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Abstract. This study aims to develop a numerical scheme in collocated Cartesian grids
to solve the level set equation together with the incompressible two-phase flow equa-
tions. A seventh-order accurate upwinding combined compact difference (UCCD7)
scheme has been developed for the approximation of the first-order spatial derivative
terms shown in the level set equation. Developed scheme has a higher accuracy with a
three-point grid stencil to minimize phase error. To preserve the mass of each phase all
the time, the temporal derivative term in the level set equation is approximated by the
sixth-order accurate symplectic Runge-Kutta (SRK6) scheme. All the simulated results
for the dam-break, Rayleigh-Taylor instability, bubble rising, two-bubble merging, and
milkcrown problems in two and three dimensions agree well with the available numer-
ical or experimental results.

AMS subject classifications: 35Q30, 76D05, 76D27, 76M20

Key words: Level set equation, upwinding combined compact difference scheme, three-point
grid stencil, minimize phase error, symplectic Runge-Kutta.

1 Introduction

It is computationally difficult to predict flow equations subject to a sharply varying inter-
face between the air and water. Interface tracking methods encounter deformed meshes
that conform to the interface in the Lagrangian sense. The meshes should, as a result,
explicitly adapt to the interface. In interface capturing methods, interface is an implicit
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function defined in a fixed mesh. The advantages and disadvantages of applying the
Lagrangian type of interface tracking and the Eulerian type of interface capturing meth-
ods have been reported in the literature. However, it is still difficult to conclude which
methodology is superior to the other.

ALE (Arbitrary Lagrangian Eulerian) [1] method has been well known to be very effi-
cient in modeling a small interface deformation. When interface undergoes a large defor-
mation, a computationally very expensive re-meshing procedure is needed. Boundary
integral methods [2–4] were developed to discretize equations along only the interface
that separates different liquids, making this class of methods a very attractive one. How-
ever, every time when an interface has been merged or split, a time consuming effort is
inevitable to continue the computation using the boundary integral method.

The Eulerian based methods in [5–12] are also applicable to the problems having not
only a complicated interface but also to the problems involving physical complexities.
The VOF method normally involves using a color function and has the ability of conserv-
ing the volume of each fluid phase more exactly. The other successful approach devel-
oped to model two-phase flows is known as the level set method [13, 14]. The level set
function described by Sussman, Smereka and Osher [15] can be easily transported and
accurately calculated, respectively. Choice of a proper signed distance function for the
sake of re-shaping level set function and implementing re-initialization procedure for the
purpose of enhancing numerical stability are normally required while applying level set
methods [16].

Level set method applied to simulate interface is known to have the problem regard-
ing the numerical dissipation and mass conservation. Many attempts have been made to
circumvent these difficulties [17]. Among them, one can straightforwardly improve the
accuracy of the level set solution by the high-order discontinuous Galerkin method [16].
For improving the mass conservation property of the level set method, one can also ap-
ply hybrid methods. This class of methods, such as the coupled level set volume of fluid
(CLSVOF) method [18] and the particle level set (PLS) method [17], combines an accurate
Lagrangian tracking method with the level set method [19]. It is also numerically possible
to optimize the level set method by the spatially adaptive method [19] to improve mass
conservation. Different adaptive mesh refinements have been conducted to improve the
predicted level set solution near the interface considerably, thereby improving the degree
of mass conservation. The other method known as the conservative level set method [20]
solves the level set equation in conservative form. This method introduces Heaviside
function to get a sharp interface approximation. Smearing of the solution with time can
be avoided by applying nonlinear re-initialization equation in the simulation of level set
equation. For an overview of the level set methods, one can refer to [21–25].

In this paper, a seventh-order upwinding combined compact difference scheme
(UCCD7) with the smallest numerical phase error is developed for reducing the dis-
persion error generated from the discrepancy between the effective and actual scaled
wavenumbers. This scheme can predict interface excellently and avoid mass accumula-
tion or depletion. This paper is organized as follows. Section 2 describes the method for



C.-H. Yu and T. W.-H. Sheu / Commun. Comput. Phys., x (2015), pp. 1-26 3

the simulation of two-phase flow system which couples the Navier-Stokes equations with
the level set equation. In Section 3, the numerical methods developed for the level set and
Navier-Stokes equations are described. Section 4 is devoted to the dispersion analysis of
the proposed UCCD7 scheme. The computer code is verified in Section 5 by solving
the level set equation subjected to sharply varying flow conditions. Section 6 presents
the predicted results for the problems of dam-break, Rayleigh-Taylor instability, bubble
rising, two-bubble merging, and droplet falling in water. Finally, some conclusions are
drawn in Section 7.

