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a b s t r a c t

An explicit finite-difference scheme is developed to solve the three-dimensionalMaxwell’s
equations in Drude medium. Our aim of developing this scheme in time domain is to com-
pute solutions in staggered grids from the Faraday’s and Ampère’s equations. The electric
and magnetic field solutions are sought subject to the discrete zero-divergence condition
(Gauss’s law). The local conservation laws in ideal Maxwell’s equations are also numer-
ically preserved all the time using the explicit second-order accurate symplectic parti-
tioned Runge–Kutta temporal scheme. The spatial derivative terms in the Faraday’s and
Ampère’s equations are discretized to obtain fourth-order accuracy using the developed
scheme underlying the concept of minimizing the discrepancy between the exact and the
derived numerical phase velocities. Dispersion and anisotropy errors have been much re-
duced through the procedure of minimizing phase velocity error. In addition to performing
the fundamental analysis on the proposed scheme, the computational efficiency and long-
term accurate properties embedded in the proposed symplectic dispersion-error reduction
centered scheme are numerically demonstrated through several test problems investigated
in ideal and Drude media.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In Maxwell’s equations, Gauss’s law is considered as a constraint equation on the Faraday’s and Ampère’s equations.
However, numerically introduced errors of different kinds cause the magnetic and electric fields to no longer be divergence
free. The resulting nonzero-divergence error may make the predicted solution less stable when simulating electromagnetic
(EM) wave propagation. Circumvention of this instability problem has been one of the academically challenging tasks in the
development of an efficient solver for solving theMaxwell’s equations in ideal or in dispersivemedium [1]. Two divergence-
free constraint equations in Gauss’s law can be numerically satisfied at all timeswhen solving theMaxwell’s equations in the
currently employed Yee’s staggered grid system [2]. The generalized Lagrangemultiplier formulation ofMunz et al. [3] is also
applicable to retain numerical divergence-free condition in the Maxwell’s equations. One can compute a local divergence-
free Maxwell’s solution as well using the discontinuous Galerkin finite element method in [4].
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Numerical methods developed to predict the propagation of EM waves can be classified into the integral and dif-
ferential types. The integral methods include, for example, the method of moments, boundary element method, and
fast multipole method. The other more popular differential methods contain the finite difference, finite element, finite
volume, pseudospectral, transition line matrix and multiresolution methods. The finite difference method developed in
time domain is simple to write a program and is comparatively efficient [2]. Moreover, finite difference and finite el-
ement methods can be employed together to yield a hybrid scheme for solving the Maxwell’s equations in noncon-
forming meshes [5]. Therefore, the finite difference time domain (FDTD) method is employed in the present study to
approximate Maxwell’s equations in staggered grids so as to be able to get the divergence-free electromagnetic field
solutions.

While approximating the derivative terms using a differential method, the numerically introduced dissipation error can
smear EM wave solution and the predicted dispersion error, on the contrary, may result in a wrong phase speed or group
velocity [6]. Since the dispersion error can make the scheme less stable, it is essential to develop a dispersion-error re-
ducing method to approximate the first-order spatial derivative terms. Prediction of a correct propagation characteristics
constitutes the second objective of the present simulation study of the Maxwell’s equations. At late-time of the electromag-
netic wave prediction, the solution quality can be deteriorated by the other type of numerical errors generated from the
use of non-symplectic temporal schemes. Preservation of the desirable symplectic property in a long-term computation of
Maxwell’s equations motivated us to properly approximate the time derivative terms shown in the Faraday’s and Ampère’s
equations.

Besides the numerical instability and numerical dispersion error, when simulating Maxwell’s equations by finite
difference time domain method the so-called anisotropy error is also recognized as a significant source of error since this
type of error exhibits accumulative and erroneous propagation characteristics. Dispersive and anisotropy errors may cause
unphysical results and mislead researchers into drawing incorrect conclusions. These two important issues in the society of
computational electromagnetics need to be addressed in the development of FDTD scheme.

While simulating wave propagation problems in open domains, one needs to truncate the investigated physical domain
because of the limited available computational resources in random access memory and in computing time. To overcome
this practical problem, the guideline one can adopt is to prescribe a proper boundary condition at users’ truncated boarder in
the hope of preventing wave reentry into the domain. Otherwise, the outgoing and reflection waves may interact with each
other. Such an erroneous wave interaction will contaminate the solution predicted from the Maxwell’s equations. Apart
from the conventional absorbing boundary operators [7], which can exhibit a large reflection error, and the theoretically
exact but computationally more expensive boundary integral method [8], the perfectly matched Layer (PML) method was
proposed firstly by Berenger in his split-field formulation [9]. Different refined variants of the absorbing boundary condition
such as the stretched coordinate PML [10], anisotropic-medium (uniaxial) PML [11] and complex frequency shifted (CFS)
PML [12] developed for truncating boundary in time domain have been successfully applied to simulate EM waves in open
domain. Application of PML methods requires no field-splitting [13]. In this study CPML (Convolutional PML) method is
adopted to calculate the time dependent solutions from the Maxwell’s equations.

The rest of this paper is organized as follows. In Section 2, the Maxwell’s equations applicable to model the EM wave in
non-dispersive and dispersive media are presented. A solution algorithm presented in Section 3 splits the equations into
a part accounting for the ideal Maxwell’s equations and the other part responsible for the dispersive Drude medium. The
lossless ideal Maxwell’s equations are rigorously approximated in space and in time as well. In Section 4, some remarkable
features existing in the Maxwell’s equations that are essential to develop the current scheme in time domain are reviewed.
The explicit symplectic PRK (Partitioned Runge–Kutta) temporal scheme developed to conserve Hamiltonians in the ideal
Maxwell’s equations is applied. Employment of this non-iterative explicit scheme enables us to derive the numerical
dispersion relation equation. The newly developed scheme with the optimized numerical phase velocity feature is also
detailed. We will verify the proposed numerical method and then discuss the results predicted in the investigated Drude
medium in Section 6. Finally, some concluding remarks are drawn in Section 7.

2. Working equations

The electric permittivity and magnetic permeability are normally varied with the optical frequency in dispersive media.
In the current numerical study in time domain, for simplicity only the electric permittivity is assumed to be frequency-
dependent. The electric permittivity ε(t) (≡ εrεo) is assumed to be equal to (1 + χ)ε0, where εr (≡ 1 + χ) is the
relative permittivity, χ(t) is the electric susceptibility, t is the time, and ε0 is the vacuum permittivity. The susceptibility

and the relative electric permittivity are modeled as χ(ω) = −
ω2
p

ω2−jωγp
, where ω is an angular frequency, or χ(t) =

ω2
p
γp


1 − e−γpt


u (t) and εr(ω) = ε∞ −

ω2
p

ω2−jωγp
. The constant ε∞ accounts for the effect of the charged material at high

frequencies. Asω goes to infinity, the relative permittivity reduces to ε∞. The notation u(t) stands for the unit step function.
Here, ω2

p =
NQ 2

Mε0
. In the Drude model, M denotes the mass of the charge, Q is the amount of charge, and N represents

the number of dipoles per unit volume. The notations j and γp in the constitutive equation χ(ω) denote respectively the
imaginary unit and the damping coefficient.
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Table 1
Comparison of the equations used in UPML and CPML.

– UPML CPML

Time-harmonic Maxwell’s equations: ∇ × H = jωεS E = jωε · E ∇s × H = jωεE
∇ × E = −jωµS H = −jωµ · H ∇s × E = −jωεH

Frequency domain: jωDx =
1
sy
( ∂Hz
∂y −

∂Hy
∂z ) jωDx =

1
sy
∂Hz
∂y −

1
sz
∂Hy
∂z

jωDy =
1
sz
( ∂Hx
∂z −

∂Hz
∂x ) jωDy =

1
sz
∂Hx
∂z −

1
sx
∂Hz
∂x

jωDz =
1
sx
(
∂Hy
∂x −

∂Hx
∂y ) jωDz =

1
sx
∂Hy
∂x −

1
sy
∂Hx
∂y

Parameters: Si = κi +
σi

0+jωε0
Si = κi +

σi
ai+jωε0

κi = 1 (i = x, y, z) (i = x, y, z)

For a medium whose magnetic permeability is frequency independent, the Ampère’s and Faraday’s laws can be
respectively represented in time domain for the electric field variable E and the magnetic field variable H given below

∂

∂t
(ε(x, t) ∗ E(x, t)) = ∇ × H − J

d
, (1)

µ
∂H
∂t

= −∇ × E. (2)

In Eq. (2), µ is identical to µ0µr , where µ0 and µr denote the free-space magnetic permeability and the relative magnetic
permeability, respectively. The polarization current J

d
shown in (1) varieswith the dispersive opticalmedium. For simplicity,

both of the volumeelectric andmagnetic current densities are assumed to be zero under a source-free condition. The solution
of the resulting differential system is sought subject to the Gauss’s law, or ∇ · B = ∇ · D = 0. The convolutional operator
‘‘∗’’ in Eq. (1) is defined as f (t) ∗ g(t) =

 t
0 f (t − τ)g(τ ) dτ for a set of two arbitrary functions f and g .

