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Abstract. In this paper, we study the effects of inserted needle on the subcutaneous
interstitial flow. A goal is to describe the physical stress affecting cells during acupunc-
ture treatment. The model consists of the convective Brinkman equations to describe
the flow through a fibrous medium. Numerical studies in FreeFem++ are performed
to illustrate the acute physical stress developed by the implantation of a needle that
triggers the physiological reactions of acupuncture. We emphasize the importance of
numerical experiments for advancing in modeling in acupuncture.

AMS subject classifications: 76M10, 76S05, 76Z05, 92C50

Key words: Finite element method, FreeFem++, acupuncture, Brinkman model, interstitial fluid
flow.

1 Introduction

Acupuncture is one of the oldest healing practices and alternative medicines. This mini-
mally invasive procedure involves a penetration of skin with needles to stimulate specific
points on the body, called acupoints, with the purpose of restoring balance in the flow
of qı̀ through meridians [1]. While this so-called traditional Chinese medicine has been
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recognized in 2010 on the Representative List of the Intangible Cultural Heritage of Hu-
manity by UNESCO and was endorsed by the World Health Organization, there is a great
demand to enlighten its underlying concepts such as qı̀, meridians, and acupoints. The
absence of scientific background of acupuncture mechanisms certainly has motivated us
to carry out modeling and numerical simulation of both macroscopic and microscopic
aspects of the acupuncture process.

The classical technique involves inserting a hair-thin needle into acupoints. The nee-
dle is then manipulated to yield a local mechanical stress field through needle motions
(lifting–thrusting cycle or rotation). After a short term of needle manipulation, the needle
is retained until desired effects have been achieved. The mechanical interaction of needle
with the skin and the subcutaneous tissue has been demonstrated [2]. This stimulation
via mechanotransduction, that is activated by the stretch of mechanosensitive ion chan-
nels at the mastocyte surface, can lead to a cascade of biochemical reactions that drive
acupuncture effects [3].

The same acupoint can be stimulated by acupressure, moxibustion, electroacupun-
ture [4], and, more recently, by laser acupuncture [5]. In the context of moxibustion, phys-
ical stimulation via the transfer of heat from burning moxa has been investigated [6–9].
Whatever the operation mode is, calcium entry in the mastocyte triggers degranulation
and release of chemoattractants, neural stimulants, and endocrine substances. Such a
process is sustained by the recruitment of mastocytes (chemotaxis). We have developed
a model of chemotactic self-sustained response of mastocytes [10, 11]. The developed
mathematical model constitutes a system of parabolic partial differential equations. Its
simplest form describes the evolution of the density of mastocytes and the chemoattrac-
tant concentration subjected to a physical stress.

The present study is aimed at simulating the effects of an inserted needle on the inter-
stitial flow. The reader is invited to read the accompanying paper [12] to get information
on events occurring during the permanent regime, that is once the needle has been im-
planted and the stress field in the subcutaneous connective tissue is fully established.

This paper is organized in the following. Section 2 outlines the physiological mecha-
nisms and the biological tissue involved during acupuncture treatment. Section 3 presents
the mathematical modeling and the governing equations of flow in interstitium. The ALE
finite element method is reviewed in Section 4. Numerical experiments are discussed in
Section 5. In Section 6, concluding remarks are given.

2 Biological medium

2.1 Connective tissue

The skin consists of three layers of tissue known as the epidermis, dermis, and hypoder-
mis lying above skeletal muscles. The hypodermis, a loose connective tissue, provides
(1) structural and mechanical support, (2) transport of nutrients, metabolites, and waste
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between the blood and tissues, (3) storage of energy, and (4) immunological defense. For
a complete description of the extracellular matrix we refer to [13, 14].

Like other types of connective tissues, the loose connective tissue is constituted of
scattered cells immersed in extracellular matrix. The extracellular matrix contains an
abundant ground substance and relatively sparse fibers. The ground substance fills the
space between cells and fibers and consists of water, proteoglycans, and other macro-
molecules, thereby forming a viscous hydrated gel that can stabilize fiber network. Pro-
teoglycans control the level of hydration of connective tissues and thus can partially de-
termine the physical properties of connective tissues.