2 Governing equations

2.1 Free surface equation

In this study the level set method is applied to predict the time-varying interface (or free
surface) in the two-phase flow domain. At a surface identified to have the zero level set
value, i.e. φ(x,t) = 0, both kinematic and dynamic boundary conditions are specified.
The kinematic boundary condition is interpreted in the Lagrangian sense, implying that
fluid particles on a surface stay always on that surface. We can therefore mathematically
express this condition by the advection equation given below for the level set function φ
whose value is zero at the free surface

φt+u·∇φ=0. (2.1)

The vector u denotes the flow velocity.
The level set function φ is initially prescribed to have the signed distance values,

which are (i) φ=−d for x∈Ωgas, (ii) φ=0 for x∈Γ f ree sur f ace, and (iii) φ=d for x∈Ωliquid,
in gas and liquid domains. Here, d denotes the absolute normal distance to the interface.
Over a time step ∆t, the value of φ will be computed from Eq. (2.1). The solution com-
puted from this equation is then employed as the initial solution to solve the following
re-initialization equation so that φ can be always kept as a distance function

φτ+sgn(φ0)(|∇φ|−1)=λδ(φ)|∇φ|. (2.2)

In the above, sgn(φ0)=2(H∗(φ0)− 1
2) and the smoothed Heaviside function H∗ is given

below

H∗(φ)=





0; if φ<−ǫ,
1
2 [1+

φ
ǫ +

1
π sin(πφ

ǫ )]; if |φ|≤ǫ,

1; if φ>ǫ.

(2.3)

The Dirac delta function δ(φ) shown in (2.2) is approximated by

δ(φ)=

{
0; if |φ|>ǫ,
1
2ǫ [1+cos(πφ

ǫ )]; if |φ|≤ǫ.
(2.4)
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It is noted that in all calculations, ǫ is chosen as 2∆x. To conserve the area bounded by
the fluid interface, the parameter λ shown in Eq. (2.2) is prescribed as [22]

λ=−
∫

Ωi,j
δ(φ)(−sgn(φ0)(|∇φ|−1)) dΩ

∫
Ωi,j

δ2(φ)|∇φ| dΩ
. (2.5)

2.2 Navier-Stokes equations and fluid property representation

In the present investigation, the liquid and gas are both assumed to be incompressible
and immiscible. The resulting equations of motion for these fluid flows can be repre-
sented by the following dimensionless incompressible Navier-Stokes equations

ut+(u·∇)u=
1

ρ(φ)

[
−∇p+

1

Re
∇·(2µ(φ)D)− 1

We
δ(φ)κ(φ)∇φ

]
+

1

Fr2
ēg, (2.6)

∇·u=0. (2.7)

Eq. (2.6) involves the Dirac delta function δ, level set function φ, and the dimensionless
Reynolds number Re (=ρrurlr/µr), Froude number Fr (=ur/

√
glr), and Weber numbers

We (= ρru2
r lr/σ). In the above, σ is the surface tension coefficient and ur,lr,ρr,µr are the

referenced values for the respective velocity, length, density and viscosity. The tensor
D(= 1

2(∇u+∇uT)) denotes the rate of deformation. The curvature can be represented in

terms of the level set function as κ(φ)=∇· ∇φ
|∇φ| .

Across an interface, the smoothed Heaviside function is employed to smooth out the
jumps of density and viscosity in the transition zone of |φ|≤ ǫ so as to avoid numerical
instability. In this study, both density and viscosity are assumed to be varied smoothly
across the interface by the smoothed Heaviside function H∗(φ), thereby leading to ρ(φ)=
ρL+(ρL−ρG) H∗(φ) and µ(φ) = µL+(µL−µG) H∗(φ). The subscripts G and L shown
above represent the gas and liquid phases, respectively.

3 Numerical methods

3.1 Discretization of the level set equation

Under the constant-flow condition, Eq. (2.1) is known to have the Hamiltonian H =
1
2

∫
Ω

ψ φ dΩ [26–28]. For the two-dimensional flow problem, the streamfunction ψ is

defined by u= ∂ψ
∂y and v=− ∂ψ

∂x . Define the function Vc =
∫

φi,j,k≥c 1 dΩ, the area/volume

enclosed by the line/surface with the zero contour value of c remains unchanged all the
time [28]. In other words, the area/volume within each contour value of φ is conserved.
Since the inviscid Euler equation belongs to the Hamiltonian class of differential equa-
tions [28], the volume preservation property holds. Employment of a scheme accom-
modating the distinguished area/volume-preserving property is, in particular, essential
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when applying the level set method to solve the two-phase flow equations [15]. More
precisely, if this intrinsic property is numerically satisfied, the computed volume (for
the three-dimensional flow) or area (for the two-dimensional flow) for each fluid flow
remains unchanged all the time.

3.1.1 Combined compact difference (UCCD7) scheme for the first-order spatial

derivative term

In the following the combined compact difference scheme developed for the approxima-
tion of the spatial derivative term φx, where φ=u or v, will be presented. Three derivative
terms φx, φxx and φxxx are all considered as the unknown variables at each grid point so
as to get the spectral-like resolution. The non-centered combined compact difference
scheme developed in a three-point grid stencil for the approximation of the derivative

terms
∂φ
∂x ,

∂2φ
∂x2 and

∂3φ
∂x3 is as follows

∂φ

∂x
|i+a1

∂φ

∂x
|i−1+h

(
b1

∂2φ

∂x2
|i−1+b2

∂2φ

∂x2
|i+b3

∂2φ

∂x2
|i+1

)

+h2

(
c1

∂3φ

∂x3
|i−1+c3

∂3φ

∂x3
|i+1

)
=

1

h
(d1φi−1+d2φi+d3φi+1), (3.1)

∂2φ

∂x2
|i+

29

16h
(−∂φ

∂x
|i−1+

∂φ

∂x
|i+1)+

5

16

(
−∂2φ

∂x2
|i−1−

∂2φ

∂x2
|i+1

)

