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Abstract. A high-order finite difference scheme has been developed to approximate
the spatial derivative terms present in the unsteady Poisson-Nernst-Planck (PNP) equa-
tions and incompressible Navier-Stokes (NS) equations. Near the wall the sharp solu-
tion profiles are resolved by using the combined compact difference (CCD) scheme
developed in five-point stencil. This CCD scheme has a sixth-order accuracy for the
second-order derivative terms while a seventh-order accuracy for the first-order deriva-
tive terms. PNP-NS equations have been also transformed to the curvilinear coordi-
nate system to study the effects of channel shapes on the development of electroos-
motic flow. In this study, the developed scheme has been analyzed rigorously through
the modified equation analysis. In addition, the developed method has been compu-
tationally verified through four problems which are amenable to their own exact solu-
tions. The electroosmotic flow details in planar and wavy channels have been explored
with the emphasis on the formation of Coulomb force. Significance of different forces
resulting from the pressure gradient, diffusion and Coulomb origins on the convective
electroosmotic flow motion is also investigated in detail.
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1 Introduction

Design of a microfluidic biochemical device to propel ionic fluids from one end to the
other end has been an important research topic [1]. For an effective control of flow mo-
tion to enhance fluid mixing and to avoid flow separation, the concept of miniaturized
total analysis (µTAS) proposed in the early 1990s [2] can be adopted. With the remark-
able progress in µTAS, today biochemical analysis has many applications in the fields
of microfludics and display [3]. One can refer to [4] for an overview of applications
of magnetohydrodynamics to DC/AC electrokinetics for electroosmotic or electrophore-
sis/dielectrophoresis flow. The techniques exploiting the physicochemical properties of
solid-electrolyte interface are referred as electroosmotics [5].

Electroosmotic flow (EOF) results from a motion of accumulated electric charges on
the no-slip surfaces which are in contact with electrolyte solution. These ions are accu-
mulated in a thin layer immediately close to the wall. This thin layer is also known as
the electric double layer (EDL) or Debye layer [6]. Electrolyte away from this thin layer
is neutral. Charge separation near the solid surface establishes a positive or a negative
potential difference across the Debye layer. When an external electric field is applied, the
counter ions in the Debye layer are attracted to the oppositely charged electrodes. Mo-
tion of these ions induces fluid flow. In other words, the electric force can be exploited as
the leading factor to drive and control the movement of operating fluid and the charged
species. For example, motion of beads and pigmented particles of the size ranging from
a sub-millimeter to a few microns in electrode-bounded channels can be controlled using
the above mechanism.

In microfluidic devices the gap between electrodes is very small and one can easily
generate a highly localized and large electric field. For such devices, electric force can
be used precisely for flow control. Microfluidic devices are normally featured with a
much larger surface-to-volume ratio in comparison with their macroscopic counterparts.
Forces relevant to surface are therefore likely to be substantially larger than the forces
associated with volumes. The zeta-potential surface force established between the solid
electrode and the surrounding electrolyte induces EDL formation. Within this layer, an
excessive amount of free charges exists. When these charges are exposed to an electric
field with non-zero component parallel to the surface, they start moving accordingly and
can provide a significant pumping force to the electrolyte liquid.

In this study, the electroosmotic flowfields bounded by planar and wavy channel
walls are investigated when an uniform potential difference is specified across these
channels. Numerical investigation of these types of flowfield needs the solution of ve-
locity vector to enable simulation of the transport of positive and negative ions. Non-
uniform distribution of ions in a channel with charged walls results in the formation of
Coulomb force which further induces fluid motion. This prompts the importance of solv-
ing the transport equations for positive and negative ions along with the Navier-Stokes
equations. Thus, the study of electroosmotic flow turns out to be relevant to the analysis
of incompressible Navier-Stokes equations and ion transport equations.
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Microchannel flow has been extensively studied experimentally in the past. One can
refer to [4, 7–10] for an overview. It would be even suitable for us to carry out numerical
simulations of this class of problems because one can better control the involved electro-
hydrodynamic parameters. Provided that flow convection is no longer negligibly small,
simulation of the dynamical system of two classes of equations should address more on
the effect of convective flux. This issue is particularly essential near the charged channel
walls in the presence of an external electric field as the velocity profile becomes much
sharper than the case in the same channel without accumulated charges on the wall.
High gradient velocity profile must be accurately resolved while solving the electroos-
motic equations. This motivates the present development of a scheme, which is not only
stable without use of flux or slope limiter but is also very accurate. A combined com-
pact difference scheme has been derived to approximate the first- and the second-order
derivative terms at the same time with a seventh- and sixth-order accuracy, respectively.

This article is organized as follows. In Section 2, conservation equations are derived
in Cartesian as well as in curvilinear coordinate systems for the coupled differential sys-
tem of Navier-Stokes and Poisson-Nernst-Planck equations. Iterative correction of the
pressure and velocity solutions while obtaining a divergence-free flow solution is de-
scribed in Section 3. In Section 4, four problems amenable to exact solutions are sought
with an aim to verify the proposed CCD scheme and the segregated incompressible flow
solver. The predicted PNP-NS solutions for an electrolyte fluid containing both of the
positive and negative ions in the planar and wavy channels are then discussed in Section
5. Finally, conclusions are drawn in Section 6.

2 Governing equations

In this study, the motion of a binary monovalent electrolyte is numerically investigated
at the incompressible limiting condition. Under the reaction-free and dilute conditions
for the investigated fluid, the electro-diffusion equations for positive and negative ions
ni(i=+,−) are governed by the equation dni/dt+∇· J = 0. The ion flux vector J in this
charge conservation equation results from advection, diffusion and electromigration. If
the mechanical stress is negligibly small, then the total flux vector is given as

J=niu−Di▽ni−µini▽Φ. (2.1)

The total flux vector shown above is composed of three different parts. The first contri-
bution to flux vector comes from the convection of charged ions while the remaining two
contributions originate from the spatial variation of charged ions and electric potential
(Φ). Because of the ineligible electrolyte velocity vector u and in the presence of the elec-
tric potential Φ, the current electrohydrodynamic (EHD) simulation study is concerned
with the electric and hydrodynamic effects.

The salient feature in EHD flow has association with the irrotational electric field in-
tensity E (or ▽×E=0). The dynamic current is usually small and the magnetic induction
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is negligible. As a result, the appropriate laws employed in the derivation of EHD equa-
tions are essentially those of the electrostatics [11]. The Gauss’ law ▽·D=q relates the net
charge density q with the electric displacement D (≡ǫ0 E), where ǫ0=8.85×10−12C/mV.
The charge conservation equation brings in current density in the dynamic equation.
Given the flux vector J, the temporal variation of the diffused negative and positive
charge densities in isothermal condition can be modeled by the well known Nernst-
Planck (N-P) equations as given below.

∂n+

∂t
+u·∇n+=∇·(D+∇n++µ+n+∇Φ), (2.2)

∂n−

∂t
+u·∇n−=∇·(D−∇n−−µ−n−∇Φ). (2.3)

In the above binary charge conservation equations, the unknown variables n+ and n−

represent the positive and negative charge densities, respectively. The diffusivity con-
stants D+ and D− and the mobilities µ+ and µ− are linked with each other by the Einsteinś
relation. In this study, the ion (or charge) diffusivities D+ and D− are assumed to be equal
and are denoted as D+=D−=D. Mobilities µ+ and µ− are modeled as µ+= z+e/(kbT)
and µ−= z−e/(kbT). For the investigated symmetric electrolyte, the valences z+ and z−
of ions are assumed to be equal to z. The notations e, kb and T denote the elementary
charge, Boltzmann constant and the absolute temperature, respectively.

In N-P equations (2.2) and (2.3), the charge densities n± should be solved together
with the hydrodynamic equations because of the presence of electroosmotic flow velocity
u in the Eqs. (2.2) and (2.3). In other words, simulation of ion transport problem under
consideration involves solving the coupled hydrodynamic and electric field equations.
It is also worthy to note that Eqs. (2.2-2.3) are derived without taking into account the
dissociation and recombination of positive/negative charges.

