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Abstract. In this paper a three-step scheme is applied to solve the Camassa-Holm
(CH) shallow water equation. The differential order of the CH equation has been
reduced in order to facilitate development of numerical scheme in a comparatively
smaller grid stencil. Here a three-point seventh-order spatially accurate upwinding
combined compact difference (CCD) scheme is proposed to approximate the first-
order derivative term. We conduct modified equation analysis on the CCD scheme and
eliminate the leading discretization error terms for accurately predicting unidirectional
wave propagation. The Fourier analysis is carried out as well on the proposed numeri-
cal scheme to minimize the dispersive error. For preserving Hamiltonians in Camassa-
Holm equation, a symplecticity conserving time integrator has been employed. The
other main emphasis of the present study is the use of u−P−α formulation to get non-
dissipative CH solution for peakon-antipeakon and soliton-anticuspon head-on wave
collision problems.
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1 Introduction

Many weakly nonlinear dispersive partial differential equations have been known to per-
mit soliton solutions [1]. Complex interaction amongst solitons in these physical systems
has attracted considerable attention in the past. Soliton discovered experimentally by
Russel is defined as a single humped wave of bulge water. Take the Korteweg-de Vries
(KdV) equation ut+6uux+uxxx = 0 as an example, solitary wave is formed due to the
balance between the weak nonlinear steepening effect of uux and the linear dispersion
effect of uxxx. The nonlinear term in this equation tends to steepen the solution but the
dispersion term is prone to spread it out at the same time. These localized and highly
stable solitons amenable to KdV equation can retain its identity upon interaction. Be-
cause of the ability of preserving wave shape and speed, the collision of KdV solutions is
classified to be of an elastic type.

Besides the celebrated KdV equation, the completely integrable Camassa-Holm (CH)
equation [2] has also received considerable attention in the past two decades. Provided
that an initial data is defined in the Sobolev space Hs(Ω) for s > 3

2 , CH equation is lo-
cally well-posed [3]. The reason for investigating this Cauchy problem is rooted in its
possession of a rich geometric solution structure. Camassa-Holm equation investigated
under a permanent wave motion has a global strong solution. In addition, this equation
permitting blow-up solution can be used to model wave breaking [3]. For an initial data
of the H1(R) type, Camassa-Holm equation is also amenable to global weak solution [4].

A smooth solution of CH equation can be compressed to form a jump in the solution
in finite time [2] due to the occurrence of nonlinear terms in CH equation. In the presence
of peakon solution, the CH solution computed at κ = 0 exhibits a discontinuous first
derivative at the crest. Any numerically introduced high-frequency dispersion error near
these peaks can considerably deteriorate simulation quality [5]. It is natural to apply a
compact scheme [6] to get a better understanding of the nonlinear and dispersive natures.
In addition, the Weighted Essentially Non-Oscillatory (WENO) scheme [7] is also desired
to avoid the oscillatory solutions.

Application of the finite difference scheme in [8] can properly model the peakon-
antipeakon interaction. The pseudospectral scheme developed by Kalisch and Lenells
[9] has been shown to be effective in predicting the solution of CH equation. Peakon
solutions have been predicted more correctly by Artebrant and Schroll [10] using the
adaptive upwinding finite volume discretization method. One can also apply the local
discontinuous Galerkin method to predict the CH solution [5]. In addition to the above-
mentioned methods, multi-symplectic method [11], energy-conserving Galerkin method
[12], Hamiltonian-conserving Galerkin method [13] and self-adaptive mesh method [8]
have been also developed to solve the CH equation with great success.

The rest of this paper is organized as follows. Section 2 describes the nonlinear CH
equation and its remarkable mathematical features. This equation containing the third-
order derivative term is then transformed to its equivalent nonlinear system of equations.
This equivalent differential system of equations consists of one equation with the reduced
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differential order and one inhomogeneous Helmholtz equation. In the first step of the so-
lution algorithm, the nonlinear advection equation is numerically approximated by the
combined compact difference scheme detailed in Section 4.2. We then present a sixth-
order accurate scheme for solving the inhomogeneous Helmholtz equation in Section 4.5.
Section 5 is devoted to the dispersion analysis of the proposed seventh-order accurate
CCD scheme. In Section 6.1 the solution of CH equation will be sought under different
initial conditions to elucidate the symplecticity-preserving scheme property proposed in
this manuscript. This scheme containing only a minimal numerical phase error has been
applied to predict the propagation of peakons and antipeakon. We examine interaction
between peakons and antipeakon in detail and conclude that the peakon-antipeakon col-
lision is indeed elastic in the sense of retaining conservation property. In Section 6.2,
the CH equation is solved for κ 6= 0 to justify the applicability of the proposed spatially
seventh-order accurate upwinding difference scheme in capturing the traveling wave na-
ture. Interactions between peakons, peakon-antipeakon, and solition-anticuspon are also
numerically investigated. Finally, we will draw some concluding remarks in Section 7.

2 Working equation

The nonlinear Camassa-Holm (CH) equation derived as follows in [2]

ut+2κux−uxxt+3uux =2uxuxx+uuxxx (2.1)

will be studied here. For the case of non-negative real κ (≡ (gh0)1/2), g stands for the
gravity and h0 denotes the undisturbed water depth. In the limit κ=0, Eq. (2.1) turns out
to be the special case of the b-family partial differential equation ut−uxxt+(b+1) uux =
buxuxx+uuxxx for b=2 [14]. When b=3, this equation is known as the Degasperis-Procesi
equation [15, 16].