+
h

48

(
−∂3φ

∂x3
|i−1+

∂3φ

∂x3
|i+1

)
=

4

h2
(φi−1−2φi+φi+1), (3.2)

∂3φ

∂x3
|i+

105

16h2
(−∂φ

∂x
|i−1−

∂φ

∂x
|i+1)+

15

8h

(
−∂2φ

∂x2
|i−1+

15

8

∂2φ

∂x2
|i+1

)

+
3

16

(
−∂3φ

∂x3
|i−1−

∂3φ

∂x3
|i+1

)
=

105

16h3
(φi−1−φi+1). (3.3)

In the above, the second-order derivative term
∂2φ
∂x2 and the third-order derivative term

∂3φ
∂x3

are approximated by centered schemes. The coefficients in (3.2) and (3.3) are determined
by the method of Taylor series expansions. By eliminating the leading truncation error
terms in the derived modified equations, the resulting formal accuracy orders for φxx and
φxxx become eight and six, respectively.

For the description of the proposed upwinding compact difference scheme
∂φ
∂x , in the

following we present only the positive-valued velocity case. The coefficients for the case
involving a negative velocity can be similarly derived. Determination of the weighting
coefficients in (3.1) is started by applying the Taylor series expansion for the terms φi−1,

φi+1,
∂φ
∂x |i−1,

∂φ
∂x |i,

∂2φ
∂x2 |i−1,

∂2φ
∂x2 |i, ∂2φ

∂x2 |i+1,
∂3φ
∂x3 |i−1 and

∂3φ
∂x3 |i+1 with respect to the term φi. Let

the leading eight error terms shown in the derived modified equation for
∂φ
∂x to be zero,
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the following set of algebraic equations can be derived

d1+d2+d3=0, (3.4)

−a1−d1+d3=1, (3.5)

2a1+d1+d3−2b1−2b2−2b3=0, (3.6)

d1−d3−6b1+6b3+6c1+6c3+3a1=0, (3.7)

d1+d3−12b1−12b3+24c1−24c3+4a1 =0, (3.8)

d1−d3−20b1+20b3+60c1+60c3+5a1 =0, (3.9)

d1+d3−30b1−30b3+120c1−120c3+6a1 =0, (3.10)

d1−d3−42b1+42b3+210c1+210c3+7a1 =0. (3.11)

Since the investigated level set equation accounts for the wave-like free surface, the
weighting coefficients in (3.1) determined solely from the above truncation error anal-
ysis (or modified equation analysis) are inadequate to fully exhibit wave characteris-
tics. To this end, Fourier method of error analysis is employed to quantify the dis-
persive numerical error and the resolution characteristics in association with Eq. (3.1)
by matching the numerical modified (or scaled) wavenumber with its analytical coun-
terpart [29]. When implementing the Fourier transform on (3.1), the Fourier transform

φ̃(α)= 1
2π

∫ +∞

−∞
φ(x) e−iαx dx and its inverse for φx, namely, φ(x)=

∫ +∞

−∞
φ̃(α) eiαx dα are

employed. Note that the notation i shown above equals to
√
−1.

By performing the Fourier transform on each term shown in Eqs. (3.1), (3.2) and (3.3),
we can get the expressions of the actual (or exact) wavenumber α as follows

iαh (a1 exp(−iαh)+1)

≃d1 exp(−iαh)+d2+d3exp(iαh)−(iαh)2(b1exp(−iαh)+b2+b3exp(iαh))

−(iαh)3(c1exp(−iαh)+c3 exp(iαh)), (3.12)

29

16
iαh (−exp(−iαh)+exp(iαh))

≃4(exp(−iαh)−2+exp(iαh))−(iαh)2
(
− 5

16
exp(−iαh)+1− 5

16
exp(iαh)

)

− 1

48
(iαh)3(−exp(−iαh)+exp(iαh)), (3.13)

105

16
iαh (−exp(−iαh)−exp(iαh))

≃105

16
(exp(−iαh)−exp(iαh))− 15

8
(iαh)2(−exp(−iαh)+exp(iαh))

−(iαh)3
(
− 3

16
exp(−iαh)+1− 3

16
exp(iαh)

)
. (3.14)

When solving hydrodynamic or wave equations, it is desired that the effective (or numer-
ical) scaled wavenumbers α′h, α′′h and α′′′h have almost the same expressions as those
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shown in the right-hand sides of Eqs. (3.12), (3.13) and (3.14) [29]. We can, as a result,
express α′h, α′′h and α′′′h as follows

iα′h (a1 exp(−iαh)+1)

=d1exp(−iαh)+d2+d3exp(iαh)−(iα′′h)2(b1exp(−iαh)+b2+b3exp(iαh))

−(iα′′′h)3(c1exp(−iαh)+c3 exp(iαh)), (3.15)

29

16
iα′h (−exp(−iαh)+exp(iαh))

=4(exp(−iαh)−2+exp(iαh))−(iα′′h)2
(
− 5

16
exp(−iαh)+1− 5

16
exp(iαh)

)

− 1

48
(iα′′′h)3(−exp(−iαh)+exp(iαh)), (3.16)

105

16
iα′h (−exp(−iαh)−exp(iαh))

=
105

16
(exp(−iαh)−exp(iαh))− 15

8
(iα′′h)2(−exp(−iαh)+exp(iαh))

−(iα′′′h)3
(
− 3

16
exp(−iαh)+1− 3

16
exp(iαh)

)
. (3.17)

By solving Eqs. (3.15), (3.16) and (3.17) altogether, α′h can be derived in a complex func-
tion form.