One can decompose the electric potential Φ into two components [12]. The first po-
tential φ is due to an externally applied electric field and the second potential ψ results
from the charges attached to channel walls, thereby leading to Φ= φ+ψ. Eqs. (2.2-2.3)
can be therefore rewritten as

∂n+

∂t
+u·∇n+=∇·

[

D+∇n++
ze

kbT
n+∇(φ+ψ)

]

, (2.4)

∂n−

∂t
+u·∇n−=∇·

[

D−∇n−−
ze

kbT
n−∇(φ+ψ)

]

. (2.5)

In the presence of the electromigration terms n+∇Φ and n−∇Φ, calculation of the solu-
tions n+ and n− from the above differential system of N-P equations should be coupled
with the electric field equation. For the sake of closure, the equations governing the EDL
potential ψ and the potential φ resulting from the applied electric field E must be derived.

The electric potential Φ is governed by the relation ▽2Φ =−ρe/ǫ or ▽2φ+▽2ψ =
−ρe/ǫ, where ǫ denotes the electrical permittivity of the electrolyte. The potential φ in
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the current simulation study is thus governed by the following Laplace equation in the
context of electrostatics

▽2φ=0. (2.6)

As for the electric double layer potential ψ, it is modeled by the Poisson equation given
below

▽2ψ=−
ρe

ǫrǫ0
=−

ρe

ǫ
. (2.7)

In the above, ρe ≡Σie zini denotes the volume charge density and ǫr and ǫ0 are the di-
electric constants of the solution and vacuum, respectively. For a symmetric electrolyte
solution, the Poisson equation given above can be further approximated as

▽2ψ=−
ze(n+−n−)

ǫrǫ0
. (2.8)

In summary, the Nernst-Planck equations governing the temporal variation of binary
charge densities and the Poisson equation modeling the electrostatic potential constitute
a PNP system of differential equations.

The electrolyte velocity present in the PNP Eqs. (2.4), (2.5), (2.6), (2.8) led us to take the
hydrodynamic equations into consideration. Due to the coupling of electric and hydro-
dynamic field equations, the Lorentz force (or Coulomb force) vector ρeE should be also
accounted in the numerical simulation of dielectric fluid flow. Substituting the electric
charge density ρe = ze(n+−n−) and the electric field density E≡−∇Φ into the Lorentz
force expression, the force vector ρeE turns out to be −ze (n+−n−)∇Φ. The resulting
momentum vector equation for the fluid flow investigated under the incompressible con-
dition takes the following form

∂u

∂t
+u·∇u=−

1

ρ
∇p+ν∇2u+

ze(n−−n+)

ρ
∇(ψ+φ). (2.9)

Electric potential is governed by ρe =−ǫ∇2Φ [12]. As a result, the Lorentz force can be
represented by ρeE= ǫ∇2Φ·∇Φ. In other words, Eq. (2.9) can be represented differently
in terms of the electric potential Φ given below

∂u

∂t
+u·∇u=−

1

ρ
∇p+ν∇2u+

ǫ

ρ
▽2 Φ·∇Φ. (2.10)

The above nonlinear equation will be solved subject to the following divergence-free
mathematical constraint condition for u (physical mass conservation equation)

∇·u=0. (2.11)

In the above, ρ, p and ν denote the fluid density, pressure and fluid viscosity, respectively.
The prescribed boundary conditions are detailed in the result section.
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For generality purposes, all the dependent and independent variables shown in the
dimensional PNP equations are normalized according to the definitions given by x∗= x

h ,

y∗= y
h , t∗= tU0

h , u∗= u
U0

, v∗= v
U0

, p∗= △p

ρU2
0
, ψ∗= ze

kbT ψ, n∗
±=

n±
n0

, φ∗= ze
kbT φ, K= 1

λD
=( 2n0z2e2

ǫrǫ0kbT )
1
2

and U0=− ǫrǫ0ζ0Ex
µ , where ǫ0 is the permittivity of vacuum, n0 the bulk concentration, and

ζ0 the surface zeta potential. The derived dimensionless NS equations are summarized
below

▽∗ ·u∗=0, (2.12)

∂u∗

∂t∗
+(u∗ ·▽∗)u∗=−▽∗ p∗+

1

Re
▽∗2 u∗+

n0eζ0

ρU2
0

(n∗
−−n∗

+)▽
∗(ψ∗+φ∗). (2.13)

As for the normalized PNP equations, they are reformulated as

▽∗2ψ∗=−
h2

2λ2
D

(n∗
+−n∗

−), (2.14)

▽∗2φ∗=0, (2.15)

∂n∗
+

∂t∗
+▽∗ ·

[

u∗n∗
+−

1

ScRe
▽∗n∗

+−
1

ScRe
n∗
+▽

∗ (ψ∗+φ∗)

]

=0, (2.16)

∂n∗
−

∂t∗
+▽∗ ·

[

u∗n∗
−−

1

ScRe
▽∗n∗

−+
1

ScRe
n∗
−▽

∗ (ψ∗+φ∗)

]

=0. (2.17)

In the above, Re (≡ρhU0/µ) and Sc (≡µ/(ρD)) denote the Reynolds and Schmidt num-
bers, respectively.

While solving the differential set of Eqs. (2.12)-(2.17) in an irregular physical domain,
one can transform these equations derived in Cartesian coordinates (x,y) to the curvilin-
ear coordinates (ξ,η) through a one-to-one mapping. After performing the transforma-
tion of equations between two coordinate systems, Eqs. (2.12)-(2.17) are transformed in
curvilinear coordinates (ξ,η) as shown in the following set of dimensionless equations

ξx
∂u

∂ξ
+ηx

∂u

∂η
+ξy

∂v

∂ξ
+ηy

∂v

∂η
=0, (2.18)

∂u

∂t
+U

∂u

∂ξ
+V

∂u

∂η
=−▽p+

1

Re
▽2 u+

n0eζ0

ρU2
0

(n−−n+)▽(ψ+φ), (2.19)

J

(

α
∂2ψ

∂ξ2
−2β

∂2ψ

∂ξ∂η
+γ

∂2ψ

∂η2

)

+

[(

α
∂2x

∂ξ2
−2β

∂2x

∂ξ∂η
+γ

∂2x

∂η2

) (

yξ
∂ψ

∂η
−yη

∂ψ

∂ξ

)

+

(

α
∂2y

∂ξ2
−2β

∂2y

∂ξ∂η
+γ

∂2y

∂η2

) (

xη
∂ψ

∂ξ
−xξ

∂ψ

∂η

)]

=−
h2 J3

2λ2
D

(n+−n−), (2.20)

J

(

α
∂2φ

∂ξ2
−2β

∂2φ

∂ξ∂η
+γ

∂2φ

∂η2

)

+

[(

α
∂2x

∂ξ2
−2β

∂2x

∂ξ∂η
+γ

∂2x

∂η2

)(

yξ
∂φ

∂η
−yη

∂φ

∂ξ

)

+

(

α
∂2y

∂ξ2
−2β

∂2y

∂ξ∂η
+γ

∂2y

∂η2

)(

xη
∂φ

∂ξ
−xξ

∂φ

∂η

)]

=0, (2.21)
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∂n+

∂t
+U

∂n+

∂ξ
+V

∂n+

∂η
=

1

ScRe
▽2 n++

1

ScRe
n+▽

2(ψ+φ)

+
1

ScRe

[(

ξx
∂n+

∂ξ
+ηx

∂n+

∂η

)(

ξx
∂ψ

∂ξ
+ηx

∂ψ

∂η
+ξx

∂φ

∂ξ
+ηx

∂φ

∂η

)

+

(

ξy
∂n+

∂ξ
+ηy

∂n+

∂η

)(

ξy
∂ψ

∂ξ
+ηy

∂ψ

∂η
+ξy

∂φ

∂ξ
+ηy

∂φ

∂η

)]

, (2.22)

∂n−

∂t
+U

∂n−

∂ξ
+V

∂n−

∂η
=

1

ScRe
▽2 n−−

1

ScRe
n−▽

2(ψ+φ)

−
1

ScRe

[(

ξx
∂n−

∂ξ
+ηx

∂n−

∂η

)(

ξx
∂ψ

∂ξ
+ηx

∂ψ

∂η
+ξx

∂φ

∂ξ
+ηx

∂φ

∂η

)

+

(

ξy
∂n−

∂ξ
+ηy

∂n−

∂η

)(

ξy
∂ψ

∂ξ
+ηy

∂ψ

∂η
+ξy

∂φ

∂ξ
+ηy

∂φ

∂η

)]

. (2.23)

In the above, U(≡uξx+vξy) and V(≡uηx+vηy) are denoted as the contravariant velocity
components, respectively, and α= x2

η+y2
η , β= xξ xη+yξ yη , γ= x2

ξ+y2
ξ , J= xξyη−xηyξ .