The nonlinear term uux in CH equation can steepen wave. The presence of the non-
linear dispersion term uuxxx rather than the linear dispersion term κux in KdV equation
results in a complex wave spreading. The above two competing terms considered to-
gether with the nonlinear term uxuxx and the space-time mixed derive term uxxt in the
CH equation for κ= 0 admit peakon solution which is represented by a piecewise func-
tion.

Peakon (or peaked soliton) solution for the CH equation investigated at κ = 0 can
be represented as u(x,t) = c e−|x−ct|. If c is a negative quality, the wave with its peak
pointing downward propagates towards left. This peaked solution is often called as
an antipeakon, which is in contrast to the right-running peakon for which c > 0. At
wave crest this solution slope has a finite discontinuity [2]. The interaction of these
peakons and antipeakons generates many dynamically interesting features. These in-
triguing behaviors are normally scarce in their piecewise soliton counterparts, thereby
prompting the present study. For κ 6=0, the dispersive term 2κux can further steepen the
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peakon/antipeakon solution. Eq. (2.1) admits cusped soliton, known as the cuspon, as
well as the smooth soliton solution [8].

CH equation can be completely integrated through its associated Lax pair. Since CH
equation has a multi-symplectic structure, Eq. (2.1) can be rewritten as a system of first-
order equations given by M zt+K zx =∇zS(z) for a state-variable vector z. The scalar
function S is smoothly dependent on z. The skew-symmetric square matrices M and
K define the symplectic structure given by (ω,κ), where ω = dz∧Mdz and κ = dz∧Kdz.
According to the work of Bridges and Reich [17], the pair of variables (ω,κ) conserves
symplecticity locally by way of ∂ω

∂t +
∂κ
∂x = 0. Some of the differential conservation laws

and the integrable conserved quantities have been derived in [11].
Given an initial condition u0(x, t = 0) ∈ H1, where H1 is the Sobolev space, equa-

tion (1) investigated at κ = 0 has been shown to possess the well-known conservation

laws
∫ +∞

−∞
u dx. (H0),

1
2

∫ +∞

−∞
(u2+u2

x) dx (Hamiltonian H1) and 1
2

∫ +∞

−∞
(u3+uu2

x+2κu2) dx

(Hamiltonian H2). Note that H1=
1
2

∫ +∞

−∞
(u2+u2

x) dx has association with the energy den-

sity u2+u2
x [18].

3 u−P−α formulation for the CH equation

When approximating CH equation, it is generally accepted to avoid dealing with the less
understood third-order derivative term and the mixed space-time derivative term. To
this end, the original third-order CH equation is transformed first to its equivalent set
of equations containing only the first-order spatial and the temporal derivative terms by
introducing two auxiliary variables. Choice of the momentum variable m=u−uxx led us
to get the following u−m formulation [19]

mt+umx+2uxm=−2κux. (3.1)

One can also transform the original CH equation to get the other equivalent set of u−P
equations [20]

ut+uux=−Px, (3.2)

P−Pxx=u2+
1

2
(ux)

2+2κu. (3.3)

The solutions of the above two sets of u−m and u−p equations are sought subject to the
prescribed periodic boundary condition. Through the previous computational assess-
ment study, we know that the u−P formulation is superior to the u−m formulation [20].

To avoid computing the term (ux)2 in the inhomogeneous Helmholtz equation (3.3),
we should replace (ux)2 by a term, such as the Hamiltonian H2, that is continuous even
at a jump of wave crest. In this light, the following energy density is taken into account
in the current reformulation of the CH equation [11]

α=u2+(ux)
2. (3.4)
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One can then easily derive the following transport equation for α in conservative form

αt+(uα)x =−Qx, (3.5)

where Q=2Pu−u3−2κu2. The u−P−α formulation employed in this study is as follows

ut+uux =−Px, (3.6)

P−Pxx=
u2

2
+

α

2
+2κu, (3.7)

αt+(uα)x =−Qx. (3.8)

To get a better understanding of the nonlinear and dispersive natures of the shallow
water, Eqs. (3.6)-(3.8) constitutes an appropriate differential system for us to design a
numerical scheme.

4 Numerical schemes

In this study the classical semi-discretization method is adopted to approximate the time-
dependent differential equation (3.6). The time derivative term is approximated before
approximating the spatial derivative terms.

4.1 Symplectic scheme for the temporal derivative term

When solving the Hamiltonian equation (2.1), a structure-preserving numerical integra-
tor should be adopted to conserve its symplecticity. The sixth-order accurate symplectic
Runge-Kutta scheme [21] is used in this study to get a long-time accurate CH solution

u(1)=un+∆t

[
5

36
F(1)+(

2

9
+

2c̃

3
)F(2)+(

5

36
+

c̃

3
)F(3)

]
, (4.1)

u(2)=un+∆t

[
(

5

36
− 5c̃

12
)F(1)+(

2

9
)F(2)+(

5

36
+

5c̃

12
)F(3)

]
, (4.2)

u(3)=un+∆t

[
(

5

36
− c̃

3
)F(1)+(

2

9
− 2c̃

3
)F(2)+

5

36
F(3)

]
, (4.3)

un+1=un+∆t

[
5

18
F(1)+

4

9
F(2)+

5

18
F(3)

]
. (4.4)

where c̃= 1
2

√
3
5 . Note that F(i) (i=1,2,3) shown above represent the values of F(≡−Px−

uux) at t=n+( 1
2 + c̃)∆t, t=n+ 1

2 ∆t, and t=n+( 1
2− c̃)∆t, respectively.
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4.2 Combined compact difference scheme for spatial derivative terms

To get a long-time accurate CH solution, one can employ the DRP (dispersion-relation-
preserving) scheme given in [22]. In this study, the compact difference scheme [23] is
implemented in a grid stencil having three points.