The vector equation used for modeling the polarization current is given below for the currently investigated Drude
dispersive medium

γp
∂ J

d

∂t
+
∂2J

d

∂t2
= ε0ω

2
p
∂E
∂t
. (3)

In the above, ωp (≡ 2π fp) is the Drude pole frequency. The inverse of the pole relaxation time is denoted as γp (≡ 20 GHz).
In the literature, three-dimensional Maxwell’s equations have been numerically solved in other types of dispersive media,
such as in Debye medium [14–18] and in Lorentz medium [15–18].

When simulating wave propagation, an open domain needs to be truncated so as to make the computation possible.
To reduce the amount of unphysical wave reflection from a truncated boundary, a convolutional perfectly matched layer
(CPML) of finite width is attached to the truncated domain to absorb the reflected wave. The TM-modeMaxwell’s equations
in this absorbing layer are as follows in time domain [19]

∂Ex
∂t

=
1
ε0εr


1
ky

∂Hz

∂y
−

1
kz

∂Hy

∂z
− J

d,x
+ ψEx,y − ψEx,z


,

∂Ey
∂t

=
1
ε0εr


1
kz

∂Hx

∂z
−

1
kx

∂Hz

∂x
− J

d,y
+ ψEy,z − ψEy,x


,

∂Ez
∂t

=
1
ε0εr


1
kx

∂Hy

∂x
−

1
ky

∂Hx

∂y
− J

d,z
+ ψEz,x − ψEz,y


,

∂Hx

∂t
= −

1
µ0µr


1
ky

∂Ez
∂y

−
1
kz

∂Ey
∂z

+ ψHx,y − ψHx,z


,

∂Hy

∂t
= −

1
µ0µr


1
kz

∂Ex
∂z

−
1
kx

∂Ez
∂x

+ ψHy,z − ψHy,x


,

∂Hz

∂t
= −

1
µ0µr


1
kx

∂Ey
∂x

−
1
ky

∂Ex
∂y

+ ψHz,x − ψHz,y


. (4)

In the above, ki (i = x, y, z)denotes thewavenumber along the i-direction. Thenotationψw,v is defined as ζw(t)∗∂Hv(t)/∂w,
where ζw(t) ∗ ∂Hv(t)/∂w or ζw(t) ∗ ∂Ev(t)/∂w (w = x, y, z; v = x, y, z) stands for the convolutional term. The TM-mode
Maxwell’s equations in CPML as well as in UPML are summarized in Table 1 for completeness.

To reduce the computational time of calculating the absorption terms ψn
Ex,y , ψ

n
Ex,z ψ

n
Ey,x , ψ

n
Ey,z ψ

n
Ez,x , ψ

n
Ez,y , ψ

n+ 1
2

Hx,y
ψ

n+ 1
2

Hx,z

ψ
n+ 1

2
Hy,x

ψ
n+ 1

2
Hy,z

ψ
n+ 1

2
Hz,x

and ψ
n+ 1

2
Hz,y

, one can approximate them by ψn
Ex,y = by · ψn−1

Ex,y + cy ·
∂Hn

z
∂y , ψn

Ex,z = bz · ψn−1
Ex,z + cz ·

∂Hn
y

∂z ,
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ψn
Ey,x = bx · ψn−1

Ey,x + cx ·
∂Hn

z
∂x , ψn

Ey,z = bz · ψn−1
Ey,z + cz ·

∂Hn
x

∂z , ψn
Ez,x = bx · ψn−1

Ez,x + cx ·
∂Hn

y
∂x , ψn

Ez,y = by · ψn−1
Ez,y + cy ·

∂Hn
x

∂y ,

ψ
n+ 1

2
Hx,y

= by ·ψ
n− 1

2
Hx,y

+cy ·
∂E

n+ 1
2

z
∂y ,ψ

n+ 1
2

Hx,z
= bz ·ψ

n− 1
2

Hx,z
+cz ·

∂E
n+ 1

2
y
∂z ,ψ

n+ 1
2

Hy,x
= bx ·ψ

n− 1
2

Hy,x
+cx ·

∂E
n+ 1

2
z
∂x ,ψ

n+ 1
2

Hy,z
= bz ·ψ

n− 1
2

Hy,z
+cz ·

∂E
n+ 1

2
x
∂z ,

ψ
n+ 1

2
Hz,x

= bx · ψ
n− 1

2
Hz,x

+ cx ·
∂E

n+ 1
2

y
∂x , ψ

n+ 1
2

Hz,y
= by · ψ

n− 1
2

Hz,y
+ cy ·

∂E
n+ 1

2
x
∂y . The coefficients bw and cw are given below

bw = e

−


σw
ε0kw

+
aw
ε0


1t

;

cw =
σw

σwkw + k2waw


e

−


σw
ε0kw

+
aw
ε0


1t

− 1


; w = x, y, z. (5)

The subscriptw denotes x, y or z and σw = σmax
 d−w

d

m
, aw = amax

 d−w
d

ma , kw = 1 + (kmax − 1) ·
 d−w

d

m
.

3. Solution algorithm

The equations shown in (4) consist of the ideal Maxwell’s equations, polarization current term J
d
, and the absorption

term added only to the convolutional perfectlymatched layer. The quality of simulatingwave propagation inDrudemedium,
characterized by the constitutive equation for the relative electric permittivity εr , depends partly on the scheme employed
to solve the Maxwell’s equations in free space. This chosen constitutive equation is also essential since it determines the
simulation quality on the polarization current. In addition, the convolutional terms shown in the CPML equations should
be able to absorb the possibly reflected waves from the truncated boundary. The entire set of equations in (4) is therefore
decomposed into the ideal Maxwell’s equations, the constitutive equation for modeling the terms related to the Drude
medium, the polarization current for the optical medium, and the prescribed wave absorption coefficient in CPML. It is
therefore legitimate for us to solve them separately using their respective suitable numerical methods.

Besides the numerical methods employed to calculate the absorption terms and the polarization current, the solution
quality predicted from thewave equations in Drudemediumdepends highly on the scheme, detailed in Section 4, developed
for the approximation of Maxwell’s equations in vacuum

∂Ex
∂t

=
1
ε0εr


1
ky

∂Hz

∂y
−

1
kz

∂Hy

∂z


,

∂Ey
∂t

=
1
ε0εr


1
kz

∂Hx

∂z
−

1
kx

∂Hz

∂x


,

∂Ez
∂t

=
1
ε0εr


1
kx

∂Hy

∂x
−

1
ky

∂Hx

∂y


,

∂Hx

∂t
= −

1
µ0µr


1
ky

∂Ez
∂y

−
1
kz

∂Ey
∂z


,

∂Hy

∂t
= −

1
µ0µr


1
kz

∂Ex
∂z

−
1
kx

∂Ez
∂x


,

∂Hz

∂t
= −

1
µ0µr


1
kx

∂Ey
∂x

−
1
ky

∂Ex
∂y


. (6)

The necessity of applying a symplectic temporal discretization scheme is described in Section 4 so as to preserve the
symplectic structure existing in the above Hamiltonian differential system. One needs also to optimize the numerical
dispersion relation equation described in Section 5 to correctly approximate the first-order spatial derivative terms. In the
current EM wave simulation, another objective of this study is to rigorously determine the users’ prescribed values of 1t
and 1x in the sense that numerical dispersion relation equations for the Ampère’s and Faraday’s equations are satisfied at
each nodal point in the physical domain.

4. Numerical methods for ideal Maxwell’s equations

Maxwell’s equations in the ideal medium can be represented in the following curl form for the field variables E =
Ex, Ey, Ez

T and H =

Hx,Hy,Hz

T
∂H
∂t

= −
1
µ

∇ × E, (7)

∂E
∂t

=
1
ε

∇ × H. (8)
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The above differential system of Maxwell’s equations defined in vacuum has been known as one of the most important
Hamiltonian equations and has many mathematically intriguing properties. Inclusion of these distinguished properties in
the scheme development plays a key role of determining the quality of the predicted finite difference solution in time
domain.