3 Numerical method

After approximating the time derivative term φt using the Euler time-stepping scheme
for the model equation φt+aφx+bφy+cφ= k∇2φ+ f , the semi-discretized equation for

φ(≡φ
n+1

) is derived as follows

ā
∂φ

∂x
+ b̄

∂φ

∂y
+ c̄ φ− k̄

(

∂2φ

∂x2
+

∂2φ

∂y2

)

= f̄ , (3.1)

where ā=a△t, b̄=b△t,c̄=c△t+1, k̄=k△t, f̄= f△t+φn. To describe the numerical method
developed for the approximation of the spatial derivative terms shown above, the model
transport equation for φ has been approximated at a constant diffusion coefficient k̄. The
two coefficients ā and b̄ in (3.1) are denoted as the constant velocities along the respective
x- and y-direction, and f̄ is a source term.

3.1 Combined compact difference scheme for spatial derivative terms

The first-order derivative term ∂φ/∂x and the second-order derivative term ∂2φ/∂x2 in
Eq. (3.1) will be approximated in a mesh of constant grid spacing ∆x = ∆y = h. In the
finite difference context, our strategy of approximating these spatial derivative terms
in Eq. (3.1) underlies the following five-point upwinding combined compact difference
scheme

a1
∂φ

∂x
|i−1+

∂φ

∂x
|i+a3

∂φ

∂x
|i+1

=−h

(

b1
∂2φ

∂x2
|i−1+b2

∂2φ

∂x2
|i+b3

∂2φ

∂x2
|i+1

)

+
1

h

(

c1φi−2+c2φi−1+c3φi+c4φi+1

)

, (3.2)
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b1
∂2φ

∂x2
|i−1+

∂2φ

∂x2
|i+b3

∂2φ

∂x2
|i+1

=
1

h2

(

c1φi−1+c2φi+c3φi+1

)

−
1

h

(

a1
∂φ

∂x
|i−1+a2

∂φ

∂x
|i+a3

∂φ

∂x
|i+1

)

. (3.3)

Similarly, one can approximate the other two terms
∂φ
∂y and

∂2φ
∂y2 along the y-direction. Ap-

proximations of the derivative terms
∂φ
∂x |i and

∂2φ
∂x2 |i are coupled through the terms

∂φ
∂x |i−1,

∂φ
∂x |i,

∂φ
∂x |i+1,

∂2φ
∂x2 |i−1,

∂2φ
∂x2 |i,

∂2φ
∂x2 |i+1, φi−2, φi−1, φi and φi+1. For simplicity purposes, the

above coefficients will be determined for the case with a positive-valued convective co-
efficient. For the case of a negative-valued convective coefficient, the derivation remains
the same.

The second-order derivative terms are normally approximated by centered schemes.
As a result, the weighting coefficients shown in Eq. (3.2) can be determined solely from
the modified equation analysis for getting a physically correct approximation. Coeffi-
cients a1, a2, a3, b1,b3, c1, c2 and c3 in (3.3) are derived as follows. Taylor series expansions

are used to expand the terms φi±1,
∂φ
∂x |i±1 and

∂2φ
∂x2 |i±1 with respect to φi,

∂φ
∂x |i and

∂2φ
∂x2 |i. The

leading eight error terms in the modified equations are then eliminated to get the same
number of algebraic equations for Eq. (3.3). The coefficients shown in Eq. (3.3) are then
derived as a1 =− 9

8 , a2 = 0, a3 =
9
8 , b1 =− 1

8 , b3 =− 1
8 , c1 = 3, c2 =−6, c3 = 3. The resulting

modified equation for
∂2φ
∂x2 has the spatial accuracy of order six [13].

There are total nine unknown coefficients in Eq. (3.2). These coefficients are obtained
using the modified equation analysis approach of [13]. Taylor series expansions for the

terms φi−2, φi±1,
∂φ
∂x |i±1 and

∂2φ
∂x2 |i±1 are performed with respect to φi,

∂φ
∂x |i and

∂2φ
∂x2 |i to

obtain the following eight algebraic equations

c1+c2+c3+c4=0,

−2c1−c2+c4−a1−a3 =1,

2c1+
1

2
(c2+c4)+a1−a3−b1−b2−b3=0,

−4

3
c1+

1

6
(c4−c2)−

1

2
(a1+a3)+b1−b3=0,

2

3
c1+

1

24
(c4+c2)+

1

6
(a1−a3)−

1

2
(b1+b3)=0,

−4

15
c1+

1

120
(c4−c2)−

1

24
(a1+a3)+

1

6
(b1−b3)=0,

4

45
c1+

1

720
(c4+c2)+

1

120
(a1−a3)−

1

24
(b1+b3)=0,

−8

315
c1+

1

5040
(c4−c2)−

1

720
(a1+a3)+

1

120
(b1−b3)=0.

In order to uniquely determine all nine unknown coefficients, we need an additional
equation. For a more accurate approximation of the first-order derivative term in Eq. (3.2),
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the exact dispersion relation for ∂φ/∂x serves as our guideline. This results in a better
linkage between the angular frequency and numerical wavenumber [13, 14]. If the nu-
merical dispersion relation is close to its exact counterpart, the solution can then be accu-
rately predicted. Thus the developed scheme must accommodate the dispersion relation
preserving nature for the first-order derivative term.

Fourier transform and its inverse of φ are given respectively as φ̃(α) = 1/(2π)×
∫ +∞

−∞
φ(x)exp(−iαx) dx and φ(x)=

∫ +∞

−∞
φ̃(α) exp(iαx) dα [13]. Fourier transform on each

term shown in Eqs. (3.2) and (3.3) has been performed to get the relation between the ex-
act wavenumber α and the numerical wavenumber α′. For getting a more accurate phase
computation, it is rational to equate the equations for α′ and α′′ to their exact ones in the
first and second order derivative terms [13, 14],

iα′h
(

a1exp(−iαh)+1+a3 exp(iαh)
)

=−(iα′′h)2
(

b1exp(−iαh)+b2+b3exp(iαh)
)

+c1exp(−2iαh)+c2 exp(−iαh)

+c3+c4exp(iαh), (3.4)

iα′h

(

−
9

8
exp(−iαh)+

9

8
exp(iαh)

)

=−(iα′′h)2

(

−
1

8
exp(−iαh)+1−

1

8
exp(iαh)

)

+3exp(−iαh)−6+3exp(iαh). (3.5)

Expression for α′ is derived by solving Eqs. (3.4) and (3.5).
For acquiring the derived dispersion relation preserving nature, the exact (αh) and

the numerical (α′h) wavenumber must match with each other. Thus, one can define an
error function E(α) as given below.

E(α)=
∫ 7π

8

0

[(

αh−ℜ[α′h]
)]2

d(αh)=
∫ 7π

8

0

[(

γ−ℜ[γ′]
)]2

dγ, (3.6)

where γ = αh and γ′ = α′h. In this expression ℜ[α′h] denotes the real part of α′h. A
condition ∂E/∂c3 = 0 is applied to minimize E. This constraint equation along with the
other eight previously derived algebraic equations uniquely determine nine introduced
unknowns as,

a1=1.8348198717722105327, a3=−0.89037542732776608826,

b1=0.25771089743383732115, b2=−1.0925307692060478538,

b3=0.091044230767170654483, c1=1/54, c2=−4.4967487178827942769,

c3=6.9934974357655885538, c4=−2.5152672364013127954.

The derived upwinding combined compact difference scheme for ∂φ/∂x has the spatial
accuracy of order seven.