We propose first the combined compact difference scheme for the first-order deriva-
tive term. The derivation detail is presented below. The derivative terms ux, uxx and uxxx

at each grid point are all considered as the solution variables so as to get the spectral-
like resolution. The proposed non-centered or upwinding combined compact difference

scheme formulated in a three-point grid stencil for the derivative terms ∂u
∂x , ∂2u

∂x2 and ∂3u
∂x3 is

given as

∂u

∂x

∣∣∣
i
+a1

∂u

∂x

∣∣∣
i−1

+h

(
b1

∂2u

∂x2

∣∣∣
i−1

+b2
∂2u

∂x2

∣∣∣
i
+b3

∂2u

∂x2

∣∣∣
i+1

)

+h2

(
c1

∂3u

∂x3

∣∣∣
i−1

+c3
∂3u

∂x3

∣∣∣
i+1

)
=

1

h
(d1ui−1+d2ui+d3ui+1), (4.5)

∂2u

∂x2

∣∣∣
i
+

1

h

(
−29

16

∂u

∂x

∣∣∣
i−1

+
29

16

∂u

∂x

∣∣∣
i+1

)
+

(
− 5

16

∂2u

∂x2

∣∣∣
i−1

− 5

16

∂2u

∂x2

∣∣∣
i+1

)

+h

(
− 1

48

∂3u

∂x3

∣∣∣
i−1

+
1

48

∂3u

∂x3

∣∣∣
i+1

)
=

1

h2
(4ui−1−8ui+4ui+1), (4.6)

∂3u

∂x3

∣∣∣
i
+

1

h2

(
−105

16

∂u

∂x

∣∣∣
i−1

− 105

16

∂u

∂x

∣∣∣
i+1

)
+

1

h

(
−15

8

∂2u

∂x2

∣∣∣
i−1

+
15

8

∂2u

∂x2

∣∣∣
i+1

)

+

(
− 3

16

∂3u

∂x3

∣∣∣
i−1

− 3

16

∂3u

∂x3

∣∣∣
i+1

)
=

1

h3

(
105

16
ui−1−

105

16
ui+1

)
. (4.7)

The second-order derivative term ∂2u
∂x2 and the third-order derivative term ∂3u

∂x3 at an in-
terior node i are approximated using the centered schemes. The coefficients shown in
(4.6)-(4.7) are determined through the Taylor series expansion with respect to ui. Their
respective leading truncation error terms in the derived modified equations are then elim-

inated. The resulting formal solution accuracies for ∂2u
∂x2 and ∂3u

∂x3 become eighth-order and
sixth-order, respectively [24].

The proposed upwinding compact difference scheme is derived only for the case of
u> 0. Derivation for the negative coefficient case can be done likewise. In order to es-
timate the eight weighting coefficients shown in (4.5) we start with the Taylor series ex-

pansion of the terms ui−1, ui+1, ∂u
∂x |i−1, ∂u

∂x |i, ∂2u
∂x2 |i−1, ∂2u

∂x2 |i, ∂2u
∂x2 |i+1, ∂3u

∂x3 |i−1, and ∂3u
∂x3 |i+1 with

respect to ui and then eliminate the leading error terms shown in the modified equation
for ∂u

∂x . The resulting set of algebraic equations is as follows

d1+d2+d3=0, (4.8)

−a1−d1+d3=1, (4.9)
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2a1+d1+d3−2b1−2b2−2b3=0, (4.10)

d1−d3−6b1+6b3+6c1+6c3+3a1 =0, (4.11)

d1+d3−12b1−12b3+24c1−24c3+4a1=0, (4.12)

d1−d3−20b1+20b3+60c1+60c3+5a1=0, (4.13)

d1+d3−30b1−30b3+120c1−120c3+6a1 =0, (4.14)

d1−d3−42b1+42b3+210c1+210c3+7a1 =0. (4.15)

We are still lack of one algebraic equation to uniquely determine all the nine intro-
duced coefficients shown in (4.5). The wave-type error will be minimized or the dis-
persive accuracy will be maximized by matching the numerical modified (or scaled)
wavenumber with its analytical counterpart [25]. To this end, the Fourier transform

ũ(β)= 1
2π

∫ +∞

−∞
u(x) e−iβx dx and its inverse u(x)=

∫ +∞

−∞
ũ(β)eiβx dβ are performed. Note

that the notation i is equal to
√
−1. We then perform the Fourier transform on each term

shown in Eqs. (4.5), (4.6) and (4.7). The effective (or numerical) scaled wavenumber is
equated to the actual (or exact) wavenumber β, thereby leading to

iβ′h (a1 exp(−iβh)+1)=d1 exp(−iβh)+d2+d3 exp(iβh)

−(iβ′′h)2(b1exp(−iβh)+b2+b3exp(iβh))

−(iβ′′′h)3(c1exp(−iβh)+c3 exp(iβh)), (4.16)

iβ′h
(
− 29

16
exp(−iβh)+

29

16
exp(iβh)

)
=4exp(−iβh)−8+4exp(iβh)

−(iβ′′h)2
(
− 5

16
exp(−iβh)+1− 5

16
exp(iβh)

)

−(iβ′′′h)3
(
− 1

48
exp(−iβh)+

1

48
exp(iβh)

)
, (4.17)

iβ′h
(
− 105

16
exp(−iβh)− 105

16
exp(iβh)

)
=

105

16
exp(−iβh)− 105

16
exp(iβh)

−(iβ′′h)2
(
− 15

8
exp(−iβh)+

15

8
exp(iβh)

)

−(iβ′′′h)3
(
− 3

16
exp(−iβh)+1− 3

16
exp(iβh)

)
. (4.18)

By solving Eqs. (4.16), (4.17) and (4.18), we can then derive the expression of β′h.