Eqs. (7)–(8) constitute a bi-Hamiltonian differential system. One of the infinite-dimensional Hamiltonian system of Eqs.
(1)–(2) is written as δH1

δH =
1
ε
∇ × H and δH1

δE =
1
µ
∇ × E. The helicity Hamiltonian H1 is given below [20]

H1 =
1
2


1
ε
H · ∇ × H +

1
µ
E · ∇ × E dΩ. (9)

The other Hamiltonian system of Maxwell’s equations

∂H
∂t ,

∂E
∂t

T
= D2


δH2
δH ,

δH2
δE

T
, where D2 is the skew-adjoint matrix 0 −

1
εµ

∇×

1
εµ

∇× 0

, involves the quadratic Hamiltonian (or energy density) given below [21]

H2 =
1
2


µH · H + εE · E dΩ. (10)

4.1. Discrete divergence-free formulation of Maxwell’s equations

Three Faraday’s equations, three Ampère’s equations, and two Gauss’s equations constitute a complete system of the
three-dimensional Maxwell’s equations. In this system of eight differential equations, we need to neglect any two of the
eight equations so as to uniquely compute a total number of six solutions for E and H . Gauss’s law is normally not taken
into consideration since the divergence-free equations for H and E can be derived analytically from the Faraday’s law and
Ampère’s law, respectively, within the continuous context.

Calculation of the EM wave solution solely from the Faraday’s and Ampère’s equations may cause the magnetic and
electric field equations to no longer satisfy the two divergence free conditions. Provided that the predicted values of ∇ · H
and ∇ · E are not identical to zero any longer, the resulting two predicted incorrect forces that are in parallel with the EM
field [22] can in turn produce misleading results. One standard way of circumventing this simulation problem is to carry
out calculation in the currently chosen staggered grids. The other way of overcoming the computational difficulty resulting
from the omission of Gauss’s law while solving the Maxwell’s equations is to force the magnetic and electric divergences
towards zero through, for example, the use of two properly introduced gradient terms [23–25].

4.2. Explicit symplectic partitioned Runge–Kutta temporal scheme

Since Faraday’s and Ampère’s equations shown in (7)–(8) constitute a Hamiltonian differential system, we need to
numerically preserve the symplectic structure and conserve the total energy. Either an implicit or an explicit symplectic
method can be adopted to integrate the currently investigated infinite dimensional Hamiltonian system of canonical
equations. In addition to preserving the existing symplectic structure, we also aim to develop a very accurate spatial scheme
by forcing the numerical dispersion relation equation for theMaxwell’s equations to be closer to the exact dispersion relation
equation. Inwavenumber space, we therefore need to derive the numerical angular frequency in terms of thewavenumbers.
Sanz-Serna [26] demonstrated that it is impossible to apply any implicit symplectic Runge–Kutta scheme toderive an explicit
formof the numerical dispersion relation equation. The explicit-type symplectic Runge–Kutta scheme is therefore employed
in this study so that the discrepancy between the exact and numerical phase velocities can be minimized when solving the
separable Hamiltonian system of Maxwell’s equations.

The second-order accurate explicit symplectic partitioned Runge–Kutta scheme presented in [27] is adopted here to
approximate the time derivative terms

Hn+ 1
2 = Hn

−
dt
2µ

∇ × En, (11)

En+1
= En

+
dt
ε

∇ × Hn+ 1
2 , (12)

Hn+1
= Hn+ 1

2 −
dt
2µ

∇ × En+1. (13)

When constructing a numerical scheme for the long time computation of Maxwell’s equations in lossless medium
without sources, one should conserve energy to retain the physical features. To keep the density of the electromagnetic
energy of wave to be constant, one can apply different ideas to achieve the goal using either the splitting FDTD methods
proposed in [28] or applying the energy-conserved method of Gao and Liang [29].
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4.3. Approximation of the spatial derivative terms

When applying the finite difference method to solve the hyperbolic Maxwell’s equations in time domain, we need to
reduce numerical errors of the dispersion and anisotropy types [30]. The spatial derivative terms shown in (11)–(13) will be
approximated underlying the modified equation analysis and the dispersion analysis.

According to Eq. (13), at t = n1t one can get Hn
= Hn− 1

2 −
dt
2µ∇ × En. This equation for Hn is then substituted into (11)

to yield Hn+ 1
2 = Hn− 1

2 −
dt
2µ∇ × En. From Eq. (12) the equation En+ 1

2 = En− 1
2 +

dt
ε
∇ × Hn is derived. The semi-discretized

Ampere’s vector equation has the following three component equations

E
n+ 1

2
z = E

n− 1
2

z +
1t
ε


∂Hn

y

∂x
−
∂Hn

x

∂y


, (14a)

E
n+ 1

2
x = E

n− 1
2

x +
1t
ε


∂Hn

z

∂y
−
∂Hn

y

∂z


, (14b)

E
n+ 1

2
y = E

n− 1
2

y +
1t
ε


∂Hn

x

∂z
−
∂Hn

z

∂x


. (14c)

The dispersive error will be minimized in this study by minimizing the difference between the exact and optimizing
numerical dispersion relations. Towards this perspective, we resort to the classical finite difference equations rather than
to the implicit type of the compact difference schemes. In staggered grids, the first-order derivative terms

∂Hn
y

∂x and ∂Hn
x

∂y at
each interior node (i, j, k) are approximated as

∂Hy

∂x

n
i,j,k+ 1

2

=
1
h


a1

Hy|

n
i+ 5

2 ,j,k+
1
2

− Hy|
n
i− 5

2 ,j,k+
1
2


+ a2


Hy|

n
i+ 3

2 ,j,k+
1
2

− Hy|
n
i− 3

2 ,j,k+
1
2


+ a3


Hy|

n
i+ 1

2 ,j,k+
1
2

− Hy|
n
i− 1

2 ,j,k+
1
2


, (15a)

∂Hx

∂y

n
i,j,k+ 1

2

=
1
h


a1

Hx|

n
i,j+ 5

2 ,k+
1
2

− Hx|
n
i,j− 5

2 ,k+
1
2


+ a2


Hx|

n
i,j+ 3

2 ,k+
1
2

− Hy|
n
i,j− 3

2 ,k+
1
2


+ a3


Hx|

n
i,j+ 1

2 ,k+
1
2

− Hx|
n
i,j− 1

2 ,k+
1
2


. (15b)

After substituting the Eqs. (15a), (15b) into (14a) and performing Taylor series expansion with respect to Ez at the node
(i, j, k +

1
2 ), we can get

∂Ez
∂t

n
i,j,k+ 1

2

+
dt2

24
∂3Ez
∂t3

n
i,j,k+ 1

2

+
dt4

1920
∂5Ez
∂t5

n
i,j,k+ 1

2

+
dt6

322560
∂7Ez
∂t7

n
i,j,k+ 1

2

+ · · ·

=
1
ε


5a1 + 3a2 + a3


∂Hy

∂x

n
i,j,k+ 1

2

+


125
24

a1 +
9
8
a2 +

1
24

a3


dx2

∂3Hy

∂x3

n
i,j,k+ 1

2

+


625
384

a1 +
81
640

a2 +
1

1920
a3


dx4

∂5Hy

∂x5

n
i,j,k+ 1

2

+


15625
64512

a1 +
243

35840
a2 +

1
322560

a3


dx6

∂7Hy

∂x7

n
i,j,k+ 1

2

+ · · ·


−


5a1 + 3a2 + a3


∂Hy

∂x

n
i,j,k+ 1

2

+


125
24

a1 +
9
8
a2 +

1
24

a3


dx2

∂3Hy

∂x3

n
i,j,k+ 1

2

+


625
384

a1 +
81
640

a2 +
1

1920
a3


dx4

∂5Hy

∂x5

n
i,j,k+ 1

2

+


15625
64512

a1 +
243

35840
a2 +

1
322560

a3


dx6

∂7Hy

∂x7

n
i,j,k+ 1

2

+ · · ·


. (16)

The weighting coefficients a1, a2 and a3 shown above will be determined through the modified equation analysis and the
dispersion analysis described below.