Unlike the purely upwinding CCD scheme developed earlier in [13], two extra sten-
cil points are taken into account in this study to improve scheme performance. For the
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reference point i, one additional point at the upwind side, namely the i−2 nodal point, is
considered for the positive-valued velocity case to not only enhance the convective sta-
bility but also to improve the accuracy order. In the same vein, the stencil point i+2 has
been involved for the case with negative valued velocity. The resulting adopted stencil
points i−2, i−1, i, i+1 and i−1, i, i+1, i+2 for the positive and negative velocities are
exactly the same as those used in the well known QUICK scheme (Quadratic Upstream
Interpolation for Convective Kinetics) for the approximation of the first order derivative
term in the transport equation [15]. As for the discretization of the second-order deriva-
tive term in the currently proposed CCD scheme, physically plausible center scheme is
chosen. It is worthy to address here that two additional stencil points have nothing to
do with the left hand side of the above CCD equations. The matrix equations for solving
the first and second derivative terms remain tri-diagonal and hence does not increase
computational cost.

In Fig. 1(a) we have compared the resolving abilities of different schemes for the
first derivative. Under our expectation, the newly proposed CCD scheme outperforms
the purely upwinding schemes of [13, 15] over the entire modified wavenumber range.
Fig. 1 clearly shows the excellent spectral-like accuracy while evaluating the first- and the
second-order derivative terms.

Prior to solving complex unsteady flow problems, one needs the information about
the combined effects of the spatial and the temporal discretization schemes on the simu-
lation. Thus the numerical analysis should not be only restricted to the estimation of the
spectral resolution for the spatial derivative terms. For an accurate simulation, one needs
to resolve all the spatial and the temporal scales present in the flow domain. In addition,
one needs to ensure that all the resolved components propagate with correct physical ve-
locity as dictated by the physical dispersion relation [16]. Most of the numerical schemes
display spurious unphysical behavior for the high wavenumber components which are
capable of triggering numerical instabilities. Such unphysical components are needed
to be attenuated either by using upwinding schemes or by filtering [16]. In the present
work, we have proposed the spectrally optimized upwinding scheme in the same spirit.

For the proposed spatial discretization scheme, important numerical properties such
as the numerical amplification factor contours and the normalized numerical group ve-
locity contours are obtained following the work in [16–18] for the solution of 1D wave
equation when a four stage fourth order Runge-Kutta RK4 scheme has been used for the
time discretization. The model 1D wave equation is given by,

∂u

∂t
+c

∂u

∂x
=0, c>0. (3.7)

Calibration of numerical schemes for the model 1D wave equation has been advo-
cated in [16] as it has non-dispersive, non-dissipative physical nature while most of solu-
tions from the numerical schemes provide dispersive and dissipative solution. Consider
a domain with a discrete grid of uniform grid spacing h. Variable u at the jth node can
be represented by its bi-lateral Fourier-Laplace transform as, u(xj,t) =

∫

U(k,t) eikxj dk,
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Figure 1: Fourier analysis of errors for the real and imaginary parts of the first and second derivatives, which
are shown in (a), (b) and (c), respectively, for the indicated numerical schemes.

where k is a wavenumber. Difference approximations involve truncation of the higher
order derivative terms which causes truncation error. The exact and the numerical spa-
tial derivatives can be represented in the spectral plane as [16],

[

∂u

∂x

]

exact

=
∫

ikU eikxj dk,

[

∂u

∂x

]

numerical

=
∫

ikeqU eikxj dk.

Any difference scheme (explicit or implicit) can be represented in the matrix form as
[A]u′=[B]u. Matrix [A] is an identity matrix for explicit schemes while it is either tridiag-
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onal or pentadigonal for the implicit compact difference schemes. Representations of the
difference scheme can be simplified as u′=[C]u, where [C]=[A]−1[B] [16]. Assuming the
domain has N equi-spaced grid points, the first derivative at the jth node in the matrix
form and the spectral form are given as [16, 18],

u
′

j=
1

h

N

∑
l=1

Cjl ul,

u
′

j=
∫

1

h ∑Cjl U eik(xl−xj) eikxj dk.

Using above expression, for the 1D wave equation (3.7) one can further write,

∆U

U
=−

[

c∆t

h

] N

∑
l=1

Cjl eik(xl−xj) (3.8)

where the non-dimensional term ( c∆t
h ) is identified as the CFL number (Nc). One can de-

fine a numerical amplification factor as the ratio of the spectral amplitudes at successive
time steps as, (Gj =Uj(k,t(n+1))/Uj(k,t(n))). For the RK4 scheme, the numerical amplifi-
cation factor is given as [16, 17],

Gj=1−Aj+
A2

j

2
−

A3
j

6
+

A4
j

24
(3.9)

where Aj = Nc ∑
N
l=1 Cjl eik(xl−xj). After evaluating spectral information for the numerical

amplification factor, one can write the general solution at any time stage by,

un
j =

∫

A0(k) [|Gj |]
n ei(kxj−nβ j) dk (3.10)

where A0(k) is the initial input spectrum and β j is given by, tan−1[−
(Gj)imag

(Gj)real
] that can

be related to the numerical phase speed cN . Authors in [16, 17], provided the correct
numerical dispersion relation as, ωN = cNk. Using the numerical dispersion relation,
general numerical solution of Eq. (3.7) is given as,

uN =
∫

A0(k)[|G|]t/∆teik(x−cNt)dk. (3.11)

Above expression leads to the normalized numerical phase speed and group velocity
at the jth node for Eq. (3.7) are given by [16, 17],

[ cN

c

]

j
=

β j

ω∆t
, (3.12)

[

VgN

c

]

j

=
1

Nc

dβ j

d(kh)
. (3.13)
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We have shown the numerical amplification factor |Gj| contours and the normalized nu-
merical group velocity VgN/c contours in Fig. 2(a) and (b), respectively. For numerically
stable computations, numerical amplification factor should be less than one. The lower
CFL number Nc and lower wavenumber kh region where |Gj|= 1 property is observed
is known as neutrally stable region. Solution components in this region are neither am-
plified nor attenuated numerically. For stability purpose, one is forced to compute in a
lower CFL number zone. However, in addition to the numerical stability, one needs to
ensure all the resolved components propagate with correct velocity. Normalized numer-
ical group velocity VgN/c contours in Fig. 2(b) help to identify a region where solution
components will propagate with a correct physical speed. For the solution of Eq. (3.7), all
the solution components should propagate at phase speed c. Thus one should look for the
region in the Nc-kh plane where VgN/c=1 property is observed. Computations belong-
ing to this region only guarantee preservation of the physical dispersion relation. For the
proposed scheme, one observes preservation of physical dispersion relation up to kh=2.5
with 1% error when the computations are performed for small CFL numbers. This is a
significant achievement for the proposed DRP scheme as a large band of wavenumber
components propagate at correct physical speed.

While solving a non-periodic problem one needs to prescribe additional stencils for
the computation of the spatial derivative terms at the boundary and the near-boundary
points located at either end of the domain. Often these stencils use information on either
side of the domain causing very unstable or very stable behavior at the domain bound-
aries. Authors in [19] proposed a new boundary and near-boundary stencils which have
significantly improved numerical properties as compared to the stencils used in [13].
These boundary and the near-boundary stencils are given as,

f ′1 =(−1.5 f1+2 f2−0.5 f3)/h, (3.14)

f ′′1 =( f1−2 f2+ f3)/h2, (3.15)

f ′N =−(−1.5 fN+2 fN−1−0.5 fN−2)/h, (3.16)

f ′′N =−( fN−2 fN−1+ fN−2)/h2, (3.17)

f ′2 =
1

h

[(

2β2

3
−

1

3

)

f1−

(

8β2

3
+

1

2

)

f2+

(

4β2+1

)

f3−

(

8β2

3
+

1

6

)

f4+
2β2

3
f5

]

, (3.18)

f ′N−1=
−1

h

[(

2βN−1

3
−

1

3

)

fN−

(

8βN−1

3
+

1

2

)

fN−1+

(

4βN−1+1

)

fN−2

−

(

8βN−1

3
+

1

6

)

fN−3+
2βN−1

3
fN−4

]

, (3.19)

f ′′2 =( f1−2 f2+ f3)/h2, (3.20)

f ′′N−1=( fN−2 fN−1+ fN−2)/h2, (3.21)

where β2 =−0.025 and βN−1 = 0.09. These, boundary and the near-boundary stencils
provided in [19] display improved numerical properties and are used in the present work
while solving non-periodic problems.
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Figure 2: Numerical amplification factor |Gj| contours and the normalized numerical group velocity VgN/c

contours are shown in (a) for the solution of 1D wave equation when the spatial discretization is obtained
through the spectrally optimized CCD scheme while RK4 for the time integration.