There is ample evidence that acupoints are located mainly in the hypodermis close
to neurovascular bundles [15]. Acupoints differentiate from nonacupoint locations by
displaying high density of mastocytes and capillaries, high skin electrical conductance,
and high ionic concentrations (K+, Ca++, Fe++, Mn++, Zn++, PO3−

4 ).

2.2 The interstitial fluid

The interstitial fluid contains water, ions and other small molecules. Such a fluid corre-
sponds to plasma without macromolecules [16]. It interacts with the ground substance to
form a gel-like medium.

A model taking into account individual fibers and cell adhesion complexes is already
a falsification of the reality. Moreover, it is very costly from the computational sense.
When considering an organized homogeneous matrix of fibers, computation of such a
model shows the microscopic fluctuations of the fluid shear stress at the protein level [17].

On a microscopic scale, the interstitial is composed of fluid and solid fibers, thereby
clearly forming two phases. Homogeneized two-phase media coupling with a Newto-
nian fluid and an elastic matrix have been considered to model soft tissue [18]. This
well-posed model exhibits both the fluid and the viscoelastic property of the fluid.

The interstitial tissue can be modeled as a porous medium [16]. The Darcy’s law
approximates fibers of the media as a continuum and allows to compute the actual mi-
croscopic flow phenomena that occur in the fibrous media. The phenomenological model
cannot give information on unneeded microscopic events but the Darcy equation can de-
scribe macroscale flow patterns in porous media.

The Brinkman equation [19] is an extension of the Darcy equation. Introduction of a
second order derivative into the Darcy equation allows the application of no-slip bound-
ary conditions. The Brinkman equation can thus describe the flow field around solid
bodies such as the embedded cells in extracellular matrix but the fibrous medium itself,
e.g., the individual fibers, is still treated as a continuum.

The interstitial tissue can also be modeled by a poroviscoelastic material [20]. Biot
developed a theory of poroelasticity for setting the resistance to flow through deformable
fluid-saturated porous media [21–24]. The interstitial fluid, cells, and the extracellular
matrix are viewed as a two-phase system consisting of a solid and a fluid phase, each of
which is regarded as a continuum. Biot’s equations for the linear theory of poroelasticity
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are derived from the equations of linear elasticity for the solid matrix, the Navier–Stokes
equations for the incompressible viscous fluid, and the Darcy’s law for the flow of a fluid
through fibrous matrix.

In the context of acupuncture, the interstitial flow has been modeled by the Brinkman
equations. The flow is driven by the difference in hydrostatic and osmotic pressures
between the capillaries and the interstitial space [25, 26].

Interstitial flow and deformed matrix fibers exert directly stress at the cell surface
that can be sensed by membrane molecules. Mastocytes, among other cells, respond to
fluidic stimuli caused by the fluid shear stress [27]. In this article, the transient convective
Brinkman equations are applied to simulate the interstitial flow in a porous medium
driven by a moving needle.

3 Mathematical modeling and methods

3.1 Governing equations

In the present work, we study the effects of a moving needle on the interstitial fluid.
We then consider a fluid motion governed by the incompressible convective Brinkman
equations for a fluid-filled porous material. The Reynolds number and the Darcy number
are normally small. As a result, the nonlinear drag such as the Forchheimer law [28] can
be neglected. The derivation of the incompressible convective Brinkman equations was
given in [29–31] in the context of heat transfer in porous media. The set of equations is as
follows:

ρ

α f

(

∂ū

∂t
+ū·∇

(

ū

α f

))

−µ∇2ū+
1

α f
∇(α f p f )=−

µ

P
ū in Ω, (3.1a)

∇·ū=0 in Ω, (3.1b)

where − µ
P ū denotes the Darcy drag, µ the fluid dynamic viscosity, ρ the fluid density,

P the Darcy permeability, ū the averaged velocity and p f the pressure. The averaged
velocity is defined as

ū=α f u f , (3.2)

where u f is the fluid velocity and

α f =
fluid volume

total volume
(3.3)

is the fluid volume fraction. This volume fraction corresponds to the effective porosity of
the medium. The fluid fractional volume α f is taken as a space-dependent parameter to
model the distinguished properties of an acupoint.

The system (3.1), subject to the initial conditions given below, are solved in the do-
main Ω

ū(x,0)= ū0(x). (3.4)
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Figure 1: Schematic of the computational domain Ω. The cell is mapped to the trigonometric unit circle where
θ, in radian, is the angle. d is the distance along the x-axis between the cell center and the needle tip.