Higher order temporal terms ∂3Ez
∂t3

, ∂
5Ez
∂t5

, ∂
7Ez
∂t7

. . . are rewritten to their equivalent spatial derivative terms through

the Ampère’s equations ∂Ez
∂t =

1
ε


∂Hy
∂x −

∂Hx
∂y


, ∂Ex
∂t =

1
ε


∂Hz
∂y −

∂Hy
∂z


, and ∂Ey

∂t =
1
ε


∂Hx
∂z −

∂Hz
∂x


, thereby yielding the

corresponding equations for ∂ iEj
∂t i

(i = 3 and 5, j = x, y, z). By substituting the temporal derivative terms ∂3Ez
∂t3

and ∂5Ez
∂t5
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into Eq. (16) and then comparing the resulting equation with the equation ∂Ez
∂t =

1
ε


∂Hy
∂x −

∂Hx
∂y


, we can get two algebraic

equations for a1, a2 and a3, which are

5a1 + 3a2 + a3 = 1, (17)

and

125
24

a1 +
9
8
a2 +

1
24

a3 −
Cr2

24
(5a1 + 3a2 + a3) = 0. (18)

In the above, the Courant number is defined by Cr =
c1t
h where h = 1x = 1y = 1z denotes the uniform grid spacing.

The algebraic equations can be similarly derived from (14b) and (14c), respectively. Three introducedweighting coefficients
need to be derived by virtue of the dispersion analysis. Our goal is to derive the numerical dispersion relation equation and
take it as the third algebraic equation for an unique determination of ai (i = 1, 2, 3).

By applying the curl operator on both hand sides of the Faraday’s equations and then substituting the resulting equations
into the Ampère’s equations, the second-orderwave equation for E as 1

c2
∂2E
∂t2

=
∂2E
∂x2

+
∂2E
∂y2

+
∂2E
∂z2

can be derived. By substituting

the plane wave solution E = E0 exp

I

kxi1x + kyj1y + kzk1z − ωn1t


into the equation for ∂E

∂t |
n
i,j,k+ 1

2
, one can get

∂E
∂t = −I

2 sin

ω1t
2


1t E,

∂E
∂x

= 2I
a1 sin

 5
2kx1x


+ a2 sin

 3
2kx1x


+ a3 sin

 1
2kx1x


1x

E,

∂E
∂y

= 2I
a1 sin

 5
2ky1y


+ a2 sin

 3
2ky1y


+ a3 sin

 1
2ky1y


1y

E,

∂E
∂z

= 2I
a1 sin

 5
2kz1z


+ a2 sin

 3
2kz1z


+ a3 sin

 1
2kz1z


1z

E,

∂2E
∂t2

= 4


2 sin


ω1t
2


1t

2

E,

∂2E
∂x2

= −4


a1 sin

 5
2kx1x


+ a2 sin

 3
2kx1x


+ a3 sin

 1
2kx1x


1x

2

E,

∂2E
∂y2

= −4


a1 sin

 5
2ky1y


+ a2 sin

 3
2ky1y


+ a3 sin

 1
2ky1y


1y

2

E,

∂2E
∂z2

= −4


a1 sin

5
2 kz1z


+a2 sin


3
2 kz1z


+a3 sin


1
2 kz1z


1z

2

E. The numerical dispersion relation equation can be derived as follows

by substituting all the above equations into the second-order wave equation for E

1
c2
ω2

4


sin(ω1t/2)

ω1t

2

= k2x


5
2
a1

sin
 5
2kx1x


5
2kx1x

+
3
2
a2

sin
 3
2kx1x


3
2kx1x

+
1
2
a3

sin
 1
2kx1x


1
2kx1x

2

+ k2y


5
2
a1

sin
 5
2ky1y


5
2ky1y

+
3
2
a2

sin
 3
2ky1y


3
2ky1y

+
1
2
a3

sin
 1
2ky1y


1
2ky1y

2

+ k2z


5
2
a1

sin
 5
2kz1z


5
2kz1z

+
3
2
a2

sin
 3
2kz1z


3
2kz1z

+
1
2
a3

sin
 1
2kz1z


1
2kz1z

2

. (19)

The exact dispersion relation equation can be similarly derived by substituting the planewave solution into the second-order
wave equation ∂2E

∂t2
= c2∇2E, thereby yielding


ω
c

2
= k2x + k2y + k2z . The wavenumber vector is denoted as k =


kx, ky, kz


.

To get an accurate propagation characteristics of the Maxwell’s equations, it is essential to reduce numerical error of the
dispersion type as much as possible. The reason is that this type of errors can cause the numerical phase velocity to become
the function of frequency and propagation angle. The strategy we employ to derive the last required algebraic equation is to
make the derived numerical phase velocity to agree perfectly with its exact counterpart. To this end, we can match either
the numerical and exact phase velocity υp (≡

ωnum
k ) or group velocity υg (≡

∂ωnum
∂k ). In this study the difference between the

exact phase velocity and the derived numerical phase velocity is minimized. Following this line of thought, we define the
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error function as

|
ωnum

k | − |
ωexact

k |

2
and this error is then minimized in the following weak sense within the integral range

of −mpπ ≤ hk ≤ mpπ

Ep =

 mpπ

−mpπ

ωnum

k

− ωexact

k
(≡ c)

2 Wp d(kx1x) d(ky1y) d(kz1z). (20)

In the above, kx1x, ky1y and kz1z denote the scaled (or modified) wavenumbers along x, y and z directions, respectively.
The weighting function Wp introduced to the above minimization procedure enables us to integrate the above equation
exactly. The parametermp whose value lies between 0 and 1

2 is included for the purpose of reducing aliasing error.
The value of Ep is minimized by enforcing the limiting condition given by ∂Ep

∂a3
= 0. Through this minimization procedure,

the third algebraic equation for a1, a2 and a3 is derived as follows

+ 0.013462 a23a1 + 0.024686 a32 − 0.003317 a2 − 0.004562 a1 + 0.075261 a1a2a3
+ 0.105823 a1a22 + 0.078272 a31 + 0.001195 a33 + 0.155929 a21a2 + 0.054814 a21a3

+ 0.026761 a3a22 + 0.009749 a23a2 − 0.001222 a3 = 0. (21)

Eq. (21) derived from the aboveprocedure of optimizing the dispersive accuracy is used togetherwith the other two algebraic
equations derived previously from the modified equation analysis of second kind. Through a series of calculations, the best
result is obtained at mp =

1
2 . The resulting three introduced coefficients in Eq. (13) are obtained as a1 = −0.0002985,

a2 = −0.0385073 and a3 = 1.1170147. By virtue of the minimization procedure implemented in wavenumber space and
the modified equation analysis of second kind for ∂Hx

∂x , the proposed space centered scheme is shown to have the spatial

accuracy order of four thanks to the derived modified equation ∂Hx
∂x =

∂Hx
∂x |exact − 0.00489575h4 ∂5Hx

∂x5
+ O(h6)+ · · · .

5. Fundamental analyses of the scheme

Analysis of the proposed symplecticity-preserving explicit schemeendowedwith the optimizednumerical phase velocity
for the Maxwell’s equations will be conducted through the Von Neumann stability analysis detailed in Section 5.1, the
anisotropy analysis given in Section 5.2, and the dispersion analysis in Section 5.3. Both stability and phase error in FDTD
scheme for Maxwell’s equations in dispersive dielectrics have been analyzed in [31].

5.1. Von Neumann stability analysis

The stability condition imposed on the proposed explicit scheme is derived by scaling the field variables according to
E =


µ

ε
E∗ andH =


ε
µ
H∗. We can then rewrite Eqs. (7)–(8) for V = H∗

+ IE∗, where I = (−1)1/2, in the normalized space

as 1
c
∂V
∂t = I∇ × V . The superscript ‘‘∗’’ has been omitted for the sake of simplicity. Note that c =

1
√
εµ

and this equation
holds at µ = ε = 1.

Following thework detailed in [32], the scaled equation can be rewritten to the equivalent eigenvalue equations ∂V
∂t = λV

and Ic∇ × V = λV . The term ∂V
∂t is approximated as V n+ 1

2 − V n− 1
2 = λ1tV n using the symplectic PRK temporal scheme

described in Section 3.1. Define the amplification factor as G =

 Vn+ 1
2

Vn

, one can easily derive G2
− (λ1t)G − 1 = 0,

from which we can get G1,2 =
λ1t
2 ±


1 +


λ1t
2

2 1
2
. The proposed explicit scheme is stable provided that |Im (λ)| ≤

2
1t .