3.2 Incompressible flow solver

Calculation of the electrohydrodynamic equations begins with solving the following two
equations in the projection step [20]

un+1−un+ 1
2

∆t
=−∇pn+1, (3.22)

∇·un+1=0. (3.23)

Substitution of Eq. (3.22) into the semi-discretized momentum equation leads to

un+1−un

∆t
+
(

un+ 1
2 ·∇

)

un+ 1
2 −

1

Re
∇2un+ 1

2 +∇pn+1=M1+M2+ f n+1. (3.24)

In the above, M1=[(un+ 1
2 ·∇)∇pn+1+(∇pn+1·∇)un+ 1

2 − 1
Re∇

2(∇pn+1)]∆t, M2=−[(∇pn+1·

∇)∇pn+1]∆t2 and the Coulomb force vector f n+1= n0eζ0

ρU2
0
(n−−n+)▽(ψ+φ).
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Let pn+1 = p∗+p′, the equation used in the pressure-gradient step is decomposed

into the equations (u∗−un+ 1
2 )/∆t =−∇p∗ and (un+1−u∗)/∆t =−∇p′, where p∗ is an

intermediate pressure [20]. Then, Eq. (3.24) is reformulated as

un+1−un

∆t
+(u∗ ·∇)u∗−

1

Re
∇2u∗+∇p∗=−∇p′+M3+M4+ f n+1, (3.25)

where M3=[(u∗ ·∇)∇p′+(∇p′ ·∇)u∗]∆t− 1
Re∇(∇·u∗)∆t and M4=−[(∇p′ ·∇)∇p′ ]∆t2.

In order to reduce the computational cost, the following algorithm is employed [20].
Given the solutions for the velocity u∗

1 , pressure p∗0 , and p
′

0.
For s=1,2,···

un+1
s −un

∆t
+u∗

s ·∇u∗
s −

1

Re
∇2u∗

s +∇p∗s−1=−∇p
′

s−1+M3+M4+ f n+1, (3.26)

p∗s = p∗s−1+p′s, (3.27)

u∗
s+1=un+1

s −∆t∇p′s . (3.28)

By performing the divergence operator on the equation (un+1−u∗)/∆t=−∇p′, we can
get ∇·un+1 =∇·u∗−∆t∇2 p′. The divergence-free condition ∇·un+1 = 0 is enforced to
yield the pressure correction equation ∇2 p′=∇·u∗/∆t. At each interior point (i, j), the
centered difference approximation given below for ∇2 p′=∇·u∗/∆t is [20]

2

(

1

∆x2
+

1

∆y2

)

p′i,j =−
∇·u∗

i,j

∆t
+

1

∆x2
(p′i−1,j+p′i+1,j)+

1

∆y2
(p′i,j−1+p′i,j+1). (3.29)

Note that the term (1/∆x2)(p′i−1,j+p′i+1,j)+(1/∆y2)(p′i,j−1+p′i,j+1) is omitted so as to ob-

tain the following equation

p′i,j =−
∆x2∆y2

2(∆x2+∆y2)∆t
∇·u∗

i,j. (3.30)

Use of the above derived expression for the pressure correction term over-estimates the
predicted pressure due to the term being omitted. For the compensation of the term
associated with the previously mentioned omission term, Eq. (3.30) is used first to get the
following pressure correction term p′∗

p′∗i,j =−
∆x2∆y2

2(∆x2+∆y2)∆t
∇·u∗

i,j. (3.31)

This is followed by calculating the pressure correction from the value of p′∗ according to

p′i,j = p′∗i,j+
∆y2

2(∆x2+∆y2)
(p′∗i−1,j+p′∗i+1,j)+

∆x2

2(∆x2+∆y2)
(p′∗i,j−1+p′∗i,j+1). (3.32)
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3.3 Algorithm

Before proceeding to the discussion of numerical results for the solution of coupled Navier-
Stokes and PNP equations, we provide here an algorithm for solving these equations in
a coupled manner. For the solution of electroosmotic flow, one needs to solve Eq. (2.18)
to Eq. (2.23) at every time step. All the spatial derivatives involved in these equations
are obtained using the proposed spectrally optimized CCD scheme. For a constant elec-
tric field, potential φ does not vary with time and its effects are directly accounted in
Eqs. (2.19), (2.20), (2.22) and (2.23). We have followed the following algorithm while
solving the coupled PNP-NS equations.

1. For a given externally applied electric field, solve Eq. (2.20) iteratively to obtain
potential ψ resulting from the charges attached to channel walls till the desired
convergence is achieved.

2. Solve transport equations for the positive and negative charge densities as given by
Eqs. (2.22) and (2.23), respectively using explicit Euler time marching technique.

3. Solution of the Navier-Stokes equations Eq. (2.18) and Eq. (2.19) should be obtained
satisfying the incompressibility constraint as explained in Section 3.2.

4. Repeat the steps (1)-(3) till the steady state is achieved.

4 Verification studies

Here, the performance of the newly developed high resolution upwinding CCD scheme
applied for solving electroosmotic flow equations has been studied. For this purpose,
four different special cases in which the Navier-Stokes equations amenable to analyti-
cal solution are considered. We have compared the numerical and the exact solutions
for three simplified PNP equations, which are derived under different assumptions, in
Sections 4.1-4.4.

4.1 Analytical problem

We have considered a square domain 0≤ x,y≤1 for obtaining the solution from Navier-
Stokes equations without considering the Coulomb force term. It is assumed that the
exact solutions for the velocity vector and the scalar pressure take the forms of u(x,y)=

−2(1+y)
(1+x)2+(1+y)2 , v(x,y) = 2(1+x)

(1+x)2+(1+y)2 and p(x,y) = −2
(1+x)2+(1+y)2 provided that the source

terms are derived accordingly by substituting the exact solutions into their respective
Eq. (2.12) and Eq. (2.13). In addition, the exact solutions for n+, n−, ψ, φ are also assumed
to take the following forms provided that the source terms are derived by substituting
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Table 1: The computed L2 error norms in six uniform grids for the Navier-Stokes equations.

Grid 102 202 302 402 502 602

u 1.77×10−4 5.70×10−5 2.65×10−5 1.52×10−5 9.82×10−6 6.83×10−6

v 2.12×10−4 5.60×10−5 2.54×10−5 1.44×10−5 9.32×10−6 6.50×10−6

p 7.45×10−3 2.02×10−3 1.02×10−3 6.39×10−4 4.44×10−4 3.30×10−4

Table 2: The computed L2 error norms in six uniform grids for n±, ψ and φ in the Poisson-Nernst-Planck
equations.

Grid 102 202 302 402 502 602

n+ 7.03×10−4 2.00×10−4 9.32×10−5 5.35×10−5 3.46×10−5 2.41×10−5

n− 1.50×10−4 4.41×10−5 2.11×10−5 1.27×10−5 8.85×10−6 6.75×10−6

ψ 1.06×10−5 2.76×10−6 1.20×10−6 6.49×10−7 3.94×10−7 2.58×10−7

φ 3.60×10−5 9.49×10−6 4.29×10−6 2.44×10−6 1.57×10−6 1.10×10−6

the exact solutions for u, v, p into their respective Eqs. (2.14)-(2.17)

n+(x,y)=
−2(1+y)

(1+x)2+(1+y)2
, (4.1)

n−(x,y)=
−2(1+y)

(1+x)2+(1+y)2
, (4.2)

ψ(x,y)=
−2

(1+x)2+(1+y)2
, (4.3)

φ(x,y)=
−2

(1+x)2+(1+y)2
. (4.4)

Calculations were performed on the different equi-spaced meshes with grid spacings
1/10, 1/20, 1/30, 1/40, 1/50, 1/60. For these calculations, time step of ∆t=10−6 has been
used. The predicted L2 error norms are tabulated in Tables 1 and 2. The resulting spatial
rates of convergence are shown in Figs. 3 and 4. Solution obtained on the coarsest grid
with a grid spacing of 1/10 has the maximum error of the order of 10−3 which can be
reduced further as we reduce the grid spacing. Thus, the proposed upwinding combined
compact difference scheme and the employed segregated solution solver are verified.

