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ABSTRACT 
In the present study, an improved particle smoothing (IPS) procedure is 
proposed to imitate the Laplacian operator in a randomly scattered particle 
cloud. It is devised to provide a more accurate mathematical representation 
of diffusion term in the moving particle methods. From the numerical 
analyses, the major source of conventional particle smoothing (PS) schemes 
leading to solution inaccuracy can be attributed to the intrinsic artificial 
convection term, whose accuracy order is of O(δ� 1). Spatial accuracy can be 
improved by eliminating the numerically induced artificial velocity in the 
proposed IPS scheme. Verification studies are performed by testing the 
proposed scheme in pure diffusion problems. Benchmark lid-driven cavity 
and backward-facing step flow problems are solved to demonstrate the 
superiority of the proposed scheme. In the light of numerical analysis and 
computational results, it is concluded that the proposed IPS scheme is 
effective to simulate fluid flow problems in the context of moving particle 
methods. 

ARTICLE HISTORY 
Received 14 October 2015 
Accepted 11 March 2016    

1. Introduction 

Since the pioneering simulation works of Lucy [1] and Gingold and Monaghan [2] in astrophysics 
and thanks to vast developments in the past decade, the particle method is a versatile tool to predict 
intricate engineering problems with complicated geometries ranging from free-surface flow, interfa-
cial flow, and flow structure interaction phenomena [3–6]. Compared with the widely used grid-based 
routines, simulation can be proceeded without a priori knowledge of topological connection among 
computational particles. Computationally elaborate procedure to establish a suitable mesh to cope 
with complicated boundaries can be, therefore, completely avoided. In addition, the problem for flow 
convection term which must be well handled in grid-based methods to avoid solution inaccuracy/ 
oscillation can be entirely circumvented with the simple particle-moving strategy [7–9]. Owing to 
the lack of computational particle connection topology, it is, however, computationally challenging 
to provide an accurate representation of flow diffusion term (Laplacian operator) with a randomly 
scattered particle distribution. In a conventional particle method, the Laplacian operator is generally 
imitated through a particle summation procedure [10–12]. While only quite a simple manipulation is 
demanded, its accuracy can be deteriorated unless in a regular particle arrangement which is generally 
not encountered in a practical engineering problem. In fact, there are many numerical evidences in 
the literature showing that the results cannot be accurately calculated without a refined particle 
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distribution [13–15]. Therefore, proposals addressing on how to accurately approximate the Laplacian 
operator in an irregular particle distribution become essential, while applying moving particle 
methods [16–18]. 

It has been well known that the convection term instead of the diffusion term plays the 
dominant role in practical engineering problems involving consequential fluid flow motion. 
Meanwhile, the diffusion process will physically smear rather than reinforce or preserve spatial 
variation of the solution. This may explain why a simple particle summation procedure can still 
provide convincing simulations in certain flow problems. It is therefore an act of wisdom not to 
invest massive computational resource in pursuit of highly accurate discretized diffusion portrayals 
[19]. In this light, our goal of the present work is to seek a practical modification to improve the 
conventional particle summation procedure for the diffusion operator. With this goal in mind, 
the present study is designed to explore the numerical quintessence of the particle smoothing 
(PS) procedure for the Laplacian operator in the moving particle semi-implicit (MPS) method 
[11,20]. Also, we aim to provide a practical improvement to yield a more accurate simulation. 
Numerical analyses will be performed to unveil the computational deficiency inherited by the 
original PS formulation: adoption of a more compact particle distribution may not yield a better 
representation of the results. It is manifested that the formal accuracy order of the PS scheme is 
O(δ� 1) with δ being the characteristic particle spacing. This deficiency results from the 
consequence of the numerically induced convection term. To amend this disadvantage, a simple 
but effective modification based on the numerical analyses is proposed to eliminate the contami-
nating terms with O(δ� 1). Although it will not result in an unconditionally consistent expression, 
the formal order of accuracy can be raised to O(1) without the artificial convection term. Numerical 
validations are performed in one-, two-, and three-dimensional cases to demonstrate the effective-
ness of the proposed improved particle smoothing (IPS) strategy. Essential artificial velocity and 
effective diffusivity of the numerical schemes resulting from an irregular particle distribution are 
recognized. These parameters are crucial for improving the effectiveness of numerical schemes 
and they can be used as meaningful indicators for measuring the particle distribution quality. 
Classic benchmark lid-driven cavity and backward-facing step flow problems are solved to verify 
the feasibility of the proposed scheme. The present formulation will be shown to be a practical tool 
in simulating fluid flow motion in the context of moving particle methods. 

The content of this paper is organized as follows. The particle smoothing procedure in a 
conventional moving particle method is described and analyzed in Section 2. This section introduces 
the particle summation procedure to yield more concise expressions for particle-related operators. 
Section 3 details the new particle smoothing strategy designed to enhance the accuracy of the 
discretized Laplacian operator. Numerical validations on the one-, two-, and three-dimensional 
conduction and two practical flow problems are performed in Section 4. Finally, Section 5 is devoted 
to the conclusive remarks drawn from the present work. 

2. Original particle smoothing scheme 

The original particle smoothing (PS) procedure of Zhang et al. [20] for the approximation of gradient 
and Laplacian operators affixed to the i-th particle can be read as: 

r/h iPS ¼
d

P

j6¼i
xð~rj � ~ri
�
�

�
�; reÞ

X

j6¼i

ð/j � /iÞð~rj � ~riÞxð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�2

ð1Þ

r2/
� �

PS ¼
2d

P

j6¼i
xð~rj � ~ri
�
�

�
�; reÞ

X

j6¼i

ð/j � /iÞxð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�2

: ð2Þ
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In the above expressions, d is the spatial dimension and xðr � ~rj � ~ri
�
�

�
�; reÞ denotes the preassigned 

weighting function defined as: 

xðr; reÞ ¼ max
re

r
� 1; 0

� �
: ð3Þ

Note that the cutoff radius is chosen as re ¼ 2δ in the present work. In the above three equations, 
~r is the position vector and δ is the characteristic particle spacing. It is noted that these operators 
are derived statistically within the context of isotropic uniform particle distribution, leading to the 
accuracy order of O(δ2). Nevertheless, second-order accuracy is hardly satisfied in a practical 
scattered particle cloud. 