Substitution of the equation ∂V
∂t = λV into the equation Ic∇ × V = λV yields 1

c
∂V
∂t = I∇ × V or ν


∂Vz
∂y −

∂Vy
∂z


= λVx,

ν

∂Vx
∂z −

∂Vz
∂x


= λVy, and ν


∂Vy
∂x −

∂Vx
∂y


= λVz . These equations can be recast into the matrix equation F V = 0. One

can obtain the unique solution V from this matrix equation provided that the determinant of F is equal to zero. Calculation

of the solution from the quadratic polynomial equation det

F


= 0 leads to λ2 = −4c2


F2x
1x2

+
F2y
1y2


. To compute the

solution of λ for all the possible wavenumbers kx, ky and kz , we demand Re (λ) = 0 to obtain the stability condition

1t ≤
1
c


max(F2x )
1x2

+
max(F2y )
1y2

+
max(F2z )
1z2

−
1
2

. By substituting the previously derived coefficients a1, a2 and a3 into this

inequality equation, the stability condition, 1t ≤ 0.673844 h
c , for the conditionally stable scheme proposed to solve the

three dimensionalMaxwell’s equations is derived. For the sake of completeness,wehave also derived the stability conditions
for the one- and two-dimensional Maxwell’s equations, which are1t ≤ 1.167132 h

c and1t ≤ 0.825287 h
c , respectively.
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Fig. 1. (a) Schematic of a wave propagating along a direction defined by the zenith angle θ and the azimuthal angle φ. Note that dΨ (= sin θ dθdφ) denotes
the differential solid angle for a wave along the direction r; (b) Schematic of the group velocity angle γ at kz = 0.

5.2. Anisotropy analysis

When simulating a multi-dimensional wave equation, it is essential to know how the predicted wave with its own
numerical group/phase velocity traveling across themesh depends on themagnitude and the direction of numerical angular
frequency. To answer this question, it is customary to express the numerical/exact phase or group velocity vectors and the
wavenumber vector in polar coordinates. In the present three dimensional analysis, two anglesφ and θ shown schematically
in Fig. 1(a) are used to express the wavenumber vector k = (kx, ky, kz) = |k|(sin θ cosφ, sin θ sinφ, cos θ). In this
spherical coordinate system, θ and φ are denoted respectively as the zenith and azimuthal angles. Given the definitions of
these angles, the derived numerical dispersion relation equation can then be rewritten in terms of the polar coordinates as
follows

sin2(ωnum1t/2) = Cr2x


a1 sin


5
2
k sin θ cosφ1x


+ a2 sin


3
2
k sin θ cosφ1x


+ a3 sin


1
2
k sin θ cosφ1x

2

+ Cr2y


a1 sin


5
2
k sin θ sinφ1y


+ a2 sin


3
2
k sin θ sinφ1y


+ a3 sin


1
2
k sin θ sinφ1y

2

+ Cr2z


a1 sin


5
2
k cos θ1z


+ a2 sin


3
2
k cos θ1z


+ a3 sin


1
2
k cos θ1z

2

. (22)

According to the above equation, we know that the numerical angular frequency ωnum changes with the angle of
wavenumber vector and the Courant numbers Crx (≡ c1t

1x ), Cry (≡
c1t
1y ) and Crz (≡ c1t

1z ).
In the anisotropy analysis, we set θ = π/2 and then substitute it into the dispersion relation equation that accounts

for the numerical angular frequency. The resulting equation turns out to be identical to the two-dimensional numerical
dispersion relation equation derived in (x, y) coordinates. The exact and numerical angular frequencies are plotted with
respect to kx and ky in Figs. 2(a) and 2(b), respectively, within the two-dimensional context for simplicity. In the plot
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Fig. 2. The exact and the derived numerical angular frequencies in (a) and (b), respectively, are plotted with respect to kx and ky in k = (kx, ky) plane at
1t = 0.01, 1x = 1y = 0.1; (c) ωnum is plotted with respect to kx for ky = 0; (d) ωnum is plotted with respect to ky for kx = 0; (e) ωnum is plotted with
respect to |k|.

depicting the dispersion relation (Fig. 2(c)–(e)), the numerical dispersion surface ωnum is seen to be equal to that of the
exact dispersion near the origin of k = (kx, ky) = |k|(cosφ, sinφ), where φ = tan−1


ky
kx


. As the wavenumber is away

from the origin of the (kx, ky) plane, the discrepancy between the numerical and exact angular frequencies illustrates
the nonphysical parasitic waves in the numerical solutions [33]. For the sake of comparison, in Fig. 3 the numerical
angular frequencies of the proposed scheme and the other three referenced schemes are plotted with respect to kx and
ky. The error contours are also plotted in Fig. 4 for making a performance assessment on the current and the reference
schemes.

We also derive the numerical group velocity optimized scheme from (22). The wave solution predicted from the
proposed scheme with its numerical group velocity traveling across the grid system depends not only on the magnitude
of the wavenumber vector k, or |k|, but also on the direction of the wavenumber vector k, or tan−1


ky
kx


. Under the

circumstances, the simulation error related to the derived grid-anisotropy [35] warrants a specific attention. Otherwise,
the predicted wave may propagate at an erroneous speed and along a wrong direction. To gain a better understanding
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Fig. 3. Angular frequencies are plotted with respect to the wave numbers kx and ky for different schemes. (a) Exact; (b) optimized scheme; (c) box
scheme [34]; (d) symplectic scheme [34]; (e) Yee’s scheme [2].

of the anisotropy behavior, we consider, for example, a plane wave propagating along the direction with the unit vector
(sin θ ′ cosφ′, sin θ ′ sinφ′, cos θ ′) in the following error analysis.

Take a two-dimensional case as an example, the angle of group velocity vector can be expressed by the angle γ
schematically shown in Fig. 1(b). The numerical group velocity can then be expressed by υg


≡

∂ωnum
∂k


= |υg |(cos γ , sin γ ),

where γ = tan−1

 
υg


y

υg


x


. The exact and numerical group velocity angles are then plottedwith respect to thewavenumber

angle. One can clearly find from the γ − φ plot in Fig. 5 that in the small modified wavenumber regime the predicted angle
of group velocity agrees very well with the angle of exact wavenumber vector, which is π

4 shown in Fig. 3(a). When the
value of kh increases, the resulting discrepancy between the exact, which is γ

φ
= 1, and the predicted ratios of γ

φ
increases

accordingly. This sheds light on the occurrence of dispersive error in higher wavenumber regime. The exact and numerical
group velocity magnitudes are also plotted versus the wavenumber angle in Fig. 6. The contour values predicted at different
Courant numbers for ω = 6 are plotted as well in Fig. 7. For the sake of completeness, the contour values of the angular
frequencies forω = 6, 12 and 16 are plotted in Fig. 8 for the proposed numerical phase velocity optimized scheme. One can
see from this figure that the predicted and exact contours are essentially identical in case the magnitude of ω is less than
12. Based on the results tabulated in Table 2, we are confirmed to improve the solution accuracy using the proposed phase
accurate scheme.
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Fig. 4. The contour plots of (ωnum−ωexcat )
ωexcat

× 100% with respect to kx and ky for the present phase velocity optimized scheme and the reference schemes.
(a) Present; (b) box scheme [34]; (c) symplectic scheme [34]; (d) Yee’s scheme [2].

Table 2
The derived numerical dispersion relation equations and their spatial accuracy orders for the proposed and other three schemes.
Schemes 1, 2, 3, 4 denote respectively the current, box [34], symplectic [34], and Yee [2] schemes. Note that the exact dispersion
relation equation is ω2

c2
= k2x + k2y .