4.2 Mixed electroosmotic and pressure driven flow problem

Fig. 5 shows a schematic of the electroosmotic fluid flow bounded between two parallel
planar plates (marked as electrodes). An external electric field has been applied across
the right and left boundaries as shown in Fig. 5. Externally applied electric field inter-
acts with the fluid inside the EDL, thereby leading to an electrokinetic body force or an
electroosmotic force which acts on the bulk flow. As a result, fluid between two elec-
trodes is set into motion. Under the approximation detailed in [21], the PNP equations
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Figure 3: The computed spatial rates of convergence for u,v,p by solving the Navier Stokes equations, which
are amenable to exact solutions.
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Figure 4: The computed spatial rates of convergence for n+,n−,φ and ψ by solving the PNP equations, which
are amenable to exact solutions.

are simplified to the following two equations for a symmetric electrolyte

∂p

∂x
=

∂2U

∂y2
+

∂2ψ

∂y2
, (4.5)

∂2ψ

∂x2
+

∂2ψ

∂y2
=βsinh(αψ). (4.6)

In the above, ψ denotes the normalized electroosmotic potential with respect to the zeta
potential ζ0. The ionic energy parameter α and the variable β shown in the Poisson-
Boltzmann equation (4.6) are defined as α= ezζ0/kbT and β=(ωh)2/α, where ω=1/λ=
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Computational Domain
E
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Electrode

Electrode

Figure 5: Schematic of the mixed electroosmotic and pressure driven flow problem described in Section 4.2.

( 8πn0e2z2

DkbT )1/2. Here the parameters e, z, kb, T, h, λ, n0 denote the electron charge, valence,
Boltzmann constant, absolute temperature, characteristic length, Debye length and ion
density, respectively.

The solution of the Poisson-Boltzmann equation (4.6) has been analytically derived
by Burgreen and Nakache [22] for the specified values of α and β. The analytical solution
for Eq. (4.6) is given below for α=1 and β=104 [21] as,

ψ(y)=4tanh−1

[

tanh

(

1

4

)

e−100(1−y)

]

. (4.7)

For the prescribed pressure gradient and the normalized electroosmotic potential ψ(y),
the ionized symmetric fluid flow velocity across the microchannel can be given as

u(y)=−
1

2

dp

dx

(

1−y2
)

+1−ψ(y). (4.8)

In this study, the complete set of the PNP equations is solved in the two-dimensional
channel under the five specified pressure gradient values dp/dx (=χ=1,0.5,0,−0.5 and
−1). Thus the prescribed pressure gradient and the distribution of electroosmotic force
in the domain as shown in Eq. (4.8) play a significant role in flow development. For this
study, we have considered a square domain 0 ≤ x,y ≤ 1 which is divided into 41 grid
points in each direction. The grid points are uniformly distributed in the x-direction
while these points are clustered in the y-direction near the upper electrode. Calculations
are preformed with a time step of 10−6.

The predicted and the corresponding exact velocity profiles for different imposed
pressure gradients χ are shown in Fig. 6. No-slip condition applied on the surface of
the electrode at y= 1 results in a boundary layer kind of sharp variation in the velocity
profiles. For the negative pressure gradient cases (χ =−0.5 and −1) flow experiences
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Figure 6: Comparison of the predicted and exact velocity profiles u(y) at different streamwise pressure gradients
for the mixed electroosmotic and pressure driven flow problem considered in Section 4.2.
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Figure 7: Comparison of the predicted and exact electric potentials ψ(y) for the mixed electroosmotic and
pressure driven flow problem considered in Section 4.2.

a favorable pressure gradient along the horizontal direction, causing therefore fuller ve-
locity profiles. Flow for such case is very stable and less susceptible to separation and
transition. In contrast, for the adverse pressure gradient case a considerable reduction
in velocity is shown at y = 0. Velocity profiles for the adverse pressure gradient cases
show that such flows are susceptible to the applied or background disturbances and are
therefore more unstable. In all of the cases, we observe a sharp variation in velocity pro-
file near the top electrode y= 1 which is essentially due to the dominant electroosmotic
force in that region. This is also observed from the computed electric potential ψ profiles
in Fig. 7. The effect of electroosmotic force decreases considerably away from the elec-
trode and in that region the prescribed pressure gradient plays an important role in flow
evolution.

The computed velocity profiles u(y) in Fig. 6 corresponding to the different stream-
wise pressure gradients are all agreed well with the exact velocity profiles [21]. In Fig. 7,
the computed electric potential ψ has an excellent agreement with the exact potential,
given in [21], as well.
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4.3 Electroosmotic flow of Patankar and Hu [12]

Next, we consider the electroosmotic flow within two planar plates as shown in Fig. 8.
Fluid flow has been subjected to the boundary conditions as shown in this schematic.
This case has been investigated in [12]. PNP equations can be further simplified using
the various assumptions listed in [12]. The resulting dimensionless equations for the
EDL potential ψ and the electroosmotic velocity along the y-direction are as follows [12]

d2ψ

dy2
=(κh)2ψ, (4.9)

Re
∂u

∂t
=

∂2u

∂y2
−(κh)2ψ. (4.10)

In the above, h, κ−1 and Re denote the channel width, Debye length, and Reynolds num-

ber, respectively. Here, the Reynolds number is defined as Re=ρ
ϕǫζ
µH

h
µ , where ρ is the fluid

density, µ the fluid viscosity, ζ the zeta potential and H the channel length.

E

Electrode

Electrode

u = 0, v = 0, ψ = ζ0, ∂φ/∂y = 0

u = 0, v = 0, ψ = ζ0, ∂φ/∂y = 0

∂v / ∂x = 0

∂ψ / ∂x = 0
φ = φ2

∂u / ∂x = 0
∂v / ∂x = 0

∂ψ / ∂x = 0
φ = φ1

∂u / ∂x = 0

Figure 8: Schematic of the electroosmotic flow problem of Patankar and Hu [12] in Section 4.3.

In this example, the changes in velocity and electric potential profiles are studied for
different Debye lengths K = (κh)−1 corresponding to the Reynolds number of 0.05. We
compute numerical solutions at two different dimensionless Debye lengths K=15 and 25.
A square domain 0≤x,y≤1 has been considered. We have constructed a grid with 21×21
nodal points. The grid points are clustered near the electrodes in wall normal direction
while we have distributed equi-spaced grid points along the electrodes. Calculations are
preformed with a time step of 10−6. Analytical solution of ψ can be derived as [12],

ψ(y)=
cosh[ κh(y− 1

2 ) ]

cosh( κh
2 )

. (4.11)
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Figure 9: Comparison of the predicted and exact velocity profiles u(y) at K=15 and 25 for the Patankar and
Hu electroosmotic flow problem considered in Section 4.3.
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Figure 10: Comparison of the predicted and exact profiles of the electric potential ψ(y) for the electroosmotic
flow problem of Patankar and Hu considered at K=15 and 25.

The steady-state solution for u has been derived as follows in [12] using the exact solution
in Eq. (4.11)

u(y)=
cosh[ κh(y− 1

2) ]

cosh( κh
2 )

−1. (4.12)

Fig. 9 compares the velocity profiles obtained for the Debye lengths of 15 and 25. An
increase of the Debye length causes stronger interaction between the mobile charged par-
ticles and the surrounding fluid. This results in a higher Coulomb force, thereby causing
a sharper velocity profile to develop for the K = 25 case as compared to the case with
K= 15. Higher value of Debye length also results in steep profile for the electric poten-
tial as shown in Fig. 10. On the top and bottom electrodes, one observes the maximum
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magnitude of the electric potential which decreases rapidly in the wall normal direction.
Thus, the induced Coulomb force is significant only in the small zone close to the elec-
trode. Good agreement between the computed and the exact solutions can be clearly seen
in Fig. 9 for the streamwise velocity profiles and in Fig. 10 for the electric potential. Thus,
the proposed upwinding combined compact difference scheme and the developed flow
solver provide consistent results for the coupled NS and PNP equations.