To analyze the PS model and propose our improved version, derivation details are given here for 
the two-dimensional case (d ¼ 2) for the sake of conciseness and comprehension. In the same vein, 
both one- and three-dimensional situations (d ¼ 1 and 3) can be similarly derived. First, we define 
the following summation operators, 

U
ðq;rÞ
p ¼

X

j6¼i

ð/j � /iÞðxj � xiÞ
q
ðyj � yiÞ

r
xð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�p

ð4Þ

Xðq;rÞp ¼
X

j6¼i

ðxj � xiÞ
q
ðyj � yiÞ

r
xð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�p

; ð5Þ

where the particle position vector is expressed by ~r ¼ x~iþ y~j and ~rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. It is worth 

noting that the summation operator, Xðq;rÞp , is only affected by the particle distribution and is 
independent of the solution values. Once the particle distribution has been determined, its value 
can be straightforwardly obtained. Meanwhile, its order of magnitude expressed in terms of particle 
spacing is: 

OðXðq;rÞp Þ ¼ Oðdqþr� pÞ ð6Þ

since O xj � xi
� �

¼ O yj � yi
� �

¼ O ~rj � ~ri
�
�

�
�

� �
¼ O dð Þ. Therefore, the original PS model for the 

Laplacian operator in Eq. (2) can then be more compactly rewritten by the following form: 

r2/
� �

PS ¼
4/
ð0;0Þ
2

X
ð0;0Þ
0

: ð7Þ

Performing the Taylor series expansion of /j with respect to φi at the location (xi, yi) yields, 

/j � /i ¼ /xðxj � xiÞ þ/yðyj � yiÞ þ
1
2
/xxðxj � xiÞ

2
þ/xyðxj � xiÞðyj � yiÞ þ

1
2
/yyðyj � yiÞ

2
þOðd3Þ;

ð8Þ

where /x denotes the partial derivative of the solution variable with respect to x. By substituting this 
expression into Eq. (4), we can get the following relation by virtue of Eq. (5): 

U
ðq;rÞ
p ¼ Xðqþ1;rÞ

p /x þ Xðq;rþ1Þ
p /y þ

1
2
X qþ2;rð Þ

p /xx þ X qþ1;rþ1ð Þ
p /xy þ

1
2
X q;rþ2ð Þ

p /yy þ Oðdqþrþ3� pÞ: ð9Þ

As a result, the original particle smoothing formulation described in Eq. (2) or (7) can be recast to 
the following differential form: 

r2/
� �

PS ¼
4X

1;0ð Þ
2

X
ð0;0Þ
0

/x þ
4X

0;1ð Þ
2

X
ð0;0Þ
0

/y þ
2X

2;0ð Þ
2

X
ð0;0Þ
0

/xx þ
4X
ð1;1Þ
2

X
ð0;0Þ
0

/xy þ
2X
ð0;2Þ
2

X
ð0;0Þ
0

/yy þ OðdÞ: ð10Þ
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It is obvious that the original PS model fails to provide a consistent expression for Laplacian 
operator (or h∇ 2/iPS ≠ /xx þ/yy as δ → 0) unless 

X
ð1;0Þ
2 ¼ X

ð0;1Þ
2 ¼ X

ð1;1Þ
2 ¼ 0 and X

ð2;0Þ
2 ¼ X

ð0;2Þ
2 ¼

1
2
X
ð0;0Þ
0 : ð11Þ

The above two equations are no longer satisfied in a randomly scattered particle cloud. On the 
contrary, its accuracy order becomes O(δ� 1) if 

X
ð1;0Þ
2 6¼ 0 or X

ð0;1Þ
2 6¼ 0: ð12Þ

Equation (12) is a common consequence in physical domain with arbitrarily distributed particles. 
Thanking to this simple analysis, we are rendered to know the reason why simulation accuracy cannot 
be ameliorated by refining the particle distribution. Further examination of the equivalent Eq. (10) 

reveals that the two leading error terms 4X
ð1;0Þ
2

X
ð0;0Þ
0

/x and 4X
ð0;1Þ
2

X
ð0;0Þ
0

/y can be inferred as the numerically 

induced artificial convection terms stemming from an inappropriate discretization. The induced 
artificial velocity components in the x and y directions are as follows: 

uN ¼
4X
ð1;0Þ
2

X
ð0;0Þ
0

and vN ¼
4X
ð0;1Þ
2

X
ð0;0Þ
0

: ð13Þ

It is apparent that the terms uN and vN are crucially affected by the computational particle 
distribution, implying that these parameters can be used as the underlying indicators for measuring 
the particle distribution quality. A suitable particle distribution can be considered to be the one 
with smaller artificial velocity. Accordingly, these artificial velocity components can be numerically 
realized by practicing the operations on specific functions: 

uN ¼ r2ðxÞ
� �

PS and vN ¼ r2ðyÞ
� �

PS: ð14Þ

3. Improved particle smoothing scheme 

3.1. New formulation on IPS 

From the numerical analysis on the PS scheme [20], it is a natural attempt to put forward a 
modification so as to increase the discretization accuracy by eradicating the leading artificial 
convection terms: 

r2/
� �

IPS ¼ r2/
� �

PS �
4X
ð1;0Þ
2

X
ð0;0Þ
0

/xh i �
4X
ð0;1Þ
2

X
ð0;0Þ
0

/y

D E
¼

4
X
ð0;0Þ
0

/
ð0;0Þ
2 � X

ð1;0Þ
2 /xh i � X

ð0;1Þ
2 /y

D Eh i
:

ð15Þ

As shown in the above equation, the solution gradient terms h/xi and h/yi must be appropriately 
realized to have the discretization accuracy of O(δ) at least. 