The real and imaginary parts of the numerical modified (or scaled) wavenumber α′h
account respectively for the numerically generated dispersion error (phase error) and
the dissipation error (amplitude error). For the purpose of getting a better predicted
dispersive accuracy for α′, we demand that αh ≈ ℜ[α′h], where ℜ[α′h] denotes the real
part of α′h, and the magnitude of E(α) defined below be very small and positive

E(α)=
∫ π

2

− π
2

[
W

(
αh−ℜ[α′ h]

)]2
d(αh). (3.18)

For the purpose of analytically integrating E(α), the weighting function W is introduced
in (3.18). Unlike the unit weighting function used in the work of Tam and Webb [29], in
this study the weighting function W is chosen as the denominator of (αh−ℜ[α′ h]).

To make the error function defined in the full range optimization −π
2 ≤ αh≤ π

2 to be

a positive and minimum value, the extreme condition ∂E
∂d1

= 0 is enforced to minimize
the numerical wavenumber error. The equation derived from the Fourier analysis and
the eight previously derived algebraic equations aiming at getting a higher dissipation
and dispersion accuracy can be used together to compute the nine unknowns in (3.1),
which are given as a1 =1.1875, b1=0.23643236, b2 =−0.27774699, b3 =−0.01356764, c1 =
0.01894044, c3 = 0.00189289, d1 =−2.33613227, d2 = 2.48476453, d3 =−0.14863227. In the
grid points i−1, i and i+1, the proposed scheme is shown to have the spatial accuracy of

order seven for
∂φ
∂x according to the derived modified equation

∂φ
∂x =

∂φ
∂x |exact−0.65175737×
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10−5 h7 ∂8φ
∂x8 +0.816532935×10−7 h9 ∂10φ

∂x10 +H.O.T.. When u< 0, the proposed non-centered
combined compact difference scheme can be similarly derived below for the derivative

term
∂φ
∂x

∂φ

∂x
|i+1.1875

∂φ

∂x
|i+1+h

(
0.013567

∂2φ

∂x2
|i−1+0.277746

∂2φ

∂x2
|i−0.236432

∂2φ

∂x2
|i+1

)

+h2

(
0.001892

∂3φ

∂x3
|i−1+0.018940

∂3φ

∂x3
|i+1

)

=
1

h
(0.148632φi−1−2.484764φi+2.336132φi+1). (3.19)

3.1.2 Symplectic Runge-Kutta (SRK6) scheme for the temporal derivative term

For retaining the long-time accurate Hamiltonian and volume-preserving properties ex-
isting in Eq. (2.1), the time derivative term will be discretized by the structure-preserving
scheme. In this paper, the sixth-order temporally accurate symplectic Runge-Kutta

scheme [30] is employed to solve the ordinary differential equation
dφ
dt =F(φ).

Given the solution φn at t = n∆t, calculation of the solution φn+1 starts from the
guessed values φ(i) for φn, where i=1 to 3. The computed values of F(i) (i= 1 to 3) are
then substituted into the three implicit equations given below to get the updated values
of φ(i) (i= 1 to 3)

φ(1)=φn+∆t

[
5

36
F(1)+

(2

9
+

2c̃

3

)
F(2)+

( 5

36
+

c̃

3

)
F(3)

]
, (3.20)

φ(2)=φn+∆t

[( 5

36
− 5c̃

12

)
F(1)+

2

9
F(2)+

( 5

36
+

5c̃

12

)
F(3)

]
, (3.21)

φ(3)=φn+∆t

[( 5

36
− c̃

3

)
F(1)+

(2

9
− 2c̃

3

)
F(2)+

5

36
F(3)

]
, (3.22)

where c̃= 1
2

√
3
5 . Note that F(i) (i= 1 to 3) shown above represent the values of F(≡−u·∇φ)

at t=n+( 1
2 + c̃)∆t, t=n+ 1

2 ∆t, and t=n+( 1
2 − c̃)∆t, respectively. As the difference of φ(i)

computed from the two consecutive iterations becomes negligibly small, the solution of
φ at t=(n+1)∆t is obtained as φn+1=φn+ ∆t

9 [ 5
2 F(1)+4F(2)+ 5

2 F(3)].

3.2 Discretization of the re-initialization equation

In the re-initialization equation (2.2) we apply the fifth-order accurate weighted essen-
tially non-oscillatory (WENO5) scheme [31] to approximate the spatial derivative term.

