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In this study we aim to solve the cubic nonlinear Schrödinger (CNLS) equation by the 
method of fractional steps. Over a time step from tn to tn+1, the linear part of the 
Schrödinger equation is solved firstly through four time integration steps. In this part 
of the simulation, the explicit symplectic scheme of fourth order accuracy is adopted to 
approximate the time derivative term. The second-order spatial derivative term in the 
linear Schrödinger equation is approximated by centered scheme. The resulting symplectic 
and space centered difference scheme renders an optimized numerical dispersion relation 
equation. In the second part of the simulation, the solution of the nonlinear equation is 
computed exactly thanks to the embedded invariant nature within each time increment. 
The proposed semi-discretized difference scheme underlying the modified equation 
analysis of second kind and the method of dispersion error minimization has been assessed 
in terms of the spatial modified wavenumber or the temporal angular frequency resolution. 
Several problems have been solved to show that application of this new finite difference 
scheme for the calculation of one- and two-dimensional Schrödinger equations can deemed 
conserve Hamiltonian quantities and preserve dispersion relation equation (DRE).

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear Schrödinger equation (NLS) governs wave propagation for example in fiber [1] and in deep water [2]. This 
practically and scientifically important equation has been extensively studied in the past through either a theoretical or a 
computational approach to explore its rich quantum-mechanical behaviors. A better understanding of the nonlinear nature 
of this equation is in particular essential to design modern nanoscale semiconductors, quantum dot device and quantum 
cellular automata.

In addition to the existence of many fruitful physics phenomena in solitary waves, Schrödinger equation has some re-
markable mathematical features as well. This completely integrable equation belongs to the Hamiltonian class of differential 
equations. Being a Hamiltonian equation, Schrödinger equation permits an infinite number of conserved quantities. Because 
of the presence of these mathematical invariants, Schrödinger equation conserves charge, momentum, energy, and other 
quantities consisting of higher-order spatial derivative terms. Apart from a numerous integral conserved nature, the local 
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conserved energy and the momentum quantities can be also theoretically derived from the Schrödinger equation. By means 
of the Legendre transformation, the Cauchy problem of the Schrödinger equation can be transformed to its counterpart 
consisting of the Hamiltonian canonical equations. One can refer to [3,4] to get some distinguished mathematical properties 
embedded in the currently investigated cubic NLS (CNLS) equation.

Thanks to many theoretical features mentioned above in the Schrödinger equation, it is better that we take all of them 
into consideration while solving its associated Cauchy problem so as to be able to obtain a physically more accurate solution 
at late time. We are therefore aimed to develop a scheme accommodating geometric structure so as to numerically preserve 
symplecticity in the Hamiltonian type of Schrödinger equation. Development of a geometric numerical scheme is particu-
larly essential while solving the time-dependent Schrödinger equation over a long time span. Otherwise, all the conserved 
quantities existing in the Hamiltonian equation, which is of current interest, cannot be satisfied numerically. In addition 
to preserving the discrete geometric structure in the approximation of Schrödinger equation by employing a symplectic 
temporal scheme, it is equally important to preserve its phase or group velocity numerically. Otherwise, a train of NLS 
wave solutions will be erroneously predicted after a long simulation time. Moreover, in numerical simulations unphysical 
oscillations near sharp wave fronts may appear. In this light, a scheme developed for the spatial derivative terms should pre-
serve wave phase, group velocity, modified wavenumber, and an even important property known as the dispersion relation 
equation. For an overview of the numerical methods in the literature, one can refer to [5].

It has been known for a while that the solution of Korteweg–de Vries (KdV ) equation remains smooth all the time 
provided that in this equation the coefficient of the third-order dispersion coefficient is large. On the contrary, KdV equation 
permits discontinuous solution in the zero-dispersion limit regardless of the initially prescribed smooth solution [6]. The 
deteriorated smoothness in the predicted solution resulting from the reduced dispersion or even from the formation of 
shock-like solution in the limit of zero dispersion can be also observed, for example, in the NLS equation. Inclusion of the 
dispersion term to the wave equation can prevent shock formation, which has been an academic topic of many intensive 
studies. Like the KdV equation investigated at its zero-dispersion limit, the present study of the NLS equation is also focused
on the case with a fairly small dispersion coefficient. Numerical investigation of the effect of dispersive term on the solution 
smoothness and on the breaking of wave solution from a focusing state to an oscillatory state is one of the objectives of the 
present study.