To provide an accurate representation of the gradient operator, we resort to the original 
formulation of the gradient model given in Eq. (1), which can be rearranged as: 

/xh iPS ¼
2U
ð1;0Þ
2

X
ð0;0Þ
0

and /y

D E

PS
¼

2U
ð0;1Þ
2

X
ð0;0Þ
0

: ð16Þ

According to the Taylor series expansions for the expressions of Uð1;0Þ2 and Uð0;1Þ2 , 

/
ð1;0Þ
2 ¼ X

ð2;0Þ
2 /x þ X

ð1;1Þ
2 /y þ OðdÞ ð17aÞ
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U
ð0;1Þ
2 ¼ X

ð1;1Þ
2 /x þ X

ð0;2Þ
2 /y þ OðdÞ; ð17aÞ

the gradient operators with O(δ) accuracy can be asserted by the following system of equations: 

U
ð1;0Þ
2 ¼ X

ð2;0Þ
2 /xh i þ X

ð1;1Þ
2 /y

D E
ð18aÞ

U
ð0;1Þ
2 ¼ X

ð1;1Þ
2 /xh i þ X

ð0;2Þ
2 /y

D E
; ð18bÞ

or expressed explicitly by its equivalent form given below: 

/xh i ¼
X
ð0;2Þ
2 U

ð1;0Þ
2 � X

ð1;1Þ
2 U

ð0;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 ð19aÞ

/y

D E
¼
� X

ð1;1Þ
2 U

ð1;0Þ
2 þ X

ð2;0Þ
2 U

ð0;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 ; ð19bÞ

It is noted that the direct employment of Eq. (16) for solution gradient will result in O(1) accuracy 
of φx and φy. Substitution of Eq. (18) or (19) into Eq. (15) leads to the modified expression for the 
differenced Laplacian operator: 

r2/
� �

IPS ¼
4

X
ð0;0Þ
0

½U
ð0;0Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 U
ð1;0Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 U
ð0;1Þ
2 �: ð20Þ

Arithmetically, nine summation operators and one 2 � 2 matrix inversion procedure must be 
manipulated in this model. Note that only two summation operators (Xð0;0Þ0 and Uð0;0Þ2 ) are required 
in the original PS procedure. 

3.2. Analysis of the new IPS formulation 

The associated modified differential operator for the IPS scheme can be derived as follows by the 
Taylor series analysis: 

r2/
� �

IPS¼
2

X
ð0;0Þ
0

½X
ð2;0Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð3;0Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð2;1Þ
2 �/xx

þ
4

X
ð0;0Þ
0

½X
ð1;1Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð2;1Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð1;2Þ
2 �/xy

þ
2

X
ð0;0Þ
0

½X
ð0;2Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð1;2Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð0;3Þ
2 �/yyþOðdÞ:

ð21Þ

While the new formulation still remains to be conditionally consistent, the artificial convection 
term with O(δ� 1) has been effectively eliminated. The effective diffusivity tensor in association with 
this modification can then be obtained as: 

sxx ¼
2

X
ð0;0Þ
0

½X
ð2;0Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð3;0Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð2;1Þ
2 � ð22aÞ
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sxy ¼
2

X
ð0;0Þ
0

½X
ð1;1Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð2;1Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð1;2Þ
2 � ð22bÞ

syy ¼
2

X
ð0;0Þ
0

½X
ð0;2Þ
2 �

X
ð1;0Þ
2 X

ð0;2Þ
2 � X

ð0;1Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð1;2Þ
2 �

X
ð0;1Þ
2 X

ð2;0Þ
2 � X

ð1;0Þ
2 X

ð1;1Þ
2

X
ð2;0Þ
2 X

ð0;2Þ
2 � ðX

ð1;1Þ
2 Þ

2 X
ð0;3Þ
2 �: ð22cÞ

Like the artificial velocity in the PS scheme, these effective diffusivity components can be utilized 
as the useful indicators to measure particle distribution quality in the IPS scheme to mimic Laplacian 
operator. Similarly, these parameters can also be attained by practicing the IPS scheme on specific 
functions: 

sxx ¼ r2 x2

2

� �� �

IPS
; sxy ¼ r2ð

xy
2
Þ

D E

IPS
and syy ¼ r2ð

y2

2
Þ

� �

IPS
: ð23Þ

3.3. One- and three-dimensional IPS formulations 

Following the same derivation procedures, the IPS models for the one- and three-dimensional 
Laplacian operators can be derived and they are summarized below: 

(a) One-dimensional IPS model: 

/xxh iIPS ¼
2

X
ð0Þ
0

U
ð0Þ
2 �

X
ð1Þ
2

X
ð0Þ
0

U
ð1Þ
2

" #

; ð24Þ

where the one-dimensional summation operators are defined as: 

U
ðqÞ
p ¼

X

j6¼i

ð/j � /iÞðxj � xiÞ
q
xð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�p

ð25aÞ

XðqÞp ¼
X

j6¼i

ðxj � xiÞ
q
xð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�p

: ð25bÞ

(b) Three-dimensional IPS model: 

r2/
� �

IPS ¼
6

X
ð0;0;0Þ
0

U
ð0;0;0Þ
2 � X

ð1;0;0Þ
2 /xh i � X

ð0;10Þ
2 /y

D E
� X

ð0;0;1Þ
2 /zh i

h i
ð26Þ

The gradient operators are derived as follows: 

U
ð1;0;0Þ
2 ¼ X

ð2;0;0Þ
2 /xh i þ X

ð1;1;0Þ
2 /y

D E
þ X

ð1;0;1Þ
2 /zh i ð27aÞ

U
ð0;1;0Þ
2 ¼ X

ð1;1;0Þ
2 /xh i þ X

ð0;2;0Þ
2 /y

D E
þ X

ð0;1;1Þ
2 /zh i ð27bÞ

U
ð0;0;1Þ
2 ¼ X

ð1;0;1Þ
2 /xh i þ X

ð0;1;1Þ
2 /y

D E
þ X

ð0;0;2Þ
2 /zh i: ð27cÞ

The above equation system possesses a symmetrical coefficient matrix and can be solved by a suitable 
matrix inversion procedure. Arithmetically, it requires a total number of 14 summation operators and 
one 3 � 3 matrix inversion procedure in IPS model. The associated summation operators are defined as: 