The numerical scaled wavenumber β′h derived above will be used in the analysis
of numerical error computed from the proposed combined compact difference scheme.
This modified wavenumber is periodic with a period of 2π. In the numerical modified
(or scaled) wavenumber β′h, its real and imaginary parts account respectively for the
dispersion error (phase error) and the dissipation error (amplitude error). To get a better
dispersive accuracy, we equate βh to ℜ[β′h], where ℜ[β′h] denotes the real part of β′h.
This corresponds to demand that the magnitude of the integrated error function E(β)
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defined below in the range −π
2 ≤βh≤ π

2 should be a very small and positive magnitude

E(β)=
∫ π

2

− π
2

[(
βh−ℜ[β′ h]

)]2
d(βh). (4.19)

To minimize the positive error function defined in −π
2 ≤ βh≤ π

2 , the extreme condi-

tion is chosen to be ∂E
∂d1

= 0. This constraint equation derived from the Fourier analysis
is solved together with the other eight algebraic equations derived previously from the
modified equation analysis to reduce dissipation error as well as to get an improved
dispersion accuracy. The resulting nine introduced unknowns can be uniquely deter-
mined as a1=1.1875, b1=0.23643236, b2=−0.27774699, b3=−0.01356764, c1=0.01894044,
c3 =0.00189289, d1 =−2.33613227, d2 =2.48476453 and d3 =−0.14863227. The above up-
winding scheme developed in a stencil of three grid points i−1, i and i+1 for ∂u

∂x has

the seven spatial order accuracy as the modified equation has the form ∂u
∂x = ∂u

∂x |exact−
0.65175737×10−5 h7 ∂8u

∂x6 +0.81653294×10−7 h9 ∂10u
∂x10 +H.O.T. For u < 0, the non-centered

combined compact difference scheme derived similarly in a three-point grid stencil for
approximating ∂u

∂x is

∂u

∂x

∣∣∣
i
+1.1875

∂u

∂x

∣∣∣
i+1

+h

(
0.01356764

∂2u

∂x2

∣∣∣
i−1

+0.27774699
∂2u

∂x2

∣∣∣
i
−0.23643236

∂2u

∂x2

∣∣∣
i+1

)

+h2

(
0.00189289

∂3u

∂x3

∣∣∣
i−1

+0.01894044
∂3u

∂x3

∣∣∣
i+1

)

=
1

h
(0.14863227ui−1−2.48476453ui+2.33613227ui+1). (4.20)

4.3 Discretization of (uα)x

We aim to conserve the flux term uα across a cell of length h. This objective is achieved by

means of the approximation ∂ (uα)
∂x |i =

u
i+ 1

2
α

i+ 1
2
−u

i− 1
2

α
i− 1

2
h . The values of α at the half nodal

points i± 1
2 are approximated as

αi+ 1
2
=d∗1αi+d∗2αi+1−

[
a∗1αi− 1

2
+h

(
b∗1

∂α

∂x

∣∣∣
i− 1

2

+b∗2
∂α

∂x

∣∣∣
i+ 1

2

+b∗3
∂α

∂x

∣∣∣
i+ 3

2

)

+h2

(
c∗1

∂α2

∂2x

∣∣∣
i− 1

2

+c∗2
∂α2

∂2x

∣∣∣
i+ 3

2

)]
, (4.21)

and

αi− 1
2
=d∗1αi−1+d∗2αi−

[
a∗1αi− 3

2
+h

(
b∗1

∂α

∂x

∣∣∣
i− 3

2

+b∗2
∂α

∂x

∣∣∣
i− 1

2

+b∗3
∂α

∂x

∣∣∣
i+ 1

2

)

+h2

(
c∗1

∂α2

∂x

∣∣∣
i− 3

2

+c∗2
∂α2

∂x

∣∣∣
i+ 1

2

)]
. (4.22)
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The coefficients a∗i , b∗i , c∗i and d∗i are then derived by comparing the coefficients derived

in Eq. (4.5) for ∂α
∂x |i. After a term-by-term comparison of the coefficients, the coefficients

shown in (4.21) and (4.22) can be derived as a∗1=1.1875, b∗1=0.23643236, b∗2=−0.27774699,
b∗3=−0.01356764, c∗1=0.01894044, c∗2=0.00189289, d∗1=−2.33613227 and d∗2=−0.14863227.

4.4 Discretization of Px and Qx

The three-point combined compact difference (CCD) scheme derived in [26] to approxi-
mate the gradient terms φx (φ=P in (3.6) or Q in (3.8)) is given below

h

16

∂2φ

∂x2

∣∣∣
i−1

− h

16

∂2φ

∂x2

∣∣∣
i+1

=
15

16h
(−φi−1+φi+1)+

(
7

16

∂φ

∂x

∣∣∣
i−1

+
∂φ

∂x

∣∣∣
i
+

7

16

∂φ

∂x

∣∣∣
i+1

)
, (4.23)

− 1

8

∂2φ

∂x2

∣∣∣
i−1

+
∂2φ

∂x2

∣∣∣
i
− 1

8

∂2φ

∂x2

∣∣∣
i+1

=
1

h2
(3φi−1−6φi+3φi+1)−

1

h

(
−9

8

∂φ

∂x

∣∣∣
i−1

+
9

8

∂φ

∂x

∣∣∣
i+1

)
.

(4.24)

The above center-type CCD scheme developed in a stencil of three grid points i−1, i and

i+1 for
∂φ
∂x has sixth-order accuracy.