One of the most important dynamical features reported in the numerical study of NLS equation is the formation of 
modulational instability (MI) phenomenon [2]. This type of instability arises from an anomalously predicted group/phase 
velocity dispersion. Under this circumstance, a pulse of shorter wavelength travels with a larger group/phase velocity than 
a pulse with longer wavelength [7]. The resulting onset of the MI leads to spectral sidebands [2]. These erroneously predicted 
sidebands may be amplified further by the nonlinear term in Schrödinger equation. As a consequence, the waveform will be 
eventually broken into a train of pulses [8]. Development of a dispersion error reducing scheme is therefore a crucial step 
to eliminate the so-called modulational instability.

In solid-state physics, many studies require getting an accurate solution of the Schrödinger equation investigated at a 
fairly small scaled Planck constant. The applicability of the proposed scheme to solve the Schrödinger equation effectively 
in the semiclassical regime (i.e., for small-scaled Planck constant) is of utmost importance. This computational challenge 
motivates us to develop a new dispersion error reducing and numerically stable difference scheme for the calculation of 
Schrödinger equation in semiclassical regime. Provided that the scaled Planck constant is small, Schrödinger equation is 
known to propagate oscillations of wavelength with an order of Planck constant. The presence of such an oscillatory solution 
nature in the simulation prevents Schrödinger solution from converging strongly as the scaled Planck constant ε (shown 
later in equation (3)) approaches zero, thereby resulting in a severe computational difficulty [9]. Markowich et al. [10]
pointed out that both of the grid spacing and the time increment must be chosen to be an order of ε for getting a good 
approximation of the Schrödinger equation. This subject will be discussed in this study as well.

The rest of the paper is organized as follows. In Section 2 the cubic NLS equation cast in differential form is presented 
along with some of its mathematically rich properties. The four-stage fourth-order accurate explicit symplectic time inte-
grator is then presented in Section 3.1.1 for the approximation of temporal derivative term within the semi-discretization 
framework. In Section 3.1.2, the spatial derivative terms are properly approximated with an aim to obtain a better dis-
persive numerical behavior. Our strategy is to preserve numerical dispersion relation equation by minimizing the derived 
discrepancy between the numerical and exact dispersion relation equations. Following the method of fractional steps, the 
NLS solver presented in Section 3 is applied to solve the two-dimensional cubic NLS equation in Section 4. The Cauchy 
problems amenable to exact solutions are then solved in Section 5 to verify the proposed dispersion-relation-equation-
and symplecticity-preserving scheme. Important numerical insights of the newly developed explicit scheme for solving the 
self-focusing cubic NLS equation are also revealed. Finally, in Section 6 we conclude this study based on the simulated 
results.

2. Governing equation and its mathematical properties

The following wave equation describes the non-realistic quantum mechanics for spinless particles of mass m moving in 
a field subject to the potential function V 0 [11]

ıh̄ψt = − h̄2

∇2ψ + V 0(x, t)ψ. (1)

2m
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In the above time-dependent Schrödinger equation, h̄ denotes the Planck’s constant and ψ is a complex amplitude (or en-
velop) of the wave packet under investigation. The above equation is normalized by T = 2mL2/h̄ and L, where L and T are 
the characteristic length and time, respectively. The corresponding dimensionless Schrödinger equation is derived as

ıψt + ψxx + V (x, t, |ψ |2)ψ = 0, (2)

where ı = √−1.
By changing the variables from ψ(x, t) to u(x∗, t∗), one can rewrite equation (2) into a form of semiclassical Schrödinger 

equation. This transformed equation involves the scaled Planck’s constant ε, where 0 < ε � 1, as