4.4 Electroosmotic flow due to the specified EDL potential and streamwise
electric field

In this final verification study, we have considered a steady fully-developed electroos-
motic flow in an open planar conduit. Uniform potentials ψu,w and ψb,w are applied at
the top and bottom walls, respectively. Under the assumptions described in [23], the PNP
equations derived in Section 2 can be further simplified to the following two dimension-
less equations for ψ and U.

∂p

∂x
=

∂2U

∂y2
+

∂2ψ

∂y2
, (4.13)

∂2ψ

∂x2
+

∂2ψ

∂y2
=

1

λ2
D

sinh(ψ). (4.14)

In Eq. (4.14), λD (= λ∗/H) denotes the dimensionless thickness and λ∗ denotes the di-
mensional thicknesses of the Debye layer. Here, H is the characteristic length and we
have chosen λD =0.01. The following exact solutions are derived at the prescribed value
of pressure gradient −∂p/∂x for Eqs. (4.13)-(4.14) in [23].

ψ(y)=4tanh−1

[

tanh

(

ζ1

4

)

e
(− 1−y

λD
)
]

+4tanh−1

[

tanh

(

ζ2

4

)

e
(− 1+y

λD
)
]

, (4.15)

u(y)=−

[

ψ(y)+
ζ2−1

2
y−

ζ2+1

2

]

+
y2−1

2

∂p

∂x
. (4.16)

In this study, the PNP equations have been solved subjected to the boundary con-
ditions as shown in the schematic Fig. 11. At the upper wall, a fixed potential value
ψu,w=1 has been prescribed. The effect of different potentials applied on the bottom wall
(ψb,w =−1,−0.5,0,0.5,1) on the development of velocity profiles has been studied here.
Streamwise pressure gradient has been specified as ∂p/∂x = 2. We have considered a
domain 0≤x≤1, −1≤y≤1. A grid with 31×31 nodal points has been constructed. These
grid points are clustered near the electrodes in wall normal direction while we have used
equi-spaced grid points along the parallel electrodes. Calculations are preformed with
a time step of 10−7. Fig. 12 shows that the combination of the adverse pressure gradi-
ent and negative wall potential leads to the formation of inflection point in the velocity
profile. As one applies a higher positive potential at the bottom wall, tendency of flow
reversal is reduced. However, flow velocity in the central region of the domain has been
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Figure 11: Schematic of the electroosmotic flow due to the specified EDL potential and the streamwise electric
field.
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Figure 12: Comparison of the predicted and exact profiles u(y) at different values of ψb,w for the electroosmotic
flow generated by the specified EDL potential and the streamwise electric field.

severely affected due to the significant adverse pressure gradient. Velocity profiles pre-
dicted at different potentials applied on the bottom wall in Fig. 12 and the profiles of ψ
in Figs. 13 and 14 show good match with the analytical solutions.

5 Numerical results

After verifying the proposed scheme and the incompressible flow solver, we obtain im-
portant physical details about the electroosmotic flow development in two different chan-
nel geometries. The electroosmotic flow between two parallel planar plates is investi-
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Figure 13: Comparison of the predicted and exact electric potential profiles for the cases investigated at ψb,w=
-1, 0, 1.
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Figure 14: Comparison of the predicted and exact electric potential profiles for the cases investigated at ψb,w
= -0.5, 0.5.

gated first in Section 5.1. In Section 5.2 the electroosmotic flow inside a wavy channel has
been considered.

5.1 Electroosmotic flow between two parallel plates

The electroosmotic flow inside a parallel channel with the planar upper and lower plates
separated by a distance h= 2×10−5m has been investigated. Schematic of the problem
along with the boundary conditions is shown in Fig. 15. Eqs. (2.18)-(2.23) are solved at
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Figure 15: The specified boundary conditions and mesh distribution for solving the electroosmotic flow in a
straight and parallel channel.
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Figure 16: Comparison of the velocity profiles in a parallel channel under different driven forces.

ρ=1000kg/m3 , µ=0.91×10−3Ns/m2, T0=300K, z=1, ǫ=80, ζ0=−25mV, n0=3×1019m−3,
λD=1.38×10−6m. The physical domain is a rectangle with the dimensionless length of 4
and height of 1, where the characteristic distance is h=2×10−5m. Given the characteristic
length and velocity, which is U0=−ǫǫ0ζ0Ex/µ [21], the Reynolds number Re (≡ρU0h/µ)
and K (≡ h/λD) turn out to be 0.05 and 15, respectively. In the above expression the
parameter Ex indicates the externally applied electric field.

Simulations are performed in a mesh with 41×21 grid points as shown in Fig. 15.
One of the main motivations behind the present study is to reveal the difference between
the pressure-driven and the electroosmotic force-driven flowfields. Due to the prescribed
inlet and outlet boundary conditions, flow eventually achieves steady state. In Fig. 16,
the velocity profile obtained for the pressure-driven flow has been compared with that for
electroosmotic flow. One can observe a parabolic kind of profile for the pressure driven
case. In contrast, for the electroosmotic flow case the velocity profile is much sharper
with a fully developed kind of variation due to dominant Coulomb force near the top
and bottom walls. The velocity profile in electroosmotic flow also suggests that there is
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Figure 17: Comparison of the pressures in a parallel channel under different driven forces.

an increased mass flow due to the action of Coulomb force as compared to the pressure
driven flow case. Thus apart from controlling flow instabilities, one can control the net
mass flux as well in electroosmotic flow case.

In Fig. 17, one can observe that the pressure across the channel almost remains un-
changed for the pressure-driven flow case. In contrast, a sharply varying pressure is
observed near the walls for the electroosmotic flow case. This is essentially due to the
coupling between Navier-Stokes and PNP equations. Higher Coulomb force near the top
and bottom walls changes the overall velocity as well as the pressure field itself.

The dominant nature of Coulomb force near the top and bottom walls can be also
observed from the predicted profiles of n+(y), n−(y), ψ and Φ in Fig. 18. Since we have
applied negative zeta potential at the electrodes, accumulation of large positive ions n+

near the top and the bottom boundaries is observed. Subsequently, the concentration
of positive ions reduces in regions away from the walls. In contrast, there is a higher
concentration of negative ions n−(y) in the central region (y=0.50) of the domain. This
concentration reduces as we approach the top and bottom walls. Similarly, electric po-
tential (ψ) due to the charges attached to the wall and due to externally applied electric
field vary significantly near the top and bottom walls.

Based on the computed solutions, the force vectors are plotted in Fig. 19. The pre-
dicted magnitudes of force vectors indicate that the Coulomb force is dominant near the
wall. In contrast to the classical incompressible viscous channel flow, the predicted force
vectors point towards the no-slip channel walls due to the Coulomb force pointing to-
wards the lower and upper walls. Thus the Coulomb force can significantly reduce the
tendency of flow to undergo flow separation. This also highlights the stabilizing nature
of the additionally introduced Coulomb force via the coupled Navier-Stokes and PNP
equations.
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Figure 18: The predicted profiles of n±, ψ and Φ are plotted with respect to y. (a) n+; (b) n−; (c) ψ; (d) Φ.
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Figure 19: The predicted electroosmotic force vector in the investigated straight channel.

In Fig. 20, different forces which play an active role in the flow development inside the
straight channel are compared. Coulomb force resulting from the externally applied elec-
tric field plays a dominant role, as shown in Fig. 20, thereby causing the steeper velocity
profile, as shown in Fig. 16, to develop. However, this force is dominant only near the top
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Figure 20: Comparison of the Coulomb and pressure gradient forces at x=2 in a straight channel.

and bottom walls. As noted earlier, the total electric potential can be summed up as the
potential due to charge attachment to electrodes and the potential due to external elec-
tric field. In Fig. 20, we have shown the resultant force variation due to these individual
potentials. Fig. 20 shows that the pressure gradient force −∂p/∂x and the Coulomb force
due to zeta potential are both negligibly small. However, the externally applied electric
field plays a significant role in Coulomb force formation and it significantly controls the
flow development near the parallel walls.