As for the temporal derivative term in Eq. (2.2) or
dφ
dτ = L(φ) = −sgn(φ0)(|∇φ|−1)+

λδ(φ)|∇φ|, the third-order accurate TVD Runge-Kutta (TVD-RK3) scheme [32] is ap-
plied. The solution of the above ordinary differential equation will be sought from the
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following solution steps

φ(1)=φ(n)+∆τL(φ(0)), (3.23)

φ(2)=
3

4
φ(n)+

1

4
φ(1)+

1

4
∆τL(φ(1)), (3.24)

φ(n+1)=
1

3
φ(n)+

2

3
φ(2)+

2

3
∆τL(φ(2)). (3.25)

3.3 Approximation of the first-order derivative terms in the momentum
equations

Approximation of the convective terms in Navier-Stokes equations needs to take the up-
winding nodal solutions into a favorable consideration. In this section, a fifth-order accu-
rate upwinding combined compact difference scheme having a better dispersion relation
is proposed. Our primary aim is to enhance convective stability by virtue of the increased
dispersive accuracy.

The non-centered combined compact difference scheme for φ=u (or v) has been de-
veloped in a three-point grid stencil for the approximation of the first-order derivative
terms as follows

0.875
∂φ

∂x
|i−1+

∂φ

∂x
|i =

1

h
(−1.935961φi−1+1.996922φi−0.0606961φi+1)

−h

(
0.125128

∂2φ

∂x2
|i−1−0.248717

∂2φ

∂x2
|i+0.000128

∂2φ

∂x2
|i+1

)
, (3.26)

− 1

8

∂2φ

∂x2
|i−1+

∂2φ

∂x2
|i−

1

8

∂2φ

∂x2
|i+1=

3

h2
(φi−1−2φi+φi+1)−

9

8h

(
−∂φ

∂x
|i−1+

∂φ

∂x
|i+1

)
. (3.27)

The above three-point upwinding combined compact difference scheme for
∂φ
∂x has been

shown to have the spatial accuracy order of five according to the derived modified equa-

tion
∂φ
∂x =

∂φ
∂x |exact−0.000700856 h5 ∂6φ

∂x6 +0.00019841 h6 ∂7φ
∂x7 +H.O.T..

3.4 Projection method for the two phase flow equations

Following the idea of projection method given in [33], the predicted pressure p∗ is used to
calculate the intermediate velocity u∗, which does not necessarily satisfy the divergence-
free constraint condition, from the following vector momentum equation

u∗−un

∆t
+(u∗ ·∇)u∗− 1

Re

∇·(2µ(φ)D∗)

ρ(φ)
+

∇p∗

ρ(φ)
+ f =0. (3.28)

The term f shown above is expressed as 1
We

κ(φ) δ(φ) ∇φ
ρ(φ)

− 1
Fr2 eg. The velocity is then pro-

jected to the divergence-free space. The value of pressure is then updated by the equa-



10 C.-H. Yu and T. W.-H. Sheu / Commun. Comput. Phys., x (2015), pp. 1-26

tions given below

un+1−u∗

∆t
=− ∇p′

ρ(φ)
, (3.29)

pn+1= p∗+p′, (3.30)

∇·un+1=0. (3.31)

Substitution of Eq. (3.29) to the semi-discrete equation

un+1−un

∆t
+(un+1 ·∇)un+1− 1

Re

∇·(2µ(φ)Dn+1)

ρ(φ)
+
∇pn+1

ρ(φ)
+ f =0 (3.32)

yields

un+1−un

∆t
+(u∗ ·∇)u∗− 1

Re

∇·(2µ(φ)D∗)

ρ(φ)
+

∇p∗

ρ(φ)
+ f =− ∇p′

ρ(φ)
+M1+M2. (3.33)

In the above [34],

M1=

[
(u∗ ·∇)

∇p

ρ(φ)

′
+
( ∇p

ρ(φ)

′
·∇

)
u∗− 1

Re
∇2

( ∇p
′

ρ(φ)

)]
∆t, (3.34)

M2=−
[( ∇p

ρ(φ)

′
·∇

) ∇p

ρ(φ)

′]
∆t2. (3.35)

The remaining task of the applied method is to derive the equation for p
′
, which has been

derived in detail in [34]

p′i,j = p′∗i,j+

p′∗i−1,j

ρ
i− 1

2 ,j
∆x2 +

p′∗i+1,j

ρ
i+ 1

2 ,j
∆x2 +

p′∗i,j−1

ρ
i,j− 1

2
∆y2 +

p′∗i,j+1

ρ
i,j+ 1

2
∆y2

1
ρ

i− 1
2 ,j

∆x2 +
1

ρ
i+ 1

2 ,j
∆x2 +

1
ρ

i,j− 1
2

∆y2 +
1

ρ
i,j+ 1

2
∆y2

, (3.36)

where

p′∗i,j =−
∇· u∗

i,j

∆t( 1
ρ

i− 1
2 ,j

∆x2 +
1

ρ
i+ 1

2 ,j
∆x2 +

1
ρ

i,j− 1
2

∆y2 +
1

ρ
i,j+ 1

2
∆y2 )

. (3.37)

4 Fundamental analysis of the proposed scheme

4.1 Assessment of the dispersion and dissipation errors

The solution of the model equation ut+c ux = 0 is represented by u = ûα(t)eiαx, where
i≡

√
−1 and ûα is the Fourier mode of the wave number α. Differentiation of this equation
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leads to ∂u
∂x |exact=iαh ûα

h eiαx, where the wavenumber has been scaled by h= L
N . Note that L

is the length of physical domain and N is the number of grid intervals. The approximated
derivative term ∂u

∂x can be similarly written as

∂u

∂x
|numerical = iα

′
h

ûα

h
eiαx =(Kr+iKi)

ûα

h
eiαx. (4.1)

In the above, Kr and Ki denote the real and imaginary parts, respectively. One can express
the coefficients Ki and Kr in terms of the real part (α′h) and the imaginary part (α′h)
shown respectively in (3.15) as Ki=ℜ[α′h] and Kr =−ℑ[α′h].