ıεut∗ + ε2

2
ux∗x∗ + V (x∗, t∗, |u|2)u = 0. (3)

In the above, x∗ = √
εx, t∗ = 2t and u = √

εψ [6]. Through the mapping from (x, t) to (x∗, t∗), the spatial domain has been 
found to be amplified by a factor of 

√
ε. Schrödinger equation expressed in (x∗, t∗) coordinates facilitates us to numerically 

solve it and capture the phenomena of propagation under such a subtle scale.
The sign of the nonlinear term V in equation (2) corresponds to the focusing (for V > 0) and defocusing (for V < 0) NLS 

equations, respectively. Equation (2) is a generic model used frequently to describe the evolution of an envelope wave in 
nonlinear dispersive medium. Simulation of electromagnetic waves in optical fiber, deep water waves, and Langmuir waves 
in plasmas involves solving the NLS equation. Many other applications of the NLS equation can be found in [12].

In this study, the solution of one-dimensional Schrödinger equation is sought subject to the potential V = 2|ψ |2, thereby 
yielding the following dimensionless Schrödinger equation with the cubic nonlinear term

ıψt + ψxx + 2|ψ |2ψ = 0. (4)

The above CNLS (Cubic NLS) equation is rescaled to the following focusing nonlinear Schrödinger (FNLS) equation through 
the transformation of equation

ıεut∗ + ε2

2
ux∗x∗ + |u|2u = 0. (5)

The small positive scaled Planck’s constant ε shown above is used to measure the relative dominance of the terms account-
ing for the dispersion and nonlinearity. All the superscripts “∗” shown above have been omitted for simplicity.

Given an initial condition u0(x, t = 0) with the norm |u0|2 for the intensity power of electromagnetic field slightly lager 
than a threshold value, equation (5) can self-focus and may become singular in finite time [13]. The physical quantity known 
as the electric field amplitude, for example, is not infinite in magnitude, implying the break of equation (4) near singularity. 
The above equation with self-focusing nonlinearity will be solved subject to the periodic boundary condition.

The complex-valued equation (4) is reformulated below within the context of its real-valued counterparts by decompos-
ing ψ into the real functions p and q as follows

ψ = p + qı. (6)

Having split the wave amplitude ψ into the above two parts, we define the solution vector as z = (p, q)T . The corresponding 
equation for (4) can be now expressed in terms of H as [3,14]

dz/dt = J δH(z)/δz, (7)

where J =
(

0 1
−1 0

)
. The Hamiltonian H shown above for the investigated CNLS equation is

H = 1

2

∫
p2

x + q2
x − (p2 + q2)2dx. (8)

Thanks to equation (8), we can now express H as the sum of the kinetic energy H1 and the potential energy H2 shown 
below [5]

H = H1(p) + H2(q) = 1

2
(pT U p + qT V q). (9)

In the above, U is a symmetric positive definite matrix and V is equal to its transport V T . Given the solution variables p, 
q and the above Hamiltonian, Schrödinger equation can be rewritten as the canonical system of equations given as dp

dt ≡
ṗ = − δH

δq = − δH2(q)
δq and dq

dt ≡ q̇ = δH
δp = δH1(p)

δp [5]. The solution variables p and q are known, respectively, as the canonical 
coordinates and the conjugate canonical momentum [15,16]. These canonical equations can be rewritten equivalently as 
pt = − f (q, t) and qt = g(p, t), where f = qxx + 2(p2 + q2)q and g = pxx + 2(p2 + q2)p [5].
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Equation (4) subject to a given initial solution ψ0(x) constitutes the so-called Cauchy problem. Its unique solution satis-
fies the expression indicating the existence of the conserved charge given below [17]

F1 =
∞∫

−∞
|ψ(x, t)|2dx =

∞∫
−∞

|ψ0(x)|2dx. (10)

One-dimensional CNLS equation is completely integrable and has therefore infinitely many invariants. Amongst the con-
served quantities which can be derived by the technique involving the Lax pair equations, the expressions given by