U
ðq;r;sÞ
p ¼

X

j6¼i

ð/j � /iÞðxj � xiÞ
q
ðyj � yiÞ

r
ðzj � ziÞ

s
xð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�p

ð28aÞ
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Xðq;r;sÞp ¼
X

j6¼i

ðxj � xiÞ
q
ðyj � yiÞ

r
ðzj � ziÞ

s
xð~rj � ~ri
�
�

�
�; reÞ

~rj � ~ri
�
�

�
�p

: ð28bÞ

4. Numerical verification 

The newly proposed IPS scheme will be verified by comparing the predicted second derivatives 
with exact solutions. Also, the one-, two-, and three-dimensional pure diffusion problems subjected 
to boundary conditions are investigated as well. Results will be compared with those obtained 
from the original PS scheme and the available exact solutions. The introduced artificial velocity 
and effective diffusivity will be depicted to address the improved discretization accuracy using 
the IPS numerical scheme. Effects of numerical parameters such as the particle spacing and the 
distribution irregularity on solution accuracy are also investigated. Finally, the cases of lid-driven 
cavity flow and flow over a backward-facing step are simulated to show the effectiveness of the 
present new IPS model. 

4.1. One-dimensional case 

First, the Laplacian of a given quadratic profile is studied: 

/ðxÞ ¼ /i þ aðx � xiÞ þ bðx � xiÞ
2
; ð29aÞ

where the exact solution of h/xxi at x ¼ xi is: 

/xxh iex ¼ 2b: ð29bÞ

The discretized operators predicted by PS and IPS can be, respectively, derived as: 

/xxh iPS ¼ 2a
X
ð1Þ
2

X
ð0Þ
0

þ 2b ð30aÞ

/xxh iIPS ¼ 2b 1 �
X
ð1Þ
2 X

ð3Þ
2

ðX
ð0Þ
0 Þ

2

" #

: ð30bÞ

Apparently, the PS scheme yields a nonvanished Laplacian under even in a linear field (b ¼ 0) 
which can be attributed to the artificial convection term. The IPS scheme is equipped with an effective 

diffusivity term 1 � X
ð1Þ
2 X

ð3Þ
2

ðX
ð0Þ
0 Þ

2

� �

. These phenomena are consistent with the previous accuracy analyses. 

The second test involves the solutions at three points x ¼ 0, 1, and � 1 þ α 

/ð0Þ ¼ 0; /ð1Þ ¼ 1; and /ð� 1þ aÞ ¼ /� ð31aÞ

In this problem, α measures the degree of grid nonuniformity (irregularity). In uniform grids, 
α ¼ 0. The exact solution profile satisfying these nodal constraints can be easily derived as: 

/ðxÞ ¼
ð1 � aÞ

2
� /�

ð1 � aÞð2 � aÞ
x þ

1 � aþ /�

ð1 � aÞð2 � aÞ
x2: ð31bÞ

Accordingly, the exact Laplacian at x ¼ 0 reads: 

/xxh iex ¼ 2
1 � aþ /�

ð1 � aÞð2 � aÞ
: ð31cÞ
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The difference approximations can be, respectively, derived in the following for the respective PS 
and IPS models: 

/xxh iPS ¼ 2
ð1 � aÞ

2
þ /�x�

ð1 � aÞ
2
ð1þ x�Þ

ð32aÞ

/xxh iIPS ¼ 2
1 � aþ /�

ð1 � aÞð2 � aÞ
1 �
ð1 � a � x�Þ½1 � ð1 � aÞx�Þ�

ð1 � aÞð1þ x�Þ
2

( )

: ð32bÞ

In the above, x� denotes the weighting function for the point at x ¼ � 1þα: 

x� ¼
1þ a

1 � a
: ð32cÞ

Comparison of exact solution with those obtained by PS and IPS is displayed in Figure 1(a) with 
ϕ* ¼ 2.0, 0.5, � 0.5, and � 2.0. As evidently shown in this figure, the PS scheme shows a marked 
discrepancy, especially in the case of nonuniform grid setting. As expected, the IPS scheme has 
significantly increased the accuracy of the Laplacian operator. To make a closer observation on the 
effects of grid irregularity, we expand the reality factor of the estimated Laplacians (z ¼h/xxi/h/xxiex) 
in terms of the grid nonuniformity factor, thereby leading to: 

/xxh iPS
/xxh iex

¼ 1þ
3ð/� � 1Þ
2ð/� þ 1Þ

aþ
ð1þ 9/� þ 2/�

2
Þ

2ð/� þ 1Þ2
a2 þ Oða3Þ; ð33aÞ

/xxh iIPS
/xxh iex

¼ 1 �
3
4
a2 þ

1
4
a3: ð33bÞ

It is noted that the reality factor in the IPS model is not affected by the solution value (/�) but is 
dependent only on the grid nonuniformity factor. This observation is not surprising at all since the 
reality factor is related to the effective diffusivity in the proposed IPS scheme. Figure 1(b) illustrates 
the resulting reality factor accompanied with an estimated value for PS scheme. This estimated value 
is obtained by omitting the higher-order terms of the expansion series in Eq. (33a). It is shown that 
the proposed IPS scheme is comparatively less sensitive to the grid irregularity than the PS scheme. 
Consequently, the accuracy of the difference Laplacian operator can be effectively brightened up with 
the proposed IPS scheme. 