In Fig. 1, the values of Ki and Kr are plotted with respect to the scaled wavenumber
αh for the present three-point upwinding combined compact difference scheme UCCD7.
One can easily find that the proposed upwind scheme is better than the other schemes
[35, 36] owing to the improved dispersive accuracy. The positive-valued Kr calculated
from the UCCD7 scheme is, however, less accurate than the non-dissipative (or Kr = 0)
centered-type combined compact difference scheme of Nihei and Ishii [35].

αh π

Κ
i

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3 Exact
UCCD 7
OCD 8 [36]
CCD 8 [35]

(a)

αh π

Κ
r

0 0.5 1 1.5 2 2.5 3

0

1

2

3

Exact
UCCD 7
OCD 8 [36]
CCD 8 [35]

(b)

Figure 1: Comparison of Kr(αh) and Ki(αh) amongst the proposed three-point seventh-order accurate upwinding
combined compact difference scheme (UCCD7), seven-point eighth-order accurate optimized centered compact
difference scheme (OCD8) [36], and the three-point eighth-order accurate centered combined compact difference
scheme (CCD8) [35]. (a) Ki; (b) Kr.

4.2 Assessment of the phase speed anisotropy

The two-dimensional equation ut+cx ux+cy uy = 0 is taken into consideration, where
cx=c cos(θ) and cy=c sin(θ) denote the velocity components along the x and y directions,

respectively. For a wave propagating at the angle θ (≡ tan−1(
cy

cx
)) with respect to the x-
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axis, the numerical phase speed anisotropy can be derived as follows [37–39]

ℜ
( c∗

c

)
=

cos(θ)ℜ[α′
h(αh cos(θ))]+ sin(θ)ℜ[α′

h(αh sin(θ))]

αh
. (4.2)

In Fig. 2 one can find that at all the scaled wavenumbers the proposed scheme has a much
better phase speed anisotropy than the other schemes.

25π / 50
30π / 50
35π / 50
40π / 50
45π / 50
50π / 50

(a)

25π / 50
30π / 50
35π / 50
40π / 50
45π / 50
50π / 50

(b)

25π / 50
30π / 50
35π / 50
40π / 50
45π / 50
50π / 50

(c)

Figure 2: The phase speed anisotropy predicted at different modified wave numbers αh for the proposed and
two referenced schemes. (a) UCCD7; (b) OCDS8 [36]; (c) CCD8 [35].

5 Verification studies

The level set method will be verified for the case with the prescribed velocity field. We
define below the ratios Nc=0 and Mc=0 for measuring the area and volume errors
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Nc=0=
A0(t)

A0(t=0)
, (5.1)

Mc=0=
V0(t)

V0(t=0)
. (5.2)

Note that the computed value of A0 denotes the area for the two dimensional case and the
computed value of V0 represents the volume for the three-dimensional case. The values
of A0 and V0 are computed by calculating the area or volume enclosed by the contour of
the level set function φ=0, respectively.

5.1 Smooth Gaussian problem

To verify the proposed seventh-order spatially accurate upwinding combined compact

difference scheme, the problem with the smooth exact solution φ=exp(− (x+3)2

4 − (y+3)2

4 )

for Eq. (2.1) is solved at u=− 2πy
9 and v= 2πx

9 in the square −1≤x≤1 and −1≤y≤1. The

calculation is performed at ∆t= 1
2000 , which is much smaller than the three chosen grid

spacings ∆x, which are 2
15 , 2

25 and 2
35 . The L2-error norms and their corresponding spatial

rates of convergence computed at a time after ten rotations are tabulated in Table 1.

Table 1: The predicted L2-error norms at ∆t= 1
2000 and the corresponding spatial rates of convergence for the

solutions predicted after 10 rotations (or at t=90) in a domain containing three chosen meshes for the rotation
of a smooth Gaussian profile. This problem is described in Section 5.1.

Grids L2 error norms rates of convergence

15×15 2.6332×10−2

25×25 1.1115×10−3 6.1959

35×35 9.8861×10−5 7.1916

5.2 Slotted (Zalesak’s) disk problem

The Zalesak’s problem [40] is then solved to verify the developed advection scheme. The
slotted disk has a radius of 15 and a slot width of 5. It is initially located at (50,75) in

the domain of size (100,100). The prescribed velocity field is given by (u= π(50−y)
314 , v=

π(x−50)
314 ). The results predicted in 200×200 mesh points after 200 revolutions are plotted

in Fig. 3(a). Our computed solution has also shown good agreement with the exact (or
initial) area ratio shown in Fig. 3(b).

5.3 Three-dimensional vortex flow in a cube

The ability of the UCCD7 scheme is then demonstrated by solving the flow prob-
lem with the following velocity components u= sin2(πx)sin(2πy)sin(2πz)cos(πt

T ), v =
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Figure 3: Comparison of the results for the Zalesak’s problem computed in 200×200 grids. (a) after 200
revolutions; (b) Comparison of the predicted area ratios, defined in (5.1), versus time t for the calculations
carried out in 200×200 grids.