4.5 Three-point sixth-order accurate Helmholtz scheme

The compact difference scheme developed in [20] for efficiently solving the Helmholtz
equation is applied here. A three-point implicit scheme which uses only the adjacent
nodes relates u to the partial derivative terms uxx and uxxxx. For the Helmholtz equation

(i.e. (3.7)), its approximated equation is given below, where fi =−(
u2

i
2 + αi

2 +2κui)

Pi+1−
(

2+h2 +
1

12
h4+

1

360
h6

)
Pi+Pi−1

=h2 fi+
1

12
h4

(
fi+

∂2 fi

∂x2

)
+

1

360
h6

(
fi+

∂2 fi

∂x2
+

∂4 fi

∂x4

)
. (4.25)

Application of the above three-point compact difference scheme for Eq. (3.7) indeed
yields sixth-order accuracy in space because the corresponding modified equation can

be derived as ∂2P
∂x2 −P= f + h6

20160
∂8P
∂x8 +

h8

1814400
∂10P
∂x10 +···+H.O.T..

4.6 Solution algorithm

To get the solution un+1 from un we adopt the iterative solution algorithm because the
value of P which involves the value of α(≡u2+(ux)2) and u is required to solve Eq. (3.6).
For the sake of clearness, the iterative solution algorithm is summarized as follows:

Step 1: Start from the initial guess for u[k],(i) for i=1,2,3. Note that k denotes the iteration
counter.

https:/www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.290914.030615a
Downloaded from https:/www.cambridge.org/core. National Taiwan University Library, on 26 Jun 2017 at 07:11:09, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.290914.030615a
https:/www.cambridge.org/core


612 C.-H. Yu and T. W.-H. Sheu / Commun. Comput. Phys., 19 (2016), pp. 603-631

Step 2: Solve the Eq. (3.8) to get α[k],(i) for i=1,2,3.

Step 3: The Helmholtz equation (3.7) is solved to get P[k],(i) for i=1,2,3 by the proposed
three-point sixth-order accurate compact Helmholtz scheme described in Section 4.5.

Step 4: Discretize u
[k],(i)
x and P

[k],(i)
x by the scheme given in Section 4.2 and Section 4.4 so

as to get F(≡−Px−uux)[k],(i), i=1,2,3.

Step 5: Based on the applied symplectic Runge-Kutta method presented in Section 4.1
for (3.6), Eqs. (4.1)-(4.3) are solved simultaneously (or implicitly) for getting the values of

u[k+1],(i), i=1,2,3.

Step 6: Repeat the calculation from Step 2 to Step 5 until the residuals, cast in the max-

imum norms, of Eqs. (4.1)-(4.3) satisfy the convergence criterion Maxxj,j=1,N
(|u[k+1],(i)−

u[k],(i)|,|α[k+1],(i)−α[k],(i)|)≤ 10−9, where N denotes the number of grid points.

Step 7: Use Eq. (4.4) to update un+1.

5 Fundamental analysis of the proposed scheme and verification

studies

5.1 Fundamental analysis of the proposed scheme

The solution for the model equation ut+c ux = 0 can be represented by u = ûβ(t)e
iαx,

where i≡
√
−1 and ûβ is the Fourier mode of the wave number β. Differentiation of the

above equation leads to ∂u
∂x |exact = iβh

ûβ

h eiβx. Note that the wavenumber has been scaled

by h= L
N , where L and N denote the length of physical domain and the number of grid

intervals, respectively. The approximated derivative term ∂u
∂x can be similarly written as

∂u

∂x

∣∣∣
numerical

= iβ
′
h

ûβ

h
eiβx =(Kr+iKi)

ûβ

h
eiβx. (5.1)

In the above, Kr and Ki denote the real and imaginary parts, respectively. In other
words, two coefficients Ki and Kr accounting respectively for the dispersion and dissi-
pation errors are expressed in terms of the real part (β′h) and the imaginary part (β′h) as
Ki=ℜ[β′h] and Kr =−ℑ[β′h].

In Fig. 1, the values of Ki and Kr are plotted with respect to the scaled wavenumber αh
using the three-point upwinding combined compact difference scheme CCD derived in
Section 4.2. One can conclude from the two plots in this figure that the proposed upwind
scheme performs better than the other scheme [24] because of the improved dispersive
accuracy. The positive-valued Kr calculated from the present CCD scheme is found to be
less accurate than the non-dissipative (or Kr=0) center-type combined compact difference
scheme of Nihei and Ishii [24].
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Figure 1: Comparison of the plots for Kr(αh) and Ki(αh) between the proposed three-point seventh-order
accurate upwinding combined compact difference scheme (CCD) and the three-point eighth-order accurate
centered combined compact difference scheme (CCD8) [24]. (a) Ki; (b) Kr.

5.2 Verification studies

The analytic problem admitting a periodic travelling wave solution u(x,t) = U(x−ct)
is chosen to justify the integrity of the developed scheme for solving the nonlinear CH
equation [20].

U′=±
√

−U3+(c−2κ)U2+C(A)U

c−U
(5.2)

Note that A and U are implicitly related to the independent variable x by

x=
2√

a1(a2−a3)
(a1−a2)Π, (5.3)

where Π is the elliptic function,

a1 = c, a2=
1

2

(
c−2κ+

√
(c−2κ)2+4C

)
, a3 =

1

2

(
c−2κ−

√
(c−2κ)2+4C

)
. (5.4)

Calculation will be carried out at c= 2, κ = 1/2 and C= 1 in this validation study. The
spatial rates of convergence is approximately equal to 5.25 computed from the L2 error
norms. The spatial rates of convergence has been shown in Table 1. Note that the time
step ∆t= 6.3019

128 ×10−5 is much smaller than the grid size ∆x.
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Table 1: The predicted spatial rates of convergence for the test problem given in Section 5.2.

