfrog [11], and Yee [2] schemes, respectively. The exact dispersion
relation equation is also shown in this table.

Dispersion relation equation Spatial accuracy order

1 ω2

4c2


sin(ω∆t/2)

ω∆t

2
= k2x


3a1 sin(3kx∆x)

3kx∆x + 2a2 sin(2kx∆x)
2kx∆x + a3 sin(kx∆x)

kx∆x

2
4

+ k2y

3a1

sin(3ky∆y)
3ky∆y + 2a2

sin(2ky∆y)
2ky∆y + a3

sin(ky∆y)
ky∆y

2
+ k2z


3a1 sin(3kz∆z)

3kz∆z + 2a2 sin(2kz∆z)
2kz∆z + a3 sin(kz∆z)

kz∆z

2
2 tan2( 1

2 ω∆t)
c2∆t2

=
tan2( 1

2 kx∆x)
∆x2

+
tan2( 1

2 ky∆y)
∆y2

2

3 4 tan2( 1
2 ω∆t)

c2∆t2
=

sin2(kx∆x)
∆x2

+
sin2(ky∆y)

∆y2
2

4 sin2(ω∆t)
c2∆t2

=
sin2(kx∆x)

∆x2
+

sin2(ky∆y)
∆y2

2

5 sin2( 1
2 ω∆t)

c2∆t2
=

sin2( 1
2 kx∆x)

∆x2
+

sin2( 1
2 ky∆y)

∆y2
2

ω2

c2
= k2x + k2y (exact)
Table 4
The coefficients a1 , a2 and a3 in the proposed three dimensional scheme.
Indeed, this fact has shedded some light on the generation of
dispersion errors in higher wavenumber regime. The exact and
numerical group velocity magnitudes are also plotted against the
wavenumber angle as shown in Fig. 6. The contour values predicted
at different Courant numbers are plotted aswell in Fig. 7 forω = 6.
The contour values for ω = 6, 12 and 16 are plotted in Fig. 8
for the proposed numerical phase velocity optimized scheme. One
can see that the predicted and exact solutions have no difference
provided that the magnitude of ω is less than 12. Based on the
results tabulated in Table 3, the numerical accuracy is improved
by using the proposed scheme.

By taking all the EM wave propagation directions into account,
the error between the numerical and exact phase velocities,
defined as 1 −

|up(ω,θ ′,φ′)|

(µε)1/2
, is evaluated in the three-dimensional

context. Towards this perspective, in the spherical coordinate
system we integrate the phase velocity error over a differential
area r2 sin θ ′dθ ′dφ′. The resulting error per spherical area 4πr2 can
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Fig. 8. Plot of the exact and numerical angular frequencies with respect to kx and
kx at different angular frequencies for the case investigated at Cr = 0.1. (a) ω = 6;
(b) ω = 12; (c) ω = 16.

be computed from the definition given below

E3D(ω) =
1
4π

 π

0

 2π

0
1 −

|up(ω, θ ′, φ′)|

(µε)1/2
sin θ ′dθ ′dφ′. (26)

The errors are plotted accordingly in Fig. 9.
According to the three derived algebraic equations in (11), (12)

and (20), the introduced coefficients a1, a2 and a3 are plotted with
respect to the wavenumber angle φ ≡ tan−1


ky
kx


in Fig. 10. The

coefficients a1, a2 and a3 obtained at each point in the domain can
then be interpolated through the data shown in Table 4 or plotted
in Fig. 10. The reference characteristic speeds c sin γ and c cos γ ,
where c is the speed of light and γ is the angle of phase velocity
vector, differ from each other on a pointwise basis. At each spatial
locationwe can then compute its local Courant numbersCrx andCry
Fig. 9. The values of E3D are plotted with respect to the number of cells per
wavelength Nλ using the proposed numerical phase velocity optimized scheme.

Fig. 10. The derivedweighting coefficients a1 , a2 and a3 are plottedwith respect to
the angle φ ≡ tan−1(

ky
kx

) at different zenith angles θ at Cr = (Cr2x +Cr2y +Cr2z )1/2 =

0.2.

Fig. 11. The values of a1 , a2 and a3 are plotted with respect to the magnitude of
the Courant number Cr = (Cr2x + Cr2y + Cr2z )1/2 ranging from 0.1 to 0.8 using the
proposed numerical phase velocity optimized scheme at θ = φ =

π
4 .

and hence the corresponding interpolated weighting coefficients
from the coefficients a1, a2 and a3 are plotted in Fig. 11.