Scheme Numerical dispersion relation equation Spatial accuracy order

1 ω2

4c2


sin(ω1t/2)

ω1t

2
= k2x


5
2 a1

sin( 52 kx1x)
5
2 kx1x

+
3
2 a2

sin( 32 kx1x)
3
2 kx1x

+
1
2 a3

sin( 12 kx1x)
1
2 kx1x

2

4

+k2y


5
2 a1

sin( 52 ky1y)
5
2 ky1y

+
3
2 a2

sin( 32 ky1y)
3
2 ky1y

+
1
2 a3

sin( 12 ky1y)
1
2 ky1y

2

+k2z


5
2 a1

sin( 52 kz1z)
5
2 kz1z

+
3
2 a2

sin( 32 kz1z)
3
2 kz1z

+
1
2 a3

sin( 12 kz1z)
1
2 kz1z

2

2 tan2( 12 ω1t)
c21t2

=
tan2( 12 kx1x)

1x2
+

tan2( 12 ky1y)
1y2

2

3 4 tan2( 12 ω1t)
c21t2

=
sin2(kx1x)

1x2
+

sin2(ky1y)
1y2

2

4 sin2( 12 ω1t)
c21t2

=
sin2( 12 kx1x)

1x2
+

sin2( 12 ky1y)
1y2

2

In Table 3, the first and second leading error terms in themodified equation, ∂Ez
∂t =

1
ε


∂Hy
∂x −

∂Hx
∂y


+

A
ε

∂5Hy
∂x5

dx4+ B
ε

∂7Hy
∂x7dx6

+

· · · are tabulated for the proposed and referenced schemes are summarized at different Courant numbers. One can confirm
for one more time that the formal accuracy has been increased using the currently proposed scheme.

For taking into account all the possible EM wave propagation directions, the error between the numerical and exact phase
velocities, defined as 1 −

|up(ω,θ
′,φ′)|

c0=(µε)1/2
, is worthy to be calculated in the three dimensional context. Towards this perspective,

this error is calculated in the spherical coordinate system by integrating the phase velocity error over a differential area
r2 sin θ ′dθ ′dφ′. Note that the wave is defined within 0 ≤ θ ′

≤ 2π and 0 ≤ φ′
≤ π and is in association with a differential

solid angle sin θ ′dθ ′dφ′ shown schematically in Fig. 1(a). The resulting error per the spherical area 4πr2 can be computed
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Fig. 5. The exact and numerical group velocity angles γ are plotted with respect to the wavenumber angle φ at different modified wavenumbers.
(a) Optimized scheme; (b) comparison of different schemes at kh =

π
4 ; (c) comparison of different schemes at kh =

π
2 ; (d) comparison of different

schemes at kh =
3π
4 .

Table 3
The coefficients A and B for the first and second leading error terms shown, respectively, in the modified equation and their
values at different Cr numbers are tabulated. (a) The expressions of A and B for different schemes; (b) the values of A and B
at different values of Cr obtained for different schemes.

(a)

A B

Present 625
384 a1 +

81
640 a2 +

1
1920 a3 −

Cr4
576 −

Cr4
1920

15625
64512 a1 +

243
35840 a2 +

1
322560 a3

−
Cr4
24 (

625
384 a1 +

81
640 a2 +

1
1920 a3)−

Cr6
40320

Box 1
6 h

2(Cr2 − 1) 1
6 h

2Cr2

Symplectic 1
6 h

2(Cr2 + 2) 1
6 h

2Cr2

Yee 1
24 h

2(Cr2 + 1) 1
1920 h

4(Cr4 + 1)

(b)

Present Box Symplectic Yee

Cr = 0.1 A −0.00075689 −0.165 0.335 0.04208333
B 0.00053188 0.00166667 0.00166667 0.00052089

Cr = 0.2 A −0.00478130 −0.16 0.34 0.04333333
B −0.00032961 0.00666667 0.00666667 0.00052167

Cr = 0.4 A −0.02095548 −0.4 0.36 0.04833333
B −0.00376243 0.0266666 0.02666667 0.00053417

Cr = 0.6 A −0.04819898 −0.085 0.415 0.05666667
B −0.00931450 0.06 0.06 0.00058833
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Fig. 6. The exact and numerical group velocity magnitudes are plotted with respect to the wavenumber angle φ at different modified wavenumbers.
(a) Optimized scheme; (b) comparison of the numerical group velocities for different schemes at kh =

π
4 ; (c) comparison of the numerical group velocities

for different schemes at kh =
π
2 ; (d) comparison of the numerical group velocities for different schemes at kh =

3π
4 .

according to the definition given below

E3D(ω) =
1
4π

 π

0

 2π

0
1 −

|up(ω, θ
′, φ′)|

(µε)1/2
sin θ ′dθ ′dφ′. (23)

The errors plotted accordingly are tabulated in Fig. 9.

5.3. Dispersion analysis

Now, in Fig. 10 we plot the derived coefficients a1, a2 and a3 with respect to the wavenumber angle φ ≡ tan−1


ky
kx


.

The weighting coefficients a1, a2 and a3 obtained at each point in the domain can then be interpolated through the data
tabulated in Table 4 or plotted in Fig. 10. Depending on themagnitude of speed of light, the referenced characteristic speeds
c sin γ and c cos γ , where γ denotes the angle of phase velocity vector, differ in the physical domain on a pointwise basis.
At each spatial location we can then calculate its local Courant numbers Crx and Cry and hence obtain the corresponding set
of the interpolated weighting coefficients from the coefficients a1 to a3, which are plotted in Fig. 11.

Given the definition of k2 = k2x + k2y , the wavenumber components can be expressed as kx = k cosφ and ky = k sinφ.
For the sake of comparison and discussion of the computed results, two extra parameters are defined. The first one, which
is Nλ =

λ
h , denotes the number of points per wavelength λ (= 2π

k ). The other parameter is the CFL number Cr =
c1t
h . The

speed of light c is chosen as the referenced speed and h = 1x = 1y is the uniform grid spacing. Given these definitions,
the numerical phase velocity υp, which is defined as the ratio of the numerical angular frequency and the wavenumber k,
can be derived. We can express eIωnum1t by virtue of Eq. (19) to get eIω1t

= eI1t(ωR+IωI ) = e−ωI1t(cos(ωR1t)+ I sin(ωR1t)).
Define R̂ = e−ωI1t cos(ωR1t) and Î = e−ωI1t sin(ωR1t), the value of tan(ωR1t) =

Î
R̂
and, then, the ratio of the numerical

phase velocity |υp| = |
ωR
k | versus the exact phase velocity c can be calculated from the following equation [36]

υp

c
=
ωR

ck
=

Nλ
2πCr

tan−1


Î

R̂


. (24)
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Fig. 7. The contours of ωnum = 6 are plotted with respect to kx and ky at different Courant numbers for different schemes. (a) Cr = 0.1, 0.2, 0.4, 0.5;
(b) Cr = 0.1; (c) Cr = 0.4; (d) Cr = 0.5.

In the current comparison study, the ratios of the derived numerical phase velocity and the exact phase velocity, which
is υpc , are plotted in Fig. 12 for the Box scheme, symplectic scheme, and Yee’s scheme at different values of Nλ. For the case of
fewer grid points per wavelength, our scheme is clearly seen to have a better phase velocity. Also, the proposed dispersion-
error reducing scheme performs better near the angle φ = 45°. When increasing the value of Nλ, the numerical phase
velocity approaches the exact phase velocity asymptotically. In addition, one can clearly know from Fig. 4 that the present
scheme has a better agreement between its numerical and exact dispersion relation equations.

6. Absorbing boundary condition

Numerical simulation of wave propagation in open domains requires the truncation of the physical domain under
investigation. Otherwise, in many cases it is difficult for us to get an adequate computational resource to carry out
calculations on large sized problems. Implementation of a proper set of artificial boundary conditions on the truncated
boundaries is therefore needed to prevent unphysical wave reflection that may contaminate the predicted solution.

One can directly prescribe a physical boundary condition to suppress the reflected wave [37]. Implementation of this
comparatively accurate boundary condition suffers some problems mentioned in [38]. The other alternative to prevent
wave reflection from the truncated boundary underlies the concept of splitting the domain into the Perfectly Matched
Layer (PML) and the non-PML zones. The PML approach of Berenger [9] can be applied to effectively absorb outgoing waves
from the interior of computational domain without reflecting them back to the interior. A specially tailored absorbing
layer surrounding the finite physical region should have the perfectly matched absorbing property in the sense that any
wave propagating in the domain of interest does not produce any unphysical reflection wave when it is incident upon the
interface separating the PML and non-PML regions. The underlying strategy is to properly define the material parameters in
the absorbing layer so as to render a perfect match on the impedances of the media in the physical region and the boundary
layer. After the pioneering work of the split field PML formulation, the Uniaxial PML (UPML) method of Gedney [39] and
the Convolutional PML (CPML) method of Roden and Gedney [40] have been developed with great success to simulate EM
wave.

Within the framework of PML, to get a spatial damping effect either a wave vector or a position vector is transformed
to a complex-valued vector. One can implement PML, for example, in terms of the complex stretching physical coordinate
axis [10]. Through the mapping from a real position vector to a complex space, one can rewrite the Maxwell’s equations in
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Fig. 8. Plot of the exact and numerical angular frequencies with respect to kx and ky at different angular frequencies for the case investigated at Cr = 0.1.
(a) ω = 6; (b) ω = 12; (c) ω = 16.