Grids 32 64 128

L2-error norm 6.1005E-4 9.7343E-6 4.1842E-7

rate of convergence — 5.9697 4.54002

6 Numerical results

To make an indirect verification of the predicted CH solution, in this section the following
Hamiltonians are computed and are plotted with respect to time for all the test problems

H0=
∫

u dx, (6.1)

H1=
1

2

∫
(u2+u2

x) dx=
∫

α dx, (6.2)

H2=
1

2

∫
(u3+uu2

x+2κu2) dx=
∫

u α dx, (6.3)

H3=
∫
(u2+

1

2
u2

x)P+
u2

4
(u2+2u2

x) dx

=
1

2

∫
(α+u2)P+

u2

2
(2α−u2) dx, (6.4)

M=
∫
(u−uxx) dx. (6.5)

6.1 CH solutions obtained at κ=0

6.1.1 Peakon-peakon problem

The problem with two peakons propagating along the same direction will be solved at
κ = 0 in the domain −60≤ x ≤ 60. The solution will be sought subject to the following
initial data for the CH equation (2.1)

u0(x,t=−20)= p1(t)e
−|x−q1(t)|+p2(t)e

−|x−q2(t)|. (6.6)

Two investigated peakons move rightwards with p1(t) =
c2E1+c1E2

E1+E2
and p2(t) =

c1E1+c2E2
E1+E2

,

where Ei(t) = ecit (i = 1,2), c1 = 1.6 and c2 = 1.0. The Camassa-Holm equation will be

solved subject to the specified periodic boundary conditions at q1(t)= ln[ (c1−c2)E1E2

c2E1+c1E2
] and

q2(t)= ln[ c1E1+c2E2
c1−c2

].
In Fig. 2, the predicted time-evolving two-peakon solutions in a domain of 1024 uni-

formly discretized grids compare excellently with the exact solutions given in [27]. Two
peakons pass through each other and both of them remain as the solitary waves. The
switching scenario is therefore clearly exhibited in this peakon-peakon problem. Since
wave breaking has not been observed, this problem permits a global solution. The higher
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Figure 2: Comparison of the predicted and exact peakon-peakon CH solutions computed at different times in a
domain of 1024 grids. (a) t=−10.0; (b) t=−2.0; (c) t=2.0; (d) t=10.0.

peakon is observed to propagate faster than the lower peakon. At t = 0+, the higher
peakon has already overtaken the lower peakon. While there exists an exchange of

∫
u dx

between the two moving peakons, the Hamiltonians shown in Fig. 3 are unchanged at all
times. In addition, the applied u−P−α formulation is validated in view of the predicted
L2-error norms and the spatial rates of convergence shown in Table 2.

Table 2: The predicted L2-error norms at t =−19 for the calculations obtained in −60 ≤ x ≤−33 and at
∆t=3×10−6 using three different mesh sizes. This problem is described in Section 6.1.1.

Grids 512 1024 2048

L2-error norm 2.7020E-2 1.0223E-3 8.9161E-5

rate of convergence — 4.721 3.51925
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Figure 3: The computed values of the Hamiltonians H0, H1, H2, H3 and M are plotted with respect to time
for the investigated peakon-peakon problem in Section 6.1.1.

6.1.2 Peakon-antipeakon problems

The Camassa-Holm equation admits peakon solution [28]. Peakon (or peaked solitary
wave) is a soliton having a finite-valued discontinuous first derivative. Peakon solu-
tion can be algebraically expressed by u(x,t)= ce−|x−ct|. For c< 0, the wave propagates
leftwards with its peak pointing downward. Such a peaked soliton is called as an an-
tipeakon.

One-peakon and one-antipeakon problem

The peakon and antipeakon initial condition given below is considered in this subsection

u(x,t=0)= e−|x+5|−e−|x−5|. (6.7)

The wave speed c and the collision time tc can be obtained as c≃0.999977299777468 and
tc ≃ 5.693265068768256 by solving the equations ln[sech(−c tc)] =−5 and c

tanh(−c tc)
=

−1 [29]. Following the notations given in [29], the solution of Eq. (2.1) for the
peakon/antipeakon collision problem can be expressed as [29]

u(x,t)=
c

tanh(c(t−tc))
[e−|x−q(t)/2|−e−|x+q(t)/2|], (6.8)

where q(t)=−ln[sech2(t−tc)]. The number of cells used in this simulation study is 2048
in the domain [-25, 25]. The time step is ∆t=0.01∆x. Fig. 4 shows the solution computed
from the proposed scheme and the exact solution of Eq. (6.8). Both of the wave speed and
the collision time are well predicted even near the point of collision. Fig. 5 shows that all
the Hamiltonians shown in (6.1)-(6.5) remain unchanged before and after the collision
time, thereby illustrating that at a time after peakon/antipeakon collision the peakon
and antipeakon pass through each other without changing the Hamiltonian values.
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Figure 4: Comparison of the predicted and exact peakon-antipeakon CH solutions computed in the domain of
2048 grids at different times. (a) t= 0.0; (b) t= 2.0; (c) t= 4.0; (d) tc = 5.693265068768256; (e) t= 8.0; (f)
t=12.0.
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Figure 5: The computed values of the Hamiltonians H0, H1, H2, H3 and M are plotted with respect to time
for the investigated one-peakon and one-antipeakon problem.