Given the definition of k2 = k2x + k2y , the wavenumber
components can be expressed as kx = k cosφ and ky = k sinφ.
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Fig. 12. Comparison of the phase velocity ratios Vp
c versus θ at different values of Nλ using the CN [21], FDTDII [21], and the currently proposed schemes. (a) Nλ = 3.1; (b)

Nλ = 5; (c) Nλ = 10; (d) Nλ = 20.
For a better presentation of the results, two extra parameters are
defined. The first one is Nλ =

λ
h , which denotes the number of

points per wavelength λ (= 2π
k ). The second parameter is the CFL

number Cr =
c∆t
h . The speed of light c is chosen as the reference

speed and h = ∆x = ∆y is the uniform grid spacing. Given
these definitions, the numerical phase velocity υp, which is the
ratio of the numerical angular frequency and the wavenumber
k, can be derived. We can express eIωnum∆t by the virtue of Eq.
(17) to get eIω∆t

= e−ωI∆t(cos(ωR∆t) + I sin(ωR∆t)). Define
R̂ = e−ωI∆t cos(ωR∆t) and Î = e−ωI∆t sin(ωR∆t), the value of
tan(ωR∆t) =

Î
R̂
and the ratio of the numerical phase velocity

|υp| = |
ωR
k | to the exact phase velocity c can be obtained as [26]

υp

c
=

ωR

ck
=

Nλ

2πCr
tan−1


Î

R̂


. (27)

In the current comparison study, the ratios of the derived
numerical phase velocity and the exact phase velocity, which is υp

c ,
are plotted at different values of Nλ for all the benchmark schemes
viz. the Box scheme, the symplectic scheme, the leapfrog scheme,
and the Yee’s scheme in Fig. 12. For the simulation case with fewer
grid points per wavelength, our scheme has been shown to have
a more accurate prediction of phase velocity. Also, the proposed
dispersion-error reducing scheme performs better near the angle
φ = 45°. By increasing the value of Nλ, the numerical phase
velocity approaches the exact phase velocity asymptotically. In
addition, it is obvious that the dispersion relation equation of the
present scheme has the best agreement with the exact dispersion
relation equation as shown in Fig. 4.
Table 5
The predicted spatial rates of convergence (sroc) for the analytic test problem in
Section 6.1.

Meshes L2-error norm of Ez sroc

10 × 10 × 10 1.8366E−05 –
20 × 20 × 20 1.2339E−06 3.8957
30 × 30 × 30 8.5169E−08 3.8567
40 × 40 × 40 5.3609E−09 3.9897

5. Absorbing boundary condition

Constitutive equations B = [µ∗
] H and D = [ε∗

] E are ap-
plied to describe the response of optical media to the electro-
magnetic field. Two tensors [µ∗

] and [ε∗
] are generally defined

as [ε∗
] = [ε] +

[σE ]

Iω and [µ∗
] = [µ] +

[σM ]

Iω , where [σE] and
[σM ] are denoted as the electric conductivity and magnetic con-
ductivity tensors, respectively. The impedance of the chosen UPML
(Uniaxial Perfectly Marched Layer) should match with that in free
space by ε−1

0 µ0 = [ε∗
]
−1

[µ∗
]. Near the boundary of a scatter field,

the attached absorbing layer for the mitigation of spurious wave
reflections is characterized by the constitutive equation given by
[S] = [S]x[S]y[S]z =

[ε∗
]

ε0
=

[µ∗
]

µ0
to attenuate the electromag-

netic wave along x, y, z directions, respectively, through the di-
agonal tensors. The components of these constitutive tensors are
represented by sα(α=x,y,z) = 1 +

σmax|α−α0|
n

Iωε0δn
[27], where δ denotes

the depth of UPML. The value of n appeared in the conductivity
profile σmax|α−α0|

n

δn is set at 3. Based on the results predicted on the
121 × 121 × 121 uniformly distributed nodes, this chosen value
gives the best absorption performance in UPML as shown in Fig. 13.
The location at which α equals to α0 is the interface between the
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Table 6
Comparison of the required CPU times for the present scheme with the optimized phase velocity and the Yee’s scheme given in [2], which yield approximately the same
L2-error norm, at time t = 10.