Fig. 9. Plot of the values of E3D with respect to the number of cells per wavelength Nλ using the numerical phase velocity optimized scheme and the three
other schemes.

stretched coordinateswhich are the functions of the complex stretching factor detailed in [38]. Three real-valued parameters
σi (i = x, y, z) expressed in stretching factors si = 1 +

σi
Iωε0

along the x, y, z directions need to be tuned for rendering an
optimum performance, where I denotes the imaginary unit. Another novel implementation of CFS-PML [12] is referred
to as the convolutional PML (CPML) [40]. CPML, implemented on the stretched coordinates as well, is featured with the
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Fig. 10. The derived weighting coefficients a1 , a2 and a3 are plotted with respect to the wave propagation angle φ ≡ tan−1(
ky
kx
) at different zenith angles

θ at Cr = (Cr2x + Cr2y + Cr2z )
1/2

= 0.2.

Table 4
The derived coefficients a1 , a2 and a3 shown in (15) for the proposed three dimensional scheme. Note that sin( π2 − φ) = cosφ, cos( π2 − φ) = sinφ,
sin( 3π2 − φ) = − cosφ, cos( 3π2 − φ) = sinφ, sin(π − φ) = sinφ, cos(π − φ) = − cosφ, sin(−φ) = − sinφ, cos(−φ) = cosφ.
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Fig. 11. The derived coefficients a1 , a2 and a3 are plotted with respect to the Courant numbers Cr = (Cr2x + Cr2y + Cr2z )
1/2 using the numerical phase

velocity optimized scheme at θ = φ =
π
4 .

Fig. 12. Comparison of the phase velocity ratios Vp
c versus θ at different values of Nλ . (a) Nλ = 3.1; (b) Nλ = 5; (c) Nλ = 10; (d) Nλ = 20.
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Fig. 13. The EM equations in the domain surrounded by the attached convolutional perfectly matched layer.

Table 5
The predicted L2-error norms obtained at T = 5(s) and the CPU time.

Present Yee [2]
L2-error norm Grid CPU time (s) L2-error norm Grid CPU time (s)

7.0023E−02 51 × 51 0.8580 7.0534E−03 198 × 198 3.2760
4.3059E−03 61 × 61 1.4352 4.3346E−03 254 × 254 6.8640
2.3572E−03 71 × 71 2.2620 2.3627E−03 346 × 346 17.5813

introduction of a recursive convolution and a complex frequency shifted parameter. CPML schematically shown in Fig. 13 has
a number of advantages over the traditional implementation of the UPML. The stretching factor si(i = x, y, z) is expressed
as si = ki +

σi
αi+Iωε0

, where ki ≥ 1 is a real.

7. Verification studies of ideal Maxwell’s equations

The explicit symplectic PRK scheme with the optimized numerical dispersion relation equation developed in staggered
grids will be verified firstly by solving the TM-mode Maxwell’s equations at µ = 1 and ε = 1 in −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1 and −1 ≤ z ≤ 1, In this study the problem amenable to the analytic solution given below will be
solved subject to the initial solenoidal solutions Ez(x, y, 0) = sin(3πx) sin(4πy), Hx(x, y, 0) = −

4
5 cos(3πx) cos(4πy) and

Hy(x, y, 0) = −
3
5 cos(3πx) cos(4πy)

Ez(x, y, t) = sin(3πx − 5π t) sin(4πy),

Hx(x, y, t) = −
4
5
cos(3πx − 5π t) cos(4πy),

Hy(x, y, t) = −
3
5
cos(3πx − 5π t) cos(4πy). (25)

According to the computed errors tabulated in Table 5 and the spatial rate of convergence in Fig. 14, the proposed dual-
preserving scheme in free space for the TM-mode Maxwell’s equations is analytically verified. It is noted that the predicted
numerical spatial rate of convergence is 3.14. The reason leading to the determinated numerical rate of convergence is that
at the end points and the points next to end points we apply the one-sided second-order accurate scheme rather than the
fourth-order accurate scheme applied at interior points.

The predicted and exact energy densities given in (10) are plotted against time in Fig. 15. Note that the Hamiltonian
defined in (9) is trivially equal to zero in any two-dimensional TM-modeMaxwell’s equations. The value of∇ ·H is predicted
to be almost equal to zero in Fig. 16, indicating that the Gauss’s law is satisfied discretely using the explicit symplectic
partitioned Runge–Kutta scheme.

TheMaxwell’s equations amenable to the second set of exact solutions are then solved in−π ≤ x ≤ π ,−π ≤ y ≤ π and
−π ≤ z ≤ π , and the solution ofMaxwell’s equations is sought atµ = 1 and ε = 1. Subject to the initial solenoidal solutions
Ex(x, y, z, 0) = Ey(x, y, z, 0) = Ez(x, y, z, 0) = 0,Hx(x, y, z, 0) = cos(x+y+ z),Hy(x, y, z, 0) =

1
2 (−1+

√
3) cos(x+y+ z)
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Fig. 14. Plot of the errors with respect to grid spacings for showing the predicted numerical rate of convergence.

Fig. 15. Comparison of the computed and exact energy densities with respect to time for the first exact problem using the currently developed scheme.

Fig. 16. Plot of Hamiltonian function and ∇ · H with respect to time. (a) Hamiltonian function; (b) ∇ · H .
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Table 6
The computed L2-error norms and the CPU time at T = 5(s).

L2-error norm CPU time (s)
Present Yee [2] Present Yee [2]

51 × 51 × 51 1.1311E−04 6.9636E−04 7.4880 3.5568
61 × 61 × 61 8.0305E−05 4.8682E−04 14.4144 7.3476
71 × 71 × 71 5.9525E−05 3.5937E−04 23.9305 13.6657
81 × 81 × 81 4.5102E−05 2.7428E−04 38.8598 23.0569

Fig. 17. Comparison of the computed and exact energy densities with respect to time using the currently developed scheme.

and Hz(x, y, z, 0) = −
1
2 (1+

√
3) cos(x+ y+ z), the exact electric and magnetic field solutions to Eqs. (7)–(8) are as follows

Ex(x, y, z, t) = sin(
√
3t) sin(x + y + z),

Ey(x, y, z, t) = −
1
2
(1 +

√
3) sin(

√
3t) sin(x + y + z),

Ez(x, y, z, t) =
1
2
(−1 +

√
3) sin(

√
3t) sin(x + y + z),

Hx(x, y, z, t) = cos(
√
3t) cos(x + y + z),

Hy(x, y, z, t) =
1
2
(−1 +

√
3) cos(

√
3t) cos(x + y + z),

Hz(x, y, z, t) = −
1
2
(1 +

√
3) cos(

√
3t) cos(x + y + z). (26)

According to the computed errors of Yee’s scheme tabulated in Table 6, the predicted and exact energy densities plotted
against time in Fig. 17 and the Hamiltonian plotted in Fig. 18, the proposed dual-preserving scheme in free space for the
Maxwell’s equations is again analytically verified. Besides performing the verification study, the Hamiltonian in (9) and the
energy density given in (10) are calculated as well.

7.1. Mie scattering problem

Two Mie scattering problems are then investigated in a cube with the cross-section area of 760 × 760 nm2 or in
−380 nm ≤ x, y, z ≤ 380 nm using the scheme being numerically verified. The diameter of the dielectric cylinder under
current study is 126.56 nm and it is located at the center of a cube with the volume of 7203 nm3. The value of εr of this
isotropic cylinder in homogeneous air medium is 12.1104. The incident x-polarized plane wave with the amplitude of
0.5 v

m and the angular frequency of 13.263 rad
s propagates along the positive x-direction according to the one-dimensional

Maxwell’s equations ∂Ez
∂t =

1
ε
∇×H , ∂H

∂t = −
1
µ
∇×E. The physical domain has been divided into twodistinct regions, namely,

the total field containing the investigated dielectric cylinder and the scattered field enclosing the three-dimensional total
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Fig. 18. Plot of Hamiltonian function with respect to time.

Fig. 19. Schematic of the 3D Mie scattering problem.

field. The scattered field components are stored only in the scattered field. To simulate the scatteredwave from the dielectric
cylinder in free space, the CPML absorbing boundary condition is adopted.