Two-peakon and one-antipeakon problem

Eq. (2.1) subject to the periodic boundary condition and the initial condition given below
is then solved in 0≤ x≤80

u(x,t=0)=3e−|x−10|+e−|x−50|−2e−|x−65|. (6.9)

This initial solution profile is the combination of peakon-peakon and peakon-antipeakon
profiles. Based on the solutions plotted in Fig. 6 in the domain of 2048 nodal points,
the computed Hamiltonians are plotted versus time in Fig. 7. The unchanged values
of Hamiltonians in time exhibit again the non-dissipative interaction mechanism after a
time of the collision of two peakons and one antipeakon.

Three-peakon and one-antipeakon problem

The three-peakon and one-antipeakon case was studied previously by Holden and Ray-
naud [30]. In the domain −20≤ x≤20, the following initial condition for the calculation
of CH equation is considered

u(x,t=0)= p1(t)e
−|x−q1(t)|+p2(t)e

−|x−q2(t)|+p3(t)e
−|x−q3(t)|+p4(t)e

−|x−q4(t)|. (6.10)

In the above, (q1,q2,q3,q4) = (−10,−5,0,5). Subject to the periodic boundary condition,
Eq. (2.1) will be solved at p1 =5, p2 =5, p3 =5 and p4 =−12. The predicted solutions for
the three right-running peakons and the single left-running antipeakon in the domains
of 2048 and 8192 nodal points are plotted in Fig. 8. We plot the values of H1 and H2 with
respect to time in Fig. 9 to exhibit the existence of a globally non-dissipative multipeakon-
antipeakon solution, which has the nature in contrast to the dissipative scenario wrongly
predicted earlier by Sheu et al. in [20] using the u−P formulation.
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Figure 6: The CH solutions computed in a domain of 2048 grids at different times. (a) t= 0.0; (b) t= 3.514;
(c) t=5.02; (d) t=6.526; (e) t=8.032; (e) t=10.542; (e) t=12.55; (f) t=15.06.
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Figure 7: The computed Hamiltonians H0, H1, H2, H3 and M are plotted with respect to time for the
investigated two-peakon plus one-antipeakon problem.
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Figure 8: The predicted CH solutions computed in the domains of 2048 and 8192 grids at different times. (a)
t=0.1953; (b) t=0.3125; (c) t=0.4980; (d) t=0.5860; (e) t=0.6690; (f) t=0.8398; (g) t=0.9277; (h) t=1.8493.
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Figure 9: The computed Hamiltonians H1 and H2 are plotted with respect to time for the investigated three-
peakon plus one-antipeakon problem. (a) H1; (b) H2.
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6.2 CH solutions obtained at κ 6=0

6.2.1 One soliton problem

We now consider the example of one soliton case with the solution profile given by [8]:

u(y,t)=
2p2cv

(c2+p2)+(c2−p2)cosh ξ
, x=2cy+ln

( g

h

)
. (6.11)

In the above, g = 1+( c−p
c+p )e

ξ , h = 1+( c+p
c−p)e

ξ , ξ = p(2y−vt), v = 2
c2−p2 with c = 1

κ = 10.0

and p=9.12. The time-evolving solution plotted in Fig. 10 compares well with the exact
solution given in [8]. As before, the computed Hamiltonians are plotted against time in
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Figure 10: Comparison of the CH solutions, computed in a domain of 1024 grids, with the exact solutions at
different times. (a) t=0.0; (b) t=3.0; (c) t=6.0; (d) t=12.0.
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Figure 11: The predicted values of the Hamiltonians H0, H1, H2 and M are plotted with respect to time for
the investigated soliton problem in Section 6.2.1.

a domain of 1024 nodal points. One can clearly see from Fig. 11 that all the predicted
Hamiltonians remain almost unchanged. The proposed CH scheme is verified under the
condition of nonzero k.

6.2.2 One cuspon problem

Cuspon also involves the discontinuous first derivative. In contrast to the peakon solu-
tion, the slopes of cuspon solution are infinitely large at the locations immediately adja-
cent to the point having the discontinuous first derivative [32]. The one cuspon solution
is given by

u(y,t)=
2p2cv

(c2+p2)−(c2−p2)cosh ξ
, x=2cy+ln

( g

h

)
. (6.12)

In the above, g=1−( c−p
c+p)e

ξ , h=1−( c+p
c−p)e

ξ , ξ= p(2y−vt), v= 2
c2−p2 with c= 1

κ =10.0 and

p=10.15 [8].
Approximation of the convective terms shown in Eq. (3.6) needs to take the upwind-

ing nodal solutions along the flow direction into a favorable consideration. In Section 4.2,
an upwinding combined compact difference scheme having a better dispersion relation
has been developed to solve the first derivative term in (3.6). Our primary aim is to en-
hance convective stability of the Eq. (3.6) by virtue of the increased dispersive accuracy.
We also compare the numerical result which uses the weighted essentially non-oscillatory
scheme [31] to solve the convective terms in (3.6).

The time-evolving one-cuspon solution was predicted in a mesh of 4096 uniformly
discretized grids. Fig. 12 shows the results computed at the three chosen times. For the
sake of verification, we also plot in Fig. 13 the values of H0 ∼ H2 and M, which are all
shown to be unchanged with time, for the case investigated at κ=0.1.
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Figure 12: The anticuspon solutions computed in a domain of 4096 grids at different times. (a),(b) t= 0.5;
(c),(d) t=1.0; (e),(f) t=1.5.
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Figure 13: The predicted values of the Hamiltonians H0, H1, H2 and M are plotted with respect to time for
the investigated problem in Section 6.2.2.

6.2.3 Soliton-soliton problem

Based on the u−P−α formulation, Eq. (2.1) is solved at κ=(0.24)2 for the soliton-soliton
case considered previously in [27]. The results computed in a domain of 1024 uni-
form mesh points will be compared with the results computed by the method of PQ-
decomposition in [27].