The domain boundary (Fig. 1) can be decomposed into the needle boundary denoted by
Γneedle, an impervious boundary (wall) denoted by Γwall, and the open boundary on the
sides denoted by Γsides.

On the top and bottom of the domain Ω, the boundary condition on Γwall is prescribed
as

ū=0. (3.5)

On the needle boundary Γneedle, the boundary condition is imposed as

ū=vneedle. (3.6)

On both sides of the domain Ω, the traction-free boundary condition is prescribed on
Γsides as

−µ∇ū·n+p f n=0. (3.7)

4 Computational model

4.1 Scaling and setting for numerical simulations

L denotes the characteristic length that is the needle width and V the characteristic veloc-
ity set to be the needle maximum velocity. Rescaling the variables thereby leads to

x′=
x

L
, t′=

t

(L/V)
, p′=

p f

(ρV2)
, u′=

ū

V
. (4.1)
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In the resulting dimensionless form, after removing the prime in the rescaled variables,
the dimensionless incompressible convective Brinkman equations read as

1

α f

∂u

∂t
+

1

α f
u·∇

(

u

α f

)

−
1

Re
∇2u+

1

α f
∇(α f p)=−

1

DaRe
u, (4.2)

∇·u=0, (4.3)

where Re is the Reynolds number and Da is the Darcy number. The two dimensionless
parameters are defined as

Re=
ρLV

µ
, Da=

P

L2
. (4.4)

Numerical simulations are carried out considering Re=0.103 and varying values of Da.
The values for the non-dimensional variables of the fluid are computed from the data
available in [16].

In considering the above dimensionless governing equations, the boundary condition
on the domain boundary is prescribed as

u=0 on Γwall, (4.5)

u=v on Γneedle, (4.6)

−
1

Re
∇u·n+pn=0 on Γsides. (4.7)

4.2 Numerical methods

The governing equations in Section 4.1 are solved using the finite element software
FreeFem++ [32]. This code programs the discrete equations derived from the finite el-
ement weak formulation of the problem presented in Section 4.2.2 using a characteris-
tic/Galerkin model to stabilize the convection terms. A straightforward implementation
of the mesh moving scheme is presented in Section 4.2.1.

4.2.1 ALE implementation on moving meshes

Different methods applied to predict flows in moving domains with the finite element
method exist. Moving mesh methods use meshes following the domain occupied by the
fluid. The mesh is then exactly given at the boundary. The ALE framework is mathemat-
ically rigorous to describe transport phenomena in time and allows some freedom in the
description of the mesh motion. However, it raises some implementation questions on
the interface tracking with time discretization. Implementation of the ALE method can
be done in FreeFem++ [33].

In the present paper, the ALE framework in FreeFem++ is employed to compute the
flow in the moving domain. In the current problem setting, the motion of needle is pre-
scribed with respect to time. The boundary of the domain is thus exactly known at each
time step so that an area preserving mesh can be precisely generated.
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For a detailed description of the ALE approach, the readers can refer to [34]. The
framework of the ALE approach is briefly described below. Let Ω(t) be the domain at
each time t with regular boundary ∂Ω(t). In the Eulerian representation, the fluid is
described by

u(x,t) and p(x,t), ∀x∈Ω(t). (4.8)

To follow a moving domain, one can define the ALE map as

Ã : ω̃×R
+→R

2 (x̃,t)→Ã(x̃,t) := Ãt, (4.9)

such that ω(t)= Ã(ω̃,t), where ω̃ is the reference computational domain. Given an ALE
field q̃ : ω̃×R

+→R, its Eulerian description is given by

∀x∈Ω(t),q(x,t)= q̃(Ã−1
t (x),t). (4.10)

In ALE framework, the computational domain velocity (ALE velocity or grid velocity)
is defined as

ã(x̃,t)=
∂Ã

∂t
(x̃,t), ∀x̃∈ ω̃, (4.11)

so that we can get
a(x,t)= ã(Ã−1

t ,t). (4.12)

The ALE time-derivative is defined as

∂q

∂t

∣

∣

∣

∣

Ã

=
d

dt
q(Ã(x̃,t),t), (4.13)

and the following identity holds

∂q

∂t

∣

∣

∣

∣

Ã

=(a·∇)q+
∂q

∂t
. (4.14)