−sin(2πx)sin2(πy)sin(2πz)cos(πt
T ), w=−sin(2πx)sin(2πy)sin2(πz)cos(πt

T ) at T= 3. A
sphere of the radius 0.15 is placed in a unit cube centered at (0.35,0.35,0.35). This sphere
is stretched by the prescribed vortex flow, thereby scooping out the sphere. Afterwards,
it reverses back to the initial shape. The results computed in 150×150×150 mesh points
look like the results of Wang et al. [41] shown in Fig. 4. The relative mass errors tabulated
in Table 2 show the increasingly larger error.

Table 2: Comparison of the computed percentages of the total mass error. Note that LS means the level set
method.

methods LS [41] present LS present LS

Grids 1003 1003 1503

t=1.5 21.8% 2.21% 1.2%

t=3.0 32.1% 4.47% 2.5%

6 Numerical results

After verifying the advection scheme, the proposed level set method is validated by solv-
ing the following five incompressible Navier-Stokes problems, which all involve the time-
varying interfaces.
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X
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Z

(c) (d)

Figure 4: Simulation of a deformed sphere in 150×150×150 grids. (a) UCCD7 solution at t=1.5; (b) reference
solution at t=1.5 [41]; (c) UCCD7 solution at t=3.0; (d) reference solution at t=3.0 [41].

6.1 Interface prediction without surface tension

6.1.1 Dam break problem

A tank of the area 4a×2.4a and a water column of the area a×2a are considered at a=
0.146m. No-slip boundary conditions are imposed on the walls of the investigated tank.

The water density under investigation is ρw = 1000
kg
m3 and its dynamic viscosity is µw =

0.001
kg
ms . The air density is ρa =1

kg
m3 and the dynamic viscosity is µa=0.0001

kg
ms .

In Fig. 5(a), the numerical results predicted in 400×240 grids are presented. The area
ratio Nc=0 is shown in Fig. 5(b), from which the mass is seen to lose by an amount less
than 0.5%. Good agreement with the numerical and experimental results given in [42–44]
is also clearly demonstrated in Fig. 6 for the surge front location and the water column
height.
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Figure 5: (a) The time-history of the predicted free surface profiles for the dam-break problem in the domain
of 400×240 mesh points; (b) The predicted area ratios Nc=0, defined in (5.1), are plotted with respect to time
t for the calculations carried out in three grids.
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Figure 6: Comparison of the predicted water heights with respect to time t.

6.1.2 Rayleigh-Taylor problem

The Rayleigh-Taylor instability arising from the penetration of a fluid into another lighter
fluid along the direction of gravity has been studied in many scientific and environmental
fields. The density difference is represented by the Atwood ratio (≡ (ρh−ρl)/(ρh+ρl)).
We validate our code by solving the same problem investigated in [8, 45, 46] at the
Atwood ratio = 0.5 and the viscosity ratio = 1.0. The initial interface is located at
y(x)=−0.1D cos(2πx/D) in a rectangular domain [0,D]×[−2D,2D].
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(a) (b) (c) (d)

Figure 7: The time-evolving interfaces for the Rayleigh-Taylor instability problem predicted at different times.
(a) t=0.0; (b) t=1.25; (c) t=1.75; (d) t=2.5.

The evolution of the interface investigated at Re( ρhD3/2g1/2

µ )=3000 is plotted in Fig. 7

at t= 0,1.25,1.75, and 2.5. We also compare the upper rising fluid and the lower falling
fluid with the solutions of Guermond and Quartapelle [46], and Ding et al. [8] in Fig. 8(a-
b). The area ratios Nc=0 predicted in 100×400 and 200×800 two meshes are plotted in
Fig. 8(c).

6.2 Interface prediction with surface tension

6.2.1 Bubble rising problem

The interface problem with the surface tension being considered is then investigated at
the density ratio ρG/ρL = 0.0013 and the viscosity ratio µG/µL = 0.016. This problem is
characterized by the Reynolds number Re=500, Weber number We=0.68, and the Froude
number Fr=0.45. In the rectangle [0,2]×[0,4], the bubble at t=0 is a circle of radius 0.5
with its center located at (1.0,1.0). No-slip boundary condition is imposed on the vertical
and horizontal walls. The initial velocity is zero everywhere in the domain.

In Fig. 9, the free surfaces predicted in the domain of 100×200 and 200×400 nodal
points are plotted at t= 0.5, 0.8 and 1.0. We can see from Fig. 9(a) that the results predicted
from the UCCD7 scheme agree quite well with the results obtained by Olsson and Kreiss
[20]. Also, Fig. 9(d) shows excellent area preservation property.

6.2.2 Three-dimensional two-bubble merging problem

Two spherical bubbles of the radius R (= 1) merging coaxially and obliquely in the do-
main of [0,4R]×[0,4R]×[0,8R] will be investigated. For the coaxial bubble problem,
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Figure 8: Comparison of the predicted time-varying upper rising fluid heights in (a) and the lower falling fluid
height in (b); (c) The predicted area ratios Nc=0, defined in (5.1), are plotted with respect to time t for the
calculations carried out in two grids.

the center of the upper bubble is at (2R,2R,2.5R) and the center of the lower bubble
is at (2R,2R,1R). For the oblique bubble problem, the center of the upper bubble is
(2R,2R,2.5R) and the center of the lower bubble is (2.85R,2R,1R). The physical prop-
erties are chosen as Re=67.27, We=16, and Fr=1, which are the same as those used in
the experimental study by Brereton and Korotney [47].