The first problem under investigation solves the EM wave scattered from a cylindrically-shaped scatter located at the
center of the physical domain schematically shown in Fig. 19. All the results are calculated at the same Courant number
Cr = 0.2, which corresponds to the specified time increment 1t = 0.0026685 fs. It is important to point out here that
the value of Nλ (≡ λ

h ) is equal to 84.3744 according to the investigated wavelength λ = 632.8 nm and the grid spacing
h = 7.4999 nm. According to Fig. 12, the predicted accuracy is expected to be very high since Nλ has a magnitude much
larger than 3.1. The total field is discretized uniformly, leading to a mesh with 121 × 121 × 121 grids. The predicted results
for Ez are plotted at the cutting plane z = 0 nm in Fig. 20. We also consider the effect of the number of scatters by increasing
the cylinder number of from one to four schematically shown in Fig. 21. The three-dimensional results predicted in the
domain with the same grid resolution as the case with a single cylinder are plotted for Ez at the cutting plane z = 0 nm.
For the sake of completeness, we also conduct grid-independent study by comparing the solutions plotted in Figs. 22 and
23 at different grid resolutions. One can see two solutions computed at 1213 and 1413 meshes agree well with each other,
thereby confirming the computation of grid-independent solutions.

7.2. L-shaped photonic crystal waveguide problem

A lattice of many finite-length vertical rods (dielectric pillars) in a domain containing the L-shaped defect channel is
investigated. The relative electric permittivity of themedium surrounding the uniformly distributed pillars is assumed to be
1, while the dielectric constant of the pillars is set at εr = 11.56. Thewaveguide of width w

a = 2 is constructed by taking one
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Fig. 20. The predicted contours of Ez (z = 0) at the cutting plane containing the cylindrical scatter. (a) Time step = 0 (0 fs); (b) time step = 560 (2.8 fs);
(c) time step = 760 (3.8 fs); (d) time step = 850 (4.25 fs); (e) time step = 1160 (5.8 fs); (f) time step = 1800 (9 fs). Note that the grid numbers in the
domains of TF, TF


SF and TF


SF


CPML are 81 × 81 × 81, 101 × 101 × 101, and 121 × 121 × 121, respectively.

vertical and one row pillars away, thereby leading to a three-dimensional L-shaped defect channel. A light of the frequency
belonging to the photonic band gap is under our investigation. The radius of the investigated pillars is chosen as 0.2a, where
the lattice constant a (=515 nm) denotes the length between the centroids of two adjacent pillars.

The L-shaped bent waveguide problem is simulated at 1t = 0.05337 fs and 1x = 1y = 1z = 57.1429 nm. The
number of grid points is 141 × 141 × 141. The convolutional PML is attached to the scatter field to absorb EM wave and
thus to effectively reduce unphysical wave that may re-enter into the domain. Fig. 24 shows the Ez contours for the case
computed at the normalized frequency = 0.353 ( ca ) (or wavelength = 1458.92 nm), where c denotes the speed of light. In
this case, the wavelength λ of the incident wave is 1458.92 nm and the chosen grid spacing h is 57.1429 nm. The resulting
value of Nλ (≡ λ

h ) is 25.5311, which is much larger than 5. The optical wave is seen to propagate through a ninety degree
bend and the electric field is concentrated mostly in this defect channel. In Fig. 25, the current three-dimensional result in
the L-shaped defect channel is compared with the two-dimensional result of Mekis et al. [41].
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Fig. 21. The predicted contours of Ez (z = 0) at the cutting plane containing four cylindrical scatters. (a) Time step = 0 (0 fs); (b) time step = 560
(2.8 fs); (c) time step = 760 (3.8 fs); (d) time step = 850 (4.25 fs); (e) time step = 1160 (5.8 fs); (f) time step = 1800 (9 fs). The number of grid points
employed in this calculation is identical to those in Fig. 20.

8. Numerical results in Drude medium

In the one dimensional domain, the left half involves the vacuum and the right half contains the Drude media. Each half
of the domain has been divided into the 250 uniform intervals of the length 1x = 7.5 × 10−5 m. Two perfect matching
layers of length 101x are attached to both ends so as to be able to absorb the possibly reflected wave.

A Gaussian pulse at x = 1251x has the form exp[−( t−t0
d )2], where d = 401t , t0 = 1201t , and1t = 0.125 × 10−12 s.

The parameters of the Drude medium on the right-half of the domain are chosen to be ε∞ = 1, fp = 28.7 GHz, ω = 2π fp,
γp = 20 GHz. The computed value of Ez is plotted with respect to time at the monitoring point 4891x. One can clearly see
that the result plotted in Fig. 26 agrees well with the referenced solutions [42], thereby validating the proposed numerical
method.
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Fig. 22. Comparison of the computed profiles of Ez (x, y = 0, z = 0) in grids 1213 and 1413 . (a) t = 2.601 fs; (b) t = 5.253 fs.

Fig. 23. Comparison of the computed profiles of Ez (x = 0, y, z = 0) in grids 1213 and 1413 . (a) t = 3.002 fs; (b) t = 3.552 fs; (c) t = 4.503 fs.

For the 3D case [43], a mesh 44 × 44 × 44 grids is distributed uniformly in the region of interest and 10-cell CPMLs are
attached on the six sides of the lattice. The parameters of the Drude medium are chosen to be ε∞ = 1, fp = 2.87 GHz,
ω = 2π fp, γp = 200 GHz. The electric dipole located at the center of the computational region is a Gaussian pulse, which is
expressed as

P(t) = 10−10 exp


−


t − t0
τ

2


(27)

where τ = 2 × 109, t0 = 3τ .
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Fig. 24. The predicted contours of Ez at the cutting plane (z = 0). (a) Time step = 575 (30.68775 fs); (b) time step = 1075 (57.37275 fs); (c) time
step = 1750 (93.3975 fs); (d) time step = 2325 (124.08525 fs).

Fig. 25. Snapshot of the computed Ez field values at the time step 2325 (or t = 124.08525 fs) in the L-shaped waveguide at the normalized frequency
0.353(c/a). (a) Present; (b) Mekis et al. [41].

The reference solution Eref |ni,j,k+ 1
2
is considered at the grid location (i, j, k +

1
2 ) and at the time-step n. This reference

solution is obtained in a larger domain with 200× 200× 200 grid points. The field-observation points are chosen at P (two
cells away from the adjacent absorbing boundary), Q (two cells away from the two adjacent absorbing boundaries), and R
(two cells away from the three adjacent absorbing boundaries in the corner) schematically shown in Fig. 27. The relative
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Fig. 26. Comparison of computed and Ref. [42] electromagnetic wave (Ez field) solutions in the domain including both of the vacuum and Drude medium.

Fig. 27. Schematic of the 3D domain containing the Drude medium. Note that the small and large boxes denote the physical and the reference domains,
respectively.

error is defined as

Relative error|n
i,j,k+ 1

2
=

E|
n
i,j,k+ 1

2
− Eref |ni,j,k+ 1

2

Erefmax|
n
i,j,k+ 1

2

 (28)

where Erefmax|
n
i,j,k+ 1

2
is the maximum amplitude of the reference field at (i, j, k +

1
2 ). One can observe from Fig. 28((a)–(c))

that the computed solutions match well with the reference solutions at the points P, Q and R. Also, the reflected solutions
are negligibly small, thereby justifying the proper use of the CPML to absorb the outgoing wave.

9. Concluding remarks

Three-dimensional Maxwell’s equations have been solved in dispersive and non-dispersive media using the developed
FDTD scheme in staggered grids. Our aim is to numerically preserve symplecticity and conserve Hamiltonian and invariants
all the time for the ideal Maxwell’s equations. To achieve these objectives, the explicit symplectic partitioned Runge–Kutta
time integrator is applied together with the space-centered spatial scheme. To increase the phase accuracy, the difference
between the numerical and exact phase velocities is minimized. The proposed temporal second-order and spatial fourth-
order accurate three-dimensional scheme developed in staggered grids for Maxwell’s solutions are shown to have a better
performance when compared with other referenced schemes. Several exact and benchmark problems have been solved for
the purposes of verification and validation and all the predicted solutions have been shown to agree well with the exact and
the benchmark numerical solutions.
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Fig. 28. The predicted Ez values and the computed relative errors at P, Q and R points in the 44 × 44 × 44 and the 200 × 200 × 200 cells. (a) The Ez value
at point P; (b) the Ez value at point Q; (c) the Ez value at point R; (d) the predicted relative errors.
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