A general method used to construct the mapping, or equivalently the domain velocity
a, consists of solving the following equations

−∇2a+∇p=0, (4.15)

∇·a=0, (4.16)

a|∂Ω
=v. (4.17)

The needle motion is prescribed by setting the vertical velocity of the tip to v2 =
vcos(2π f t), where the needle insertion speed v and the oscillation frequency f of the
needle are equal to 10 mm.s−1 and 0.5 s−1, respectively [2] (see Fig. 2). In the ALE frame-
work, subject to a prescribed needle motion, the Eqs. (4.2)-(4.3) become

1

α f

∂u

∂t

∣

∣

∣

∣

Ã

−
1

α f
(a·∇)u+

1

α f
u·∇

(

u

α f

)

−
1

Re
∇2u+

1

α f
∇(α f p)=−

1

DaRe
u, (4.18)

∇·u=0. (4.19)
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Figure 2: Illustration of the prescribed moving needle motion and the generated meshes (not actual meshes).
At each time step, the new mesh is generated by the FreeFem++ movemesh function.

The solutions u and p are sought subject to the initial (3.4) and boundary conditions (3.5)-
(3.7) described in Section 4.1. The ALE time-derivative induces a correction term in the
transport term by subtracting the computational domain velocity a from the transport
velocity u.

4.2.2 Finite element discretization

To solve for the convective Brinkman equations and to fix the pressure constant part,
the convective Brinkman equations with the pseudo compressibility approximation are
investigated

1

α f

∂u

∂t

∣

∣

∣

∣

Ã

−
1

α f
(a·∇)u+

1

α f
u·∇

(

u

α f

)

−
1

Re
∇2u+

1

α f
∇(α f p)

=−
1

DaRe
u in Ω(t), (4.20)

∇·u+εp=0 in Ω(t), (4.21)

where ε is a small parameter. The formulation consisting of (4.20)-(4.21) follows the so
called artificial compressibility method introduced in [35] and [36].

The convective Brinkman equations are approximated with the method of character-
istics for the nonlinear convection term and a Galerkin method for the rest of the spatial
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derivative terms. The time discretization of (4.20)-(4.21) gives

1

∆t

(

un+1

α f
−

(

un

α f

)

◦Xn(x)

)

−
1

α f
(a·∇)un+1−

1

Re
∇2un+1+

1

α f
∇(α f pn+1)

=−
1

DaRe
un+1 in Ω

n+1, (4.22)

∇·un+1+εpn+1=0 in Ω
n+1. (4.23)

Note that Xn ≈x− un

α f
(x)∆t. For all ϕ∈H1/2(Γneedle), let us introduce the product space

Vϕ=
{

(w,q)∈ [H1(Ω)]2×L2(Ω), w= ϕ on Γneedle, w=0 on Γwall

}

. (4.24)

Let

(a,b)=
∫

Ωn+1
abdx. (4.25)

From the weak form of (4.22)-(4.23) subject to the boundary conditions in (3.5)-(3.7), the
time discretization gives the following scheme

find (un+1,pn+1)∈Vg such that

1

∆t

(

un+1

α f
−

(

un

α f

)

◦Xn(x),w

)

−

(

1

α f
(a·∇)un+1,w

)

+
1

Re

(

1

α f
∇un+1,∇w

)

−

(

α f pn+1,∇·

(

w

α f

))

+
1

DaRe

(

un+1,w
)

=0, (4.26)

(

∇·un+1,q
)

+ε
(

pn+1,q
)

=0, (4.27)

∀(w,q)∈V0.

The Taylor-Hood P2–P1 elements are adopted to ensure satisfaction of the LBB
(Ladyžhenskaya [37]–Babuška [38]–Brezzi [39]) stability condition. Note that temporal
accuracy order of the presented characteristic/Galerkin method is one. Meshes are gen-
erated within FreeFem++ so that the solution is independent of the mesh. Mesh adap-
tation is performed prior to simulations so as to enhance the mesh quality around the
needle and the cell.