The third test problem considered in the one-dimensional case is designed to evaluate the 
difference Laplacian operator with the following solution distribution: 

/ðxÞ ¼ sinð2pxÞ: ð34aÞ

A direct differential manipulation on the above solution profile yields the exact Laplacian given by: 

r2/exðxÞ ¼ � ð2pÞ
2 sinð2pxÞ: ð34bÞ

Except at the end points, the interior nodes are randomly assigned to yield an uneven distribution: 

xi ¼ ði � 1ÞDx þ aðvi � 0:5ÞDx; i ¼ 2; 3; ::; nC; ð35Þ

where nC is related to the total number of particles, Δx ¼ 1/nC is the characteristic particle spacing (or 
particle number density), α is the grid irregularity factor, and χi is the uniform random number lying 
between 0 and 1. Laplacian operator is evaluated at these grid nodes with the solution distribution 
given in Eq. (34a). Figure 2(a) elucidates the resulting distributions of normalized Laplacian operator 
for nC ¼ 8 and 16 with α ¼ 0.3. It is shown that the PS scheme predicts viciously oscillatory results 
with denser particle distribution (nC ¼ 16). On the other hand, the accuracy of the proposed IPS 
scheme is not deteriorated when denser particle distribution is used. In fact, the corresponding 
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differential operator modeled by the PS scheme can be estimated as: 

/xxh iPS� ¼
2X
ð1Þ
2

X
ð0Þ
0

/x þ /xx: ð36Þ

Figure 2(b) which details on the comparison of this estimation with that provided by PS has 
successfully verified our previous analysis on the numerical scheme. The Laplacian with PS is 
overwhelmingly erroneous predicted by the artificial convection term. 

The resulting artificial velocity stemming from the PS scheme for the adopted particle number (nC) 
with the grid irregularity factors α ¼ 0.1, 0.3, and 0.5 is depicted in Figure 3(a). This quantity is cast in 

Figure 1. Results of the three-point problem. (a) Difference Laplacian at x ¼ 0 and (b) reality factor of the difference Laplacian 
operator.  
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its L2-norm measure: 

VN ¼ 2
X
ð1Þ
2

X
ð0Þ
0

�
�
�
�
�

�
�
�
�
�

2

: ð37aÞ

From this figure, it is evidently observed that the artificial velocity increases with the adopted 
particle number and grid irregularity as well. It implies that the accuracy of PS scheme cannot be 
improved by refining the particle spacing. On the contrary, its accuracy will be significantly reduced 
by the overwhelming artificial velocity. Based on the artificial velocity, we can further introduce an 
artificial cell Reynolds number to signify the scheme performance: 

Red ¼ VNd ¼ VN=nC; ð37bÞ

which is illustrated in Figure 3(b). As expected, the artificial cell Reynolds number is insensitive to the 
adopted particle spacing and is only affected by the grid irregularity. Since the artificial cell Reynolds 
number is independent of the solution distribution, the relative artificial convection term for a 
sinusoidal profile of sin(kx) can be estimated as Reδ nC/k. Therefore, it is speculated that the physical 
diffusion term will be exceedingly overwhelmed by the artificial convection term in the cases of low- 
wavenumber solution and dense particle spacing. As for the IPS scheme, the artificial convection 
term has been completely eliminated; however, the use of IPS would translate into the appearance 

of effective diffusivity which can be derived from Eq. (24) as seff ¼ 1 � X
ð1Þ
2 X

ð3Þ
2

ðX
ð0Þ
0 Þ

2 . Figure 4 exhibits 

Figure 2. Results of the one-dimensional test problem. (a) Distribution of the Laplacian operator and (b) reality of the Laplacian 
operator predicted by PS.  

Figure 3. Artificial velocity and cell Reynolds number of PS. (a) Artificial velocity and (b) artificial cell Reynolds number.  
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the distribution of the resulting effective diffusivity. Although its accuracy seems to be insensitive to 
the adopted particle number, the discrepancy between the exact and difference Laplacians is less than 
4%�in the mildly irregular grid distribution case (α � 0.5). As compared with the PS scheme, IPS will 
be a proper alternative to solve the practical engineering problems. 

In addition to the numerically induced velocity or diffusivity, error of the difference operator is 
also assessed by the following L2-norm measure: 

em ¼ /xxh ii � /xxh iex
�
�

�
�

2: ð38Þ

Figure 5(a) plots the effects of adopted particle spacing on the difference operator error for α ¼ 0.3. 
The results are closely related to the artificial velocity and effective diffusivity for PS and IPS which 
were shown in Figures 3(a) and 4, respectively. The error will be augmented with a refined particle 
spacing for PS but it is insensitive to the adopted particle number in the case of IPS. Effects of grid 
irregularity on this error are demonstrated in Figure 5(b) with nC ¼ 128. Besides the significant 
improvement in difference operator accuracy, the IPS scheme is less sensitive to the grid irregularity 
than PS, owing to the notorious jump in error level (PS scheme) as a slight irregularity is introduced 
on the regular grid setting (α ¼ 0). 

Finally, a pure diffusion equation is solved to test the difference Laplacian operator, 

q/

qt
¼
q2/

qx2 : ð39aÞ

Computations are performed in the domain of 0 � x � 1 and the results are compared with the 
following exact solution, which is also used to describe the initial and boundary conditions in the 
current numerical problem: 

/exðx; tÞ ¼ be� ð2pcÞ
2t sinð2pcxÞ þ x: ð39bÞ

Simple Euler explicit scheme is used to solve this problem, leading to: 

/nþ1
p ¼ /n

p þ Dt /xxh i: ð39cÞ

The time step is selected as: 

Dt ¼ CD
X
ð0Þ
0

2X
ð0Þ
2

: ð39dÞ

Figure 4. Effective diffusivity of IPS.  
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It is worth noting that a monotone solution can be obtained with CD � 1 for PS. Computations are 
executed under the following set of numerical parameters, 

nC ¼ 128; a ¼ 0:3; b ¼ 1:0; c ¼ 1:0; and CD ¼ 1:0 ð39eÞ

The solution distributions obtained by PS at various simulation times for nC ¼ 32, 64, and 128 are 
plotted in Figure 6(a). Interestingly, while it is subjected to a noticeable error of difference Laplacian 
operator, the PS scheme is able to provide a reasonable result because of the endowed monotone 
property. It guarantees the nonexistence of unphysical oscillations in the resulting solution. There-
fore, the solution accuracy is not deteriorated by refining particle spacing. Comparison with the sol-
ution by IPS is elucidated in Figure 6(b). It is clearly shown that the proposed IPS scheme is more 
accurate due to the elimination of artificial convection term appeared in the original PS scheme. 