Present Yee [2]
L2-error norm Grid CPU time (s) L2-error norm Grid CPU time (s)

8.7962E−03 41 × 41 0.1092 8.3483E−03 181 × 181 4.9608
4.0657E−03 51 × 51 0.2028 4.8228E−03 251 × 251 13.0261
2.0981E−03 61 × 61 0.3276 3.0141E−03 341 × 341 33.0092
Fig. 13. Comparison of the values of Ez(t) at the point P (x = 336 nm, y =

0 nm, z = 336 nm) for the different magnitudes of n shown in the conductivity
profile σmax |α−α0 |

n

δn using the proposed scheme.

UPML and the scatter field. In the constitutive tensor, σmax is cho-
sen as (n+1)ln(1/R0)

2δ [27], where 1/R0 = 1016.

6. Numerical results

6.1. Verification studies

The explicit symplectic PRK scheme endowed with the opti-
mized numerical phase velocity derived in non-staggered grids
is verified by solving the three-dimensional Maxwell’s equations
with analytic solution. In −π ≤ x ≤ π , −π ≤ y ≤ π and
−π ≤ z ≤ π , the solutions of the Maxwell’s equations sought
atµ = 1 and ε = 1 are subjected to the initial solenoidal solutions

Ex(x, y, z, 0) = Ey(x, y, z, 0) = Ez(x, y, z, 0) = 0,
Hx(x, y, z, 0) = cos(x + y + z),

Hy(x, y, z, 0) =
1
2
(−1 +

√
3) cos(x + y + z), (28)

Hz(x, y, z, 0) = −
1
2
(1 +

√
3) cos(x + y + z).

The exact electric and magnetic field solutions of Eqs. (1)–(2) are
given as

Ex(x, y, z, t) = sin(
√
3t) sin(x + y + z),

Ey(x, y, z, t) = −
1
2
(1 +

√
3) sin(

√
3t) sin(x + y + z),

Ez(x, y, z, t) =
1
2
(−1 +

√
3) sin(

√
3t) sin(x + y + z),

Hx(x, y, z, t) = cos(
√
3t) cos(x + y + z), (29)

Hy(x, y, z, t) =
1
2
(−1 +

√
3) cos(

√
3t) cos(x + y + z),

Hz(x, y, z, t) = −
1
2
(1 +

√
3) cos(

√
3t) cos(x + y + z).
Fig. 14. Comparison of the computed and exact energy densities, shown in (3)–(4),
with respect to time for the analytical problem using the proposed dispersion
optimized scheme. (a) Hamiltonian function; (b) Energy density.

In order to obtain the spatial rate of convergence, all the calcula-
tions are carried out at∆t = 10−5, which is much smaller than the
four chosen grid spacings∆x = ∆y = ∆z = 2π/5, 2π/10, 2π/20
and 2π/40. The tabulated L2-error norms in Table 5 show that the
predicted spatial rate of convergence deviates slightly from the
theoretical order of accuracy (i.e. 4).

The Hamiltonian defined in (3) and the energy density given
in (4) are calculated for making an indirect justification on the
proposed scheme. Fig. 14 shows clearly that the computed values
of Hamiltonian and energy density are well conserved as time
elapses. The time-varying L2-norms of the scalars∇·H and∇·E are
plotted to examine if Gauss’s law is satisfied discretely. In Fig. 15,
the predicted magnetic and electric fields are almost divergence-
free. We also assess the currently proposed scheme with other
four schemes in terms of the required CPU times for attaining the
same L2-error norm. The results shown in Table 6 explain why we
employ the proposed scheme to compute the solution ofMaxwell’s
equations.

6.2. Mie scattering problem

The Mie scattering wave propagation is then investigated in a
three-dimensional domain Ω = (−380 nm ≤ x, y, z ≤ 380 nm).
The diameter of the investigated dielectric cylinder is 126.56 nm
and it is located at the center of a cube. This isotropic cylinder in
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Fig. 15. Plot of the computed L2-norms of ∇ ·H and ∇ · E by the proposed spatial scheme with respect to time using the fourth-order Runge–Kutta scheme and the present
explicit partitioned Runge–Kutta symplectic scheme (a) ∇ · H; (b) ∇ · E.
Fig. 16. The predicted contours of Ez (z = 0) at the cutting plane containing a cylindrical scatter. (a) Schematic of the 3D Mie scattering problem; (b) timestep = 560 (2.8
fs); (c) timestep = 760 (3.8 fs); (d) timestep = 1350 (4.25 fs); (e) timestep = 1600 (5.8 fs); (f) timestep = 1900 (9 fs).
the homogeneous air medium has εr = 12.1104. The incident
x-polarized plane wave with the amplitude of 0.5 v