5 Results and discussion

5.1 Effect of the needle motion on the interstitial flow

In this study, the needling direction is perpendicular to the skin surface. In practice, it is
possible that the needling direction is oblique to the skin surface. The simulation results
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(a) t=0.1 (b) t=1.1

(c) t=2.1 (d) t=3.1

IsoValue
0
0.0526316
0.105263
0.157895
0.210526
0.263158
0.315789
0.368421
0.421053
0.473684
0.526316
0.578947
0.631579
0.684211
0.736842
0.789474
0.842105
0.894737
0.947368
1

(e) t=4.1

Figure 3: The predicted time varying velocity magnitude |u| resulting from the needle motion in interstitial
fluid.

show that the insertion of an acupuncture needle can influence interstitial fluid flow.
Indeed, under a stress field, the meshwork constituted by hydrated proteoglycans and
glycoproteins can be degraded, hence undergoing fluidization. The computed velocity
field shows that the magnitude of the velocity is higher in regions close to the needle tip
(Fig. 3). At a location away from the needle, where the effect of the stress field vanishes,
the meshwork is not affected. After a certain delay, when the matrix reaches a new equi-
librium state, that is in the permanent regime before the following needle manipulation,
proteoglycans and glycoproteins can repolymerize (gelification).
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(a) t=0.1 (b) t=1.1

(c) t=2.1 (d) t=3.1

IsoValue
0
25052.6
50105.3
75157.9
100211
125263
150316
175368
200421
225474
250526
275579
300632
325684
350737
375789
400842
425895
450947
476000

(e) t=4.1

Figure 4: The predicted time varying pressure contours resulting from the needle motion in interstitial fluid.

Furthermore, when the needle reaches its maximum speed, the interstitial pressure
gradient becomes higher at a location close to the needle tip (Fig. 4). The changes in
the interstitial fluid flow and the high pressure gradient can affect the activities of the
mastocyte pools in the stimulated area.

5.2 Effects of the fractional fluid volume and the Darcy permeability on the
interstitial flow

The fractional fluid volume α f , defined in Eq. (3.3), and the Darcy permeability P are
chosen to model the fibrous tissue matrix. It is noted that the fractional fluid volume
and the permeability alone cannot fully describe the microscopic behavior of the fiber
matrix. Acupoints are situated in regions, close to neurovascular bundles, in which fi-
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IsoValue
0
26.8421
53.6842
80.5263
107.368
134.211
161.053
187.895
214.737
241.579
268.421
295.263
322.105
348.947
375.789
402.632
429.474
456.316
483.158
510

(a) α f =0.7, Da=0.321, Re=0.103

IsoValue
0
26.8421
53.6842
80.5263
107.368
134.211
161.053
187.895
214.737
241.579
268.421
295.263
322.105
348.947
375.789
402.632
429.474
456.316
483.158
510

(b) α f =0.6 Da=0.040, Re=0.103

Figure 5: The predicted pressure contours resulting from the motion of a needle in interstitial fluid of the
subcutaneous connective tissue at acupoint (b) and in a non-acupoint (a). High interstitial pressure is only
expected to occur at acupoint.

brous matrix, capillaries, lymphatic vessels, nervous structures, and cells abound. It is
then reasonable to make the assumption that the fractional fluid volume α f is lower at
the acupoint loci. In soft tissues, the permeability of the tissue P varies with the fluid
volume fraction α f [16]. Amongst the laws for the permeability of the tissue reported
in [40], the Karman-Kozeny relation given in [41] is adopted. The Karman-Kozeny equa-
tion relates the permeability P to the fractional fluid volume α f and the extracellular
matrix fiber properties. With a simplified and structured network of cylindrical parallel
and perpendicular fibers, the Karman-Kozeny equation reads as follows [16]

P=
α f f 2

r

fk
, (5.1)

where fr =( f 2
s − f 2

d )/4 fd and fk =(2/3)k++(1/3)k− . Note that fd and fs correspond to
the fiber diameter and the fiber spacing, respectively.

k+=2α3
f /(1−α f )

[

ln(1/(1−α f ))−(1−(1−α f )
2)/(1+(1−α f )

2)
]

and

k−=2α3
f /(1−α f )

[

2ln(1/(1−α f ))−3+4(1−α f )−(1−α f )
2
]

model the resistance to a flow perpendicular and parallel to the fibers, respectively. The
flow through interstitium is computed according to the data given in [40]. The simulation
results shown in Fig. 6 suggest that the effects of the needle on the interstitial pressure are
more effective in a fiber richer tissue. In particular, the expected high interstitial pressure
is achieved only at acupoint.