Comparison of the convective flux, diffusive flux, and migration flux is shown in
Fig. 21 for positive and negative ions. For n+, the electromigration flux dominates near
the two negatively-charged planar plates. In contrast, for negative charge the negative-
valued diffusive flux dominates the convection and mobility fluxes. Since the planar
walls are negatively charged, electromigration flux increases sharply in the direction ap-
proaching lower and upper walls. The electromigration flux for the negative ion has a
mild variation near the electrodes. The edge of Stern layer and the predicted diffuse and
boundary layers are also plotted in Fig. 22 for providing a clear picture of all the impor-
tant layers formed near the channel walls.

5.2 Electroosmotic flow between two wavy plates

Schematic of the electroosmotic flow in the wavy channel is shown in Fig. 23. This case
has been investigated under the similar conditions as described in Section 5.1. For the
comparison sake, velocity, pressure, pressure gradient and the Coulomb force resulting
from the formation of zeta potential are plotted at the three different streamwise planes
x= 1.2, 2 and 2.8. Note that the wavy channel surface imposes a continuously varying
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Figure 21: Comparison of the predicted profiles of −▽·n±u, ▽·(▽n+)/ScRe and ▽·(n+▽Φ)/ScRe for ions
n+ and n− in a straight channel. (a) positive ion; (b) negative ion.

pressure gradient as fluid flows inside the channel. This results in a continuous variation
either in velocity or in pressure field inside the channel. Fig. 24 shows the profiles of
streamwise velocity component u(x,y), transverse velocity component v(x,y) and pres-
sure p(x,y) at x= 1.2, 2 and 2.8. For the purpose of illustrating the wall effects on flow
development, the solution obtained in planar channel is also plotted in the same figure.
The symmetric nature of the u-velocity profile observed for the case of flow inside a pla-
nar channel is lost in the case of flow inside a wavy channel.

The wavy configuration of the channel imposes a spatially varying pressure field in
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Edge of velocity boundary layer

Figure 22: The predicted edges of the diffuse layer, velocity boundary layer and Debye layer.
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Figure 23: (a) The specified boundary conditions and mesh point distribution for solving the electroosmotic
flow problem in wavy channel; (b) The predicted velocity contours in a wavy channel.

the complete domain, thereby causing flow acceleration as well as flow retardation to
occur in different parts of the domain. Thus in case of electroosmotic flow inside a wavy
channel, in addition to the Coulomb force there is a significant favorable or adverse pres-
sure gradient force present at different sections of the wavy channel.
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Figure 24: Comparison of the velocity and pressure profiles in parallel and wavy channels. (a) velocity u; (b)
velocity v; (c) pressure p.

Like the case predicted in the planar channel, the Coulomb force is prevailing near
the upper and lower walls. Also, the force vectors plotted in Fig. 25 point towards the
walls. The negative v-velocity profiles in Fig. 24 (b) is also observed near the wall. In the
region between the cross-sections x=2 and x=3 on the top wavy wall, one can observe
that surface curvature causes a strong adverse pressure gradient to develop. However,
the distribution of velocity vectors shows reduced tendency to undergo flow separation
due to the effective Coulomb force near the walls.

At the three chosen streamwise locations, we plot as before the forces leading to flow
motion in wavy channel. In Figs. 26, 27, 28, the dominant force is the Coulomb force near,
in particular, the walls rather than the pressure gradient force. In these figures, one can
also observe that the Coulomb force generated from the externally applied electric field
dominates the force resulting from the formation of zeta potential at all the three cho-
sen streamwise planes. In all of the cases, dominant Coulomb force generated from the
externally applied electric field exhibits an almost symmetric variation across different
cross-sections of the wavy channel. However, the imposed favorable or adverse pres-
sure gradient due to wavy surface causes an unsymmetrical variation of velocity profile
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Figure 25: The predicted force vector plots in the investigated wavy channel.
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Figure 26: (a) Comparison of forces; (b) velocity profile u (x=1.2) in the investigated wavy channel.

to develop. For example, before reaching the location x = 1.2, flow on the lower wall
experiences adverse pressure gradient while on the top wall flow experiences favorable
pressure gradient. This asymmetrically imposed pressure gradient causes flow accelera-
tion on the top surface and flow retardation on the bottom surface. This is observed in
the velocity profile at x=1.2 as shown in Fig. 26. Similarly, one can explain variations in
the velocity profiles at locations x=2 and x=2.8 in Figs. 27, 28.

One can also observe from Fig. 29 that the Coulomb force generated by zeta potential
as well as the pressure gradient force are responsible for the asymmetric force distribution
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Figure 27: (a) Comparison of forces; (b) velocity profile u (x=2) in the investigated wavy channel.
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Figure 28: (a) Comparison of forces; (b) velocity profile u (x=2.8) in the investigated wavy channel.
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Figure 29: Comparison of the Coulomb and pressure gradient forces in the investigated wavy channel. (a)
Coulomb forces generated by the zeta potential; (b) profiles of the pressure gradient force in x direction.

inside wavy channel. For the case of electroosmotic flow inside a plane channel, the
imposed pressure gradient is zero while in the case of wavy channel, imposed pressure
gradient sharply varies near the top and bottom surfaces.

In the end, relative significance of the velocity and concentration profiles has been
shown in Fig. 30 for the problem discussed in Section 5.1. Fig. 30 shows that the concen-
tration profiles have much sharper variation as compared to the boundary layer profiles
while the profiles for the zeta potential and electric potential have similar variation. For
the negatively charged top and bottom surfaces, there is a sharper variation of the n+ ion
profile as compared to the profile for the n− ion.

6 Concluding remarks

In this study we have investigated the motion of an electroosmotic flow bounded by the
negatively charged upper and lower plates by solving a set of differential equations com-
posed of the Poisson-Nernst-Planck equations and the nonlinear incompressible Navier-
Stokes equations. Due to the near-wall sharply varying velocity profile caused by an
externally applied electric field, the combined compact difference scheme which yields
sixth-order accuracy for the diffusion (or second-order derivative) terms and seventh-
order accuracy for the convection (or first-order derivative) terms is developed in a stencil
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Figure 30: The predicted profiles of problem 5.1. (a) velocity profiles; (b) concentration profiles; (c) profiles of
ψ; (d) profiles of Φ.

of five grid points. For enhancing convective numerical stability and improving disper-
sive accuracy, the method underlying the minimization of numerical wavenumber error
is adopted to develop the upwinding combined compact difference scheme. Without in-
troducing any flux or slope limiter into the scheme development, we still can resolve high
gradient solution profile near the wall without exhibiting unphysical oscillations.

The proposed scheme for approximating the spatial derivative terms and the devel-
oped incompressible Navier-Stokes flow solver based on the pressure-velocity coupling
DFC method are used to solve the model problems amenable to analytical solutions. This
computationally verified code developed for solving the coupled PNP and NS equations
is subsequently applied to solve the electroosmotic flow inside planer and wavy chan-
nels. The transport phenomena of charges in both channels are investigated with the
emphasis on investigating the roles of diffusion and electromigration terms leading to
flow motion. In addition, the relative significance of the different forces arising from the
pressure gradient, viscous diffusion and Coulomb force terms in flow development has

https:/www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.230914.040615a
Downloaded from https:/www.cambridge.org/core. National Taiwan University Library, on 26 Jun 2017 at 06:49:49, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.230914.040615a
https:/www.cambridge.org/core


532 T. W. H. Sheu et al. / Commun. Comput. Phys., 19 (2016), pp. 496-533

been also discussed. The effect of channel curvature on electroosmotic flow motion in the
wavy channel is also studied here.

In the present analysis of electroosmotic flowfields in plane as well as wavy channels,
we conclude that the electroosmosis process can be used as an effective way to control
fluid flow inside micro-channels. The additional Coulomb force resulting in this process
dominates near the electrode surfaces and significantly controls flow development.
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