Fig. 14(a) shows the initial condition (t=−6.0), and Figs. 14(b)-14(d) display the time-
evolving collision of solitons at three different times. As shown in Fig. 14, after collision
the two-soliton solution regains its shape without showing any phase shift. For the sake
of verification, the computed values of the Hamiltonians are plotted with respect to time
in Fig. 15.

6.2.4 Cuspon-cuspon problem

The equations for getting the cuspon-cuspon solution are as follows

u(y,t)=
(

ln
g

h

)

t
, x=2cy+ln

( g

h

)
. (6.13)

In the above equations, g and h can be expressed below as the functions of ξ1 = p1(2y−
v1t−8.0), ξ2 = p2(2y−v2t−9.0), v1=

2
c2−p2

1

and v2=
2

c2−p2
2

[8]

g=1+
∣∣∣
c−p1

c+p1

∣∣∣eξ1 +
∣∣∣
c−p2

c+p2

∣∣∣eξ2 +
∣∣∣
(c−p1)(c−p2)

(c+p1)(c+p2)

∣∣∣
( p1−p2

p1+p2

)2
eξ1+ξ2 , (6.14)

h=1+
∣∣∣
c+p1

c−p1

∣∣∣eξ1 +
∣∣∣
c+p2

c−p2

∣∣∣eξ2 +
∣∣∣
(c+p1)(c+p2)

(c−p1)(c−p2)

∣∣∣
( p1−p2

p1+p2

)2
eξ1+ξ2 . (6.15)
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Figure 14: Comparison of the predicted and exact soliton-soliton solutions in a domain of 1024 grids at different
times. (a) t=−6.0; (b) t=−3.0; (c) t=0.0; (d) t=6.0.
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Figure 15: The predicted values of the Hamiltonians H0, H1, H2 and M are plotted with respect to time for
the investigated soliton-soliton problem in Section 6.2.3.
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Figure 16: The predicted CH solutions in a domain of 4096 grids at different times. (a) t=0.0; (b) t=2.5714;
(c) t=5.1428; (d) t=7.3469.

Note that the above expressions include the soliton-soliton solution (p1 < c,p2 < c), the
cuspon-cuspon solution (p1> c,p2> c), and the soliton-anticuspon solution (p1< c,p2> c)
[8]. For the cuspon-cuspon case, we chose p1=10.2, p2=10.1 and c= 1

κ =10.0 in this study.

Given the initial solution plotted in Fig. 16(a), the solutions predicted at several differ-
ent times are illustrated in Figs. 16(b)-(d). As mentioned in [8], two cuspon points always
show their presence during the collision. One can clearly see from Fig. 17 that the pre-
dicted Hamiltonians remain almost unchanged. The proposed CH scheme is validated
again.

6.2.5 Soliton-anticuspon problem

As for the soliton-anticuspon interaction problem, it is defined by u(y,t) = (ln g
h )t, with

ξ1 = p1(2y−v1t−2.0), ξ2 = p2(2y−v2t−3.0), v1 =
2

c2−p2
1
, v2 =

2
c2−p2

2
[8]. In Fig. 18(a), we
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Figure 17: The predicted values of the Hamiltonians H0, H1, H2 and M are plotted with respect to time for
the investigated cuspon-cuspon problem in Section 6.2.4.

plot the initial soliton (p1=9.8) and the anticuspon (p2=10.1) at c= 1
κ =10.0. One soliton

initially proceeds to the right and the other anticuspon moves to the left. The computed
time-evolving solutions plotted in Figs. 18 (b)-(f) compare very well with the exact results
given in [8]. One can find from these predicted solutions that soliton disappears after the
collision time at tc = 1.5429. The total annihilation scenario is, thus, exhibited even at a
time of head-on collision. The computed values of all Hamiltonians are also plotted with
respect to time in Fig. 19.

7 Concluding remarks

The Camassa-Holm equation is solved by the u−P−α formulation which alleviates the
need to approximate the space-time mixed derivative and high-order dispersive terms,
thereby considerably simplifying the computation. Moreover, some existing schemes de-
veloped for hydrodynamic equations can be applied. We approximate the time deriva-
tive term in a three-point grid stencil by the sixth-order accurate implicit symplectic
Runge-Kutta scheme so that the conserved properties in the Camassa-Holm equation
can be perfectly retained in the discrete context. As for the first-order spatial derivative
terms shown in the u−P−α equations, the dispersion error predicted from the proposed
seventh-order accurate upwind combined compact difference scheme is minimized. For
the peakon-peakon, soliton-soliton and cuspon-cuspon interaction problems, our simu-
lation results clearly exhibit exchange of mass between two waves propagating along
the same direction without exhibiting wave breaking. While mass exchange between
the individual peakons of different heights is found, the total mass and Hamiltonians
remain unchanged when the higher peakon, which propagates faster than the lower
one, overtakes the slower-moving peakon. As a result, for the non-collision problems
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Figure 18: Comparison of the predicted and exact soliton-anticuspon solutions in a domain of 4096 grids at
different times. (a) t=0.0; (b) t=0.8574; (c) t=1.2; (d) t=1.2857; (e) t=1.5429; (f) t=3.0.
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Figure 19: The predicted values of the Hamiltonians H0, H1, H2 and M are plotted with respect to time for
the investigated soliton-anticuspon problem in Section 6.2.5.

the switching scenario is numerically confirmed to exist in the Camassa-Holm equation.
Also, for the peakon-antipeakon and soliton-anticuspon problems, all the Hamiltonians
remain unchanged as well even after the collision. The Camassa-Holm equation permit-
ting non-dissipative (or elastic) collision nature of the solution is therefore numerically
demonstrated.
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