Our computations are carried out in 80×80×160 grids. The density and viscosity ra-
tios are chosen to be ρG/ρL=0.001 and µG/µL=0.01, respectively. For the coaxial bubble
problem, we only compare the interface profile at the x−z midplane. Good agreement
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Figure 9: The time-evolving free surfaces for the bubble rising problem predicted at different times. (a) t=0.5;
(b) t=0.8; (c) t=1.0; (d) The predicted area ratios Nc=0, defined in (5.1), are plotted versus t for the calculations
carried out in 100×200 and 200×400 grids.

with the experimental observation by Brereton and Korotney [47] can be seen in Fig. 10.
We also compare the oblique bubble problem with the numerical solutions of Chiu and
Lin [48] in Fig. 11. For the sake of completeness, the values of Mc=0 are also plotted with
respect to time in Fig. 12, showing again that the bubble volumes are well preserved for
both the coaxial and oblique bubble rising cases.

6.2.3 Three-dimensional droplet falling in water problem

The droplet falling in water problem has been investigated by the authors in [48–51] in
order to show the applicability of their proposed methods to simulate complex interface



20 C.-H. Yu and T. W.-H. Sheu / Commun. Comput. Phys., x (2015), pp. 1-26

X Y

Z

(a)

X Y

Z

(b)

X Y

Z

(c)

X Y

Z

(d)

X Y

Z

(e)

X Y

Z

(f)

Figure 10: The time-evolving coaxial bubble problem predicted at different times. (a) t=0.0s; (b) t=0.03s; (c)
t=0.06s; (d) t=0.09s; (e) t=0.12s; (f) t=0.15s.
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Figure 11: The time-evolving oblique bubble predicted at different times. (a) t= 0.03s; (b) t= 0.03s [48]; (c)
t=0.09s; (d) t=0.09s [48]; (e) t=0.15s; (f) t=0.15s [48]; (g) t=0.18s; (h) t=0.18s [48].
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Figure 12: The predicted volume ratios, defined in (5.2), are plotted with respect to time t for the calculation
carried out in 80×80×160 grids.

formation resulting from the droplet falling into a thin liquid layer. The density ratio for
the liquid and air is 0.001, and the viscosity ratio for the liquid and air is 0.01. The initial
droplet diameter is D = 5.33mm and the depth of liquid layer is 1.0mm. This droplet
falls down with the velocity 20 m

s into a liquid thin film of 1mm depth. Fig. 13 shows
the result computed at We= 800, Re= 600, in 200×200×100 grids. We also predict this
problem at We= 200, Re= 200 (Fig. 14) and at We= 10, Re= 200 (Fig. 15). In this study,

(a) (b) (c)

(d) (e) (f)

Figure 13: The time-evolving free surfaces predicted at different times with We= 800 and Re = 600 for the
droplet falling in water problem. (a) t=0.024; (b) t=0.096; (c) t=0.168; (d) t=0.24; (e) t=0.312; (f) t=0.384.
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(d) (e) (f)

Figure 14: The time-evolving free surfaces predicted at different times with We= 200 and Re = 200 for the
droplet falling in water problem. (a) t=0.024; (b) t=0.096; (c) t=0.168; (d) t=0.24; (e) t=0.312; (f) t=0.384.

(a) (b) (c)

(d) (e) (f)

Figure 15: The time-evolving free surfaces predicted at different times with We=10 and Re=200 for the droplet
falling in water problem. (a) t=0.168; (b) t=0.24; (c) t=0.312; (d) t=0.384; (e) t=0.456; (f) t=0.528.

the droplet splashing phenomenon may not be sharply predicted yet because the level
set method applied to predict interface is known to suffer, more or less, the problem of
non-conserved mass shown in Fig. 16. Most mass loss comes most likely from process of
droplet splashing.
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Figure 16: The predicted volume ratios, defined in (5.2), are plotted with respect to time t for the calculation
carried out in 200×200×100 grids.

7 Concluding remarks

This paper presents a numerical method to solve the incompressible Navier-Stokes equa-
tions and the level set equation in collocated grids. The interface is moved implicitly by
the advection of level set function φ, which is split into two steps. First, φ is advected
using the symplectic temporal scheme SRK6 and the spatial scheme UCCD7 with the
minimized numerical phase error to preserve the mass conservation and capture inter-
face excellently. Then the re-initialization step is performed to make sure φ as a distance
function. For the verification purpose, the vortex flow in a box and the slotted (Zalesak’s)
disk problems are investigated. For the validation purpose, the coupled systems of hy-
drodynamic and level set equations for the dam-break, Rayleigh-Taylor, bubble rising,
two-bubble merging, and droplet falling in water problems are also solved. All the pre-
dicted results for the problems with and without taking the surface tension into consid-
eration have been shown to compare fairly well with their corresponding experimental
or other numerical results.
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