Accuracy of the numerical scheme can be further assessed by investigating the discrepancies 
between the computational and exact solutions. Similarly, we define a L2-norm solution error measure: 

em ¼ /i � /exk k2: ð40Þ

Evolutions of the solution error em are demonstrated in Figure 7(a)–7(c) at different values of nC, 
α, and CD, respectively. As clearly depicted in these figures, the IPS scheme has significantly improved 
the solution accuracy in all cases. Meanwhile, the adoption of a denser particle spacing does not 
ensure an increase in solution accuracy, whereas the solution accuracy will be deteriorated by grid 
irregularity. Furthermore, the resulting solution is insensitive to the adopted time step. 

Figure 5. Error in the difference Laplacian operator. (a) Effect of the particle spacing (α ¼ 0.3) and (b) effect of the grid irregularity 
(nC ¼ 128).  

Figure 6. Solution distribution in one-dimensional diffusion problem. (a) Predicted solution by PS and (b) comparison of the 
solution profiles predicted by PS and IPS.  
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4.2. Two-dimensional case 

Similar to the previous one-dimensional case, the particle location is generated by the following 
relations: 

xij ¼ ði � 1ÞDx þ aðv
ðxÞ
ij � 0:5ÞDx; ð41aÞ

yij ¼ ðj � 1ÞDyþ aðv
ðyÞ
ij � 0:5ÞDy: ð41bÞ

In the above, Δx ¼Δy ¼ 1/nC and χ is a random number lying between 0 and 1. With this particle 
distribution, the artificial velocity (cell Reynolds number) of PS as well as the effective diffusivity of 
IPS can be directly computed and displayed in Figure 8(a)–8(c). The artificial cell Reynolds numbers 
can be written as: 

Reu ¼ uN=nC ¼
4

nC

X
ð1;0Þ
2

X
ð0;0Þ
0

�
�
�
�
�

�
�
�
�
�

2

; ð42aÞ

Figure 7. Evolution of the solution error. (a) Effect of the particle spacing, (b) effect of the grid irregularity, and (c) effect of the 
time step.  
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Rev ¼ vN=nC ¼
4

nC

X
ð0;1Þ
2

X
ð0;0Þ
0

�
�
�
�
�

�
�
�
�
�

2

: ð42bÞ

In a statistically isotropic particle distribution, the magnitudes of artificial cell Reynolds number 
and normal diffusivity in x and y direction are nearly the same and are independent of particle 
number density. Meanwhile, the numerically induced shear diffusivity (τxy) is mostly responsible 
for the solution inaccuracy of IPS as compared with its normal parts (τxx and τyy). 

Difference Laplacian operator is evaluated with the following prescribed distribution: 

/ðx; yÞ ¼ sinð2pxÞ sinð2pyÞ; ð43aÞ

which yields the following exact Laplacian: 

r2/exðx; yÞ ¼ � 2ð2pÞ
2 sinð2pxÞ sinð2pyÞ: ð43bÞ

For comparison purpose, Eq. (43b) is calculated and the results are plotted in Figure 9. Particle 
distributions of α ¼ 0.3 with nC ¼ 8 and 16 are shown in Figures 10(a) and 10(b), respectively. 
Although the deviation from regular distribution can be found in these figures, the particles spread 
in a rather uniform manner. The corresponding Laplacian predicted by PS for nC ¼ 8 and 16 are illu-
strated in Figures 11(a) and 11(b), respectively. Similar to the one-dimensional case, severe oscillation 
is observed for PS with a denser particle distribution. The predictions of IPS, as expected, are more 
accurate as shown in Figures 12(a) and 12(b). Comparison of errors resulting from various Laplacian 
operators is conducted and the results are exhibited in Figures 13(a) and 13(b) to signify the effects of 
particle spacing and grid irregularity, respectively. These results are attributed to the artificial velocity 

Figure 8. Artificial cell Reynolds number and effective diffusivity of the numerical schemes. (a) Artificial cell Reynolds number of 
PS, (b) effective normal diffusivity of IPS, and (c) effective shear diffusivity of IPS.  
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and the numerically induced diffusivity given in Figures 8(a)–8(c). As in the one-dimensional case, 
the IPS scheme can improve the approximated Laplacian operator and it is less sensitive to grid 
irregularity. 

The following two-dimensional pure diffusion equation is solved: 

q/

qt
¼
q2/

qx2 þ
q2/

qy2 ; ð44aÞ

and it is amenable to the exact solution given by: 

/exðx; y; tÞ ¼ be� 2ð2pcÞ
2t sinð2pcxÞ sinð2pcyÞ þ 4xðx � 1Þ � 4yðy � 1Þ þ ðx � 0:5Þðy � 0:5Þ: ð44bÞ

Figure 9. Exact value of the Laplacian operator in the two-dimensional test problem.  