m and the
angular frequency of 13.263 rad

s propagates towards the positive
x-direction.
The Mie scattering problem is then investigated in a cube with
the cross-section area of 760 × 760 nm2. For the case of one
dielectric cylinder, the incident wave is scattered so that the total
field/scattered field formulation is adopted. The physical domain
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Fig. 17. The predicted Ez (z = 0) contours at the cutting plane. (a) timestep = 575 (30.68775 fs); (b) timestep = 1075 (57.37275 fs); (c) timestep = 1750 (93.3975 fs); (d)
timestep = 2325 (124.08525 fs).
Fig. 18. The computed Ez field values at the time step 2325 (or t = 124.08525 fs) in the PC-based L-shape waveguide at the normalized frequency 0.353(c/a). (a) Present;
(b) Mekis et al. [22].
containing 121 nodal points along each spatial direction is divided
into three regions. The total field composes the investigated
dielectric cylinder whereas the region of scattered field encloses
the region of the total field. The scattered field components are
stored only in the scattered field.

The problem under investigation is the EM wave scattered
from a cylindrically-shaped scatter located at the center of the
physical domain schematically shown in Fig. 16(a). This problem
is chosen for investigating the three-dimensional effect on the EM
wave propagation. The results are calculated at the same Courant
number Cr = 0.2, which corresponds to the specified time
increment ∆t = 0.0026685 fs. The three-dimensional results for
Ez are plotted in Fig. 16(b)–(f) at the cutting plane z = 0 nm.
6.3. Photonic crystal L-shaped bent waveguide problem

A lattice of finite-length vertical rods (dielectric pillars) is
considered in a domain defined in 0 ≤ x, y, z ≤ 8000 nm
containing a L-shaped defect channel. The relative permittivity
of the medium surrounding the uniformly distributed pillars is
set at 1. The dielectric constant of these pillars is assumed to be
εr = 11.56. The waveguide of width w

a = 2 is constructed
by taking one pair of the vertical and row pillars away from the
original uniformly distributed lattice. A light with the frequency
belonging to the photonic band gap is confined in this three-
dimensional L-shaped defect channel. A transverse magnetic wave



T.W.H. Sheu et al. / Computer Physics Communications 207 (2016) 258–273 273
incident into the domain propagates from left to right. For getting a
wider photonic band gap, the radius of all pillars is chosen as 0.2a,
where the lattice related constant a (=515 nm) denotes the length
between the centroids of two adjacent pillars.

The L-shaped bent waveguide problem is simulated at ∆t =

0.05337 fs and h = 57.1429 nm. A uniaxial perfectly matched
layer enclosing the scatter field is applied to absorb the wave and
avoid any re-entry of unphysical wave into the domain. Fig. 17
shows the time-evolving Ez contours computed at the normalized
frequency = 0.353 ( c

a ) (or wavelength = 1458.92 nm), where
c denotes the speed of light. The optical wave is seen to
propagate through the ninety-degree bend and the electric field
is concentrated mostly in this defect channel. Comparison of the
current three-dimensional result in the L-shaped defect channel
with the two-dimensional result ofMekis et al. [22] is illustrated in
Fig. 18.

7. Conclusions

A FDTD scheme has been developed on non-staggered grids
to solve the three-dimensional Maxwell’s equations in isotropic,
homogeneous, and non-lossy material. Our aim is to numerically
preserve symplecticity and conserve helicity and quadratic Hamil-
tonians as computation progresses. Given the fact that Maxwell’s
equations correspond to a separable Hamiltonian system, the ex-
plicit partitioned Runge–Kutta symplectic time integrator is ap-
plied together with the space-centered finite difference scheme.
The resulting fully discrete numerical scheme can indeed con-
serve the energy in the discrete level. To increase the disper-
sion accuracy, the difference between the numerical and the exact
phase velocities is minimized. The predicted temporally second-
order and spatially fourth-order accurateMaxwell’s solutions have
been shown to satisfy the discrete Gauss’ law for the magnetic
and electric fields. The current numerical solutions have shown
good agreement with the exact and the benchmark numerical
solutions.
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