Another case to consider is the local decrease of the values α f and P such that they
reach their minimum precisely at the acupoint. The simulation results reveal that a
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(a) α f distribution with needle at acupoint. (b) α f distribution with needle close to acupoint.
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(c) α f distribution with needle far from acupoint.
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(d) Pressure p resulting from the motion of the needle at different
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Figure 6: The predicted contours of α f . Regions with a lower magnitude of α f correspond to regions where

the fibrous medium is denser. The needle is inserted (a) at the acupoint, (b) close to the acupoint, and (c) far
from the acupoint. On each numerical experiment, the needle is inserted at the same coordinate while the α f

distribution is shifted. (d) High interstitial pressure is only expected to occur when the needle, displayed by the
dot lines, is inserted at acupoint.
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proper location of the insertion of the needle is relevant. The effects of the needle on
the interstitial flow are greater when the needle is inserted exactly at the acupoint. Ac-
cording to the α f and P distributions on the one hand and to the needle position with
respect to the location of the peak density of fibers (Figs. 6(a), 6(b), and 6(c)) on the other
hand, the expected high pressure solution is reached only when the needle is inserted at
the acupoint (Fig. 6).

5.3 Shear stress and pressure distribution along the cell membrane

In this section we are interested in the effects of the fluidic stimuli on an interstitial cell.
Simulations are carried out by considering no-slip boundary condition prescribed at the
cell surface. Fig. 7 shows the velocity magnitude and the pressure contours with a cell
added closely to the needle.

IsoValue
0
0.0526316
0.105263
0.157895
0.210526
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Figure 7: The predicted contours of (a) the velocity and (b) the pressure with an interstitial cell inserted at a
location near the needle.

Fig. 8 shows the distribution of the shear stress and the pressure along the cell surface.
The cell is mapped to the trigonometric unit circle, where θ denotes the angle in radian.
The pressure on the cell surface is higher at a point closest to the needle tip (θ∈ [π

2 , 3π
2 ]),

whereas the shear stress can be higher on the side furthest from the needle (θ∈ [− 3π
2 , π

2 ]).
The interstitial flow induced by needle motion leads to a phase shift around the cell sur-
face of the maximum shear stress and pressure value. This shows that all the cell surface
could be stimulated. Fig. 9 shows that high shear stress appears at a location close to the
needle.

Mastocytes have been shown to respond to fluid shear stress [42]. These local me-
chanical forces can trigger the activation of mechanoresponsive proteins on the cell sur-
face [11] so that Ca++ is allowed to enter the cytosol via pressure and shear stress gated
ion channels.
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Figure 8: Evolution of (a) the pressure and (b) the shear stress distributions along the cell surface. The cell is
mapped to the trigonometric unit circle where θ, in radian, is the angle defined in Fig. 1.
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Figure 9: The predicted mean shear stress τmean on the cell surface with respect to the distance d measured
from the needle (see Fig. 1). A higher shear stress is expected to be observed at a location close to the needle.

6 Concluding remarks

Insertion into the skin of a thin needle is the most common acupuncture technique. The
insertion of a needle generates a mechanical stress field in the interstitium. In the present
study, the deformation of the extracellular matrix is neglected and only the effect of in-
terstitial flow is considered, which leads to the following general remarks.

The proposed model for the interstitial flow is able to describe the shear stress on a
given mastocyte and the interstitial pressure from the macroscopic point of view. The
simulation results suggest that the needling effects are most effective when an accurate
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insertion and a manipulation are exerted. High local fluid pressure and shear stress on
cells are most likely to appear near the needling region.

The numerical results presented in this study seem to be sensitive to the fractional
fluid volume and Darcy permeability. These two parameters describe the macroscopic
property of the fiber matrix. The choice for the values of these parameters is a limitation
of the model due to the lack of complete biological data. Thus, it is not possible to build
a quantitative model for the acupoint yet. Furthermore, the proposed method does not
allow the rotation of the needle to be taken into account. When considering the rotation
of the needle, a large deformation of the tissue is observed with the twisting of the fibers
around the needle, that in turn makes the corresponding change in interstitial flow. A
3D fluid/structure model taking into account the mechanics of the fibers should then be
considered. However, numerical prediction of the interstitial pressure and shear stress is
clearly an essential tool to gain a better understanding of the mechanism involved in the
acupuncture needling.

Acknowledgments

This study was partly supported by Fondation Sciences Mathématiques de Paris (FSMP).
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