Figure 10. Particle distribution with α ¼ 0.3. (a) nC ¼ 8 and (b) nC ¼ 16.  
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As in the one-dimensional case, the simple Euler forward scheme is adopted to solve this problem 
with the time step prescribed as: 

Dt ¼ CD
X
ð0;0Þ
0

4X
ð0;0Þ
2

: ð44cÞ

It is worth noting that a monotone solution can be obtained with CD � 1 for PS. In our calculations, 
the following numerical parameters are utilized: 

nC ¼ 64; a ¼ 0:3; b ¼ 1:0; c ¼ 1:0; and CD ¼ 1:0 ð44dÞ

The solution errors are plotted in Figure 14(a)–14(c) to investigate the effects of nC, α, and CD, 
respectively. As clearly shown in these figures, the IPS scheme improves solution accuracy in all cases. 
Meanwhile, it is seen that the adoption of a denser particle spacing may not necessarily increase the 
solution accuracy. Solution accuracy will be deteriorated by grid irregularity. The resulting solution 
is insensitive to the adopted time step. These conclusions are also consistent with those in the 

Figure 11. Laplacian operator value predicted by PS with α ¼ 0.3. (a) nC ¼ 8 and (b) nC ¼ 16.  

Figure 12. Laplacian operator value predicted by IPS with α ¼ 0.3. (a) nC ¼ 8 and (b) nC ¼ 16.  
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one-dimensional case. Figure 15(a)–15(c) demonstrates the solution profiles at t ¼ 0.02 obtained from 
the exact, PS and IPS solutions, respectively. Although quite a reasonable result can be obtained by the 
PS scheme, some unphysical wiggles can be observed in the numerical solution (Figure 15(b)). 

Figure 13. Error of the difference Laplacian operator. (a) Effect of the particle spacing (α ¼ 0.3) and (b) effect of the grid irregu-
larity (nC ¼ 128).  

Figure 14. Evolution of the solution error. (a) Effect of the particle spacing, (b) effect of the grid irregularity, and (c) effect of the 
time step.  
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4.3. Three-dimensional case 

The particle locations in the following three-dimensional analysis are generated by a similar manner 
as being practiced in the one-dimensional case: 

xijk ¼ ði � 1ÞDx þ aðv
ðxÞ
ijk � 0:5ÞDx; ð45aÞ

yijk ¼ ðj � 1ÞDyþ aðv
ðyÞ
ijk � 0:5ÞDy; ð45bÞ

zijk ¼ ðk � 1ÞDz þ aðv
ðzÞ
ijk � 0:5ÞDz; ð45cÞ

where Δx ¼Δy ¼Δz ¼ 1/nC and χ is the random number with the value lying between 0 and 1. Under 
this particle distribution, the artificial velocity (cell Reynolds number) of PS and effective diffusivity of 
IPS can be directly computed and displayed in Figure 16(a)–16(c). The artificial velocity components 
can be expressed as: 

Reu ¼ uN=nC ¼
6

nC

X
ð1;0;0Þ
2

X
ð0;0;0Þ
0

�
�
�
�
�

�
�
�
�
�

2

; ð46aÞ

Figure 15. Solution contours computed at t ¼ 0.02. (a) Exact solution, (b) predicted contours by PS, and (c) predicted contours by IPS.  
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Rev ¼ vN=nC ¼
6

nC

X
ð0;1;0Þ
2

X
ð0;0;0Þ
0

�
�
�
�
�

�
�
�
�
�

2

; ð46bÞ

Rew ¼ wN=nC ¼
6

nC

X
ð0;0;1Þ
2

X
ð0;0;0Þ
0

�
�
�
�
�

�
�
�
�
�

2

: ð46cÞ

In a statistically isotropic particle distribution, the magnitudes of artificial cell Reynolds number 
and normal diffusivity in x, y, and z directions are nearly the same and are independent of particle 

Figure 16. Artificial cell Reynolds number and effective normal diffusivity of the IPS numerical scheme. (a) Artificial cell Reynolds 
number of PS, (b) effective normal diffusivity of IPS, and (c) effective shear diffusivity of IPS.  

Figure 17. Artificial cell Reynolds number of PS and diffusivity of IPS.  
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number density. Meanwhile, the numerically induced shear diffusivity accounts for mainly the sol-
ution inaccuracy of IPS as compared with its normal part. Since these numerically induced quantities 
are not influenced by the particle spacing in a sufficiently dense grid environment, the predicted error 

Figure 18. Error of the difference Laplacian operator. (a) Effect of the particle spacing (α ¼ 0.3), (b) effect of the grid irregularity 
(nC ¼ 64).  

Figure 19. Evolution of the solution error. (a) Effect of the particle spacing, (b) effect of the grid irregularity, and (c) effect of the 
time step.  
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will then be attributed to the grid irregularity factor. Figure 17 plots the parameters: Reu, 1 � τxx, and 
τxy in terms of the grid irregularity with nC ¼ 64. It clearly shows that the numerical diffusivity of IPS 
is dominated by its shear component instead of the normal part. 

The following solution distribution and its resulting exact Laplacian are considered to evaluate the 
difference operator: 

/ðx; y; zÞ ¼ sinð2pxÞ sinð2pyÞ sinð2pzÞ; ð47aÞ

r2/exðx; y; zÞ ¼ � 3ð2pÞ
2 sinð2pxÞ sinð2pyÞ sinð2pzÞ: ð47bÞ

Comparison of difference Laplacian operator errors is conducted and the results are exhibited in 
Figure 18(a) and 18(b) to signify the effects of particle spacing and grid irregularity, respectively. 
These results are attributed to the artificial velocity and numerically induced diffusivity as reported 
in Figures 16 and 17. As in the one- and two-dimensional cases, the IPS scheme can improve the 
estimated Laplacian operator and it is less sensitive to the grid irregularity. 

The pure diffusion problem is considered by solving the following equation: 

q/

qt
¼
q2/

qx2 þ
q2/

qy2 þ
q2/

qz2 : ð48aÞ

Figure 20. Results of the cavity flow computed with IPS at t ¼ 20. (a) Particle distribution, (b) velocity vector, (c) streamlines, and 
(d) mean pressure contours.  
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whereby the exact solution is available: 

/exðx; y; zÞ ¼be� 12c2p2t sinð2pcxÞ sinð2pcyÞ sinð2pczÞ
þ 4xðx � 1Þ � 4yðy � 1Þ þ ðx � 1=2Þðy � 1=2Þðz � 1=2Þ:

As in the one-dimensional case, the simple Euler forward scheme is adopted to solve this problem 
with the time step assigned as: 

Dt ¼ CD
X
ð0;0;0Þ
0

6X
ð0;0;0Þ
2

: ð48cÞ

It is worth noting that a monotone solution can be obtained with CD � 1 for PS. Calculations are 
performed using the following parameters: 

nC ¼ 32; a ¼ 0:3; b ¼ 1:0; c ¼ 1:0; and CD ¼ 1:0: ð48dÞ

The predicted errors are plotted in Figure 19(a)–19(c) to investigate the effects of nC, α, and CD, 
respectively. As clearly shown in these figures, the IPS increases the solution accuracy for all cases. It 
is also shown that the adoption of a denser particle spacing may not significantly increase the solution 
accuracy. Solution accuracy will be deteriorated by grid irregularity. The resulting solution is 
insensitive to the adopted time step for PS. However, solution accuracy will be increased with the 
increasing time step for IPS in this circumstance. 

Figure 21. Results of the cavity flow with the IPS. (a) Evolution of the circulation flow rate and (b) evolution of the velocity 
quantities.  

Figure 22. Comparison of the velocity profiles. (a) Horizontal velocity component and (b) vertical velocity component.  
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4.4. Flow problems 

Finally, the proposed scheme is used to solve the lid-driven cavity and backward-facing step flow 
problems. Although these flow domains are geometrically simple, many complicated flow structures 
such as the shear, impingement, and recirculation flow can be recognized. These cases are well 
recognized as benchmark for validating a numerical scheme. These problems are solved by our 
recently developed moving particle method (MPPM), where all the pressure-related operators are 
resolved with the aid of a stationary inserted pressure mesh [15]. Only the flow diffusion term is 
evaluated at the scattered particles. For the detailed working equations, numerical schemes, and 

Figure 23. Results of the backward-facing step flow problem. (a) Particle distribution, (b) velocity vector, (c) streamlines, (d) mean 
pressure contours, and (e) comparison of the horizontal velocity profiles.  

NUMERICAL HEAT TRANSFER, PART B 133 



computational results, one can refer to [15,19, 21–23]. In the present study, the diffusion operator will 
be tested with the proposed IPS scheme. 

Figure 20(a)–20(d) illustrate the resulting particle distribution, velocity vector, streamlines, and mean 
pressure contours calculated by IPS at t ¼ 20 for the case of cavity flow with the Reynolds number Re 
¼ 100 and the initial particle spacing Δx ¼Δy ¼ 0.025 or nC ¼ 40, respectively. The particle distribution 
is quite uniform and a large rotational flow structure can indeed be observed. Figure 21(a) compares the 
time evolution of the recirculation flow rates. The reference values were obtained from Erturk and Dur-
sum [24], whereby they have solved the lid-driven cavity flow problem on a relatively dense 512 � 512 
grid using the stream function–vorticity formulation. For comparison purpose, the results predicted by 
the original PS scheme with nC ¼ 20, 40 and 80 are included as well. Indeed, the predicted value by PS 
deviates from the reference one with an even refined particle spacing. Such a deviation is attributed to the 
inaccurate representation of Laplacian operator. More accurate and smoother results can be obtained 
with IPS. Figure 21(b) depicts the time evolution of velocity quantities at some typical locations. Refer-
ence solutions obtained by Erturk and Dursum [24] are also plotted for the sake of comparison. It is 
found that all the computed velocity quantities are in good agreement with the reference one. Compari-
son of velocity profiles along the cross sections in the cavity flow problem is performed in Figure 22(a) 
and 22(b) for the horizontal and vertical components, respectively. Results obtained by Ghia et al. [25] as 
well as by Erturk and Dursum [24] are also plotted in these figures. These results indicate that IPS is 
more accurate than PS whose accuracy cannot be improved by refining the particle spacing. 

In the backward-facing step flow problem, we consider the one with expansion ratio of (hIN þ hSTEP)/ 
hIN ¼ 1.942, where hIN and hSTEP denote the inlet and step heights, respectively. Nonuniform particle 
distribution obtained from the embedded pressure mesh is used to reduce the computational effort. 
Detailed descriptions on the computational parameters can be found in [15, 19, 21, 22]. The resulting 
particle distribution, velocity vector, streamlines, and mean pressure contours calculated by IPS at t 
¼ 100 are, respectively, depicted in Figure 23(a)–23(d) for the case of Reynolds number Re ¼ 100. This 
Reynolds number is defined by the inlet mean velocity, fluid viscosity, and inlet hydraulic diameter. As 
shown in these figures, quite reasonable results can be acquired with the present formulation. Figure 23 
(e) compares the predicted result with the experimental data of Armaly et al. [26] and the high- 
resolution finite volume (FV) results in [27]. It is clearly demonstrated that the accuracy of the proposed 
IPS scheme is on par with that of the FV method, and these solutions come closer to the experimental 
data as compared to that of the original PS scheme. 

5. Conclusion 

Within the context of Lagrangian moving particle method, approximation of convection terms can be 
avoided and the numerical stability problem in a grid-based method can be resolved. However, diffusion 
term must be approximated with special care in a randomly distributed particle cloud. Because of the 
lack of a topology connection among particles, the differential operator may not be accurately approxi-
mated. Conventional particle smoothing procedure used to approximate the diffusion operator is 
derived based on the uniformly distributed particle cloud which may not be found in practical flow 
situations. From the simple analysis using the Taylor series expansion, the PS scheme suffers from a 
severe problem which is closely related to the numerically generated artificial convection term that 
has found to be overwhelmingly deteriorate the solution accuracy. Therefore, a simple modification is 
proposed in the present work to eliminate this artificial convection term. One-, two-, and three-dimen-
sional problems have been analyzed and the proposed IPS scheme is more accurate while simulating the 
fluid flow conduction and two practical flow problems in the context of moving particle methods. 
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