F2 =
∞∫

−∞
{ψ dψ

dx
− ψ

dψ

dx
}dx (11)

and

F3 =
∞∫

−∞
{2|dψ

dx
|2 − 2|ψ |4}dx (12)

are known to indicate the global conserved momentum and energy, respectively. In equation (11), ψ denotes the complex 
conjugate of ψ . Other conserved quantities used later in this article for the code verification purpose are summarized 
below [18]

F4 =
∞∫

−∞
{2

dψ

dx

d2ψ

dx2
− 6|ψ |2ψ dψ

dx
}dx, (13)

F5 =
∞∫

−∞
{2|d2ψ

dx2
|2 − 12|ψ |2|dψ

dx
|2 − 2(

d|ψ |2
dx

)2 + 4|ψ |6}dx, (14)

F6 =
∞∫

−∞
{2

d2ψ

dx2

d3ψ

dx3
− 10|dψ

dx
|2 d|ψ |2

dx
− 20|ψ |2 dψ

dx

d2ψ

dx2
+ 20|ψ |4ψ dψ

dx
}dx. (15)

All equations (10)–(15) for these conserved quantities are useful for us to indirectly verify the numerical method proposed 
in Section 5 while solving the Schrödinger equation.

We define firstly two new variables v = qx and w = px . The CNLS equation can then be rewritten to its equivalent local 
conservative form ∂ E(z)

∂t + ∂ F (z)
∂x = 0, where E (≡ 1

2 [(p2 + q2)2 − (v2 + w2)]) represents the energy and F (z) (≡ wpt + vqt ) 
denotes the energy flux [19]. By defining the momentum as I(z) = 1

2 (pv − qw) and the momentum flux as G(z) = 1
2 [v2 +

w2 + (p2 +q2)2] − 1
2 (pqt −qpt), the CNLS equation can be rewritten to the equation that is identical to the local momentum 

conservative form ∂ I(z)
∂t + ∂G(z)

∂x = 0 [19,20]. The other conservative form given by Nt + Mx = 0 in [21] exists for the CNLS 
equation as well, where N = 1

2 (p2 + q2) and M = pqx − qpx . In this study, these conservative natures are employed as our 
guidelines to check whether or not the Schrödinger solutions have been correctly computed in Section 5.

While solving the infinite dimensional Hamiltonian system of CNLS equations, the method of lines is chosen to achieve 
the goal of obtaining a solution of higher quality. Within the resulting semi-discretization framework, application of a math-
ematically appropriate temporal scheme presented in Section 3.1.1 enables us to retain the symplectic geometric structure 
in the Schrödinger equation. The second-order spatial derivative term is approximated by the centered difference scheme 
described in Section 3.1.2. While solving partial differential equations by finite difference time domain (FDTD) methods, it is 
essential to ensure scheme stability and, at the same time, to reduce numerical dispersion error. Our underlying methodol-
ogy chosen to reduce dispersion error in five-point stencil is to minimize the derived difference between the numerical and 
exact dispersion relation equations.

3. Two-step Schrödinger equation solver

The dimensionless CNLS equation (4) will be solved through two steps following the work of Bao et al. in [9]. In the first 
solution step, the linear equation given below is solved

ıψt + 2ψxx = 0. (16)

Calculation of the solution ψ for equation (4) is followed by solving the following nonlinear equation

ıψt + 4|ψ |2ψ = 0. (17)
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Application of the above linear–nonlinear splitting approach renders, however, a first-order accuracy in time [22]. From a 
time stage t = tn to t = tn+1, the linear equation (16) will be solved using the four-stage fourth-order accurate explicit 
symplectic Partitioned Runge–Kutta (PRK) scheme described in Section 3.1.1. The dispersion-relation-equation-preserving 
scheme is then developed for the first time, to the best of authors’ knowledge, to approximate spatial derivative term in 
Section 3.1.2. The reason for applying the temporally first order accurate linear–nonlinear time-splitting method is that the 
solution of the nonlinear equation (17) can be solved exactly in Section 3.2 thanks to the invariant value of |ψ |2. In addition, 
we can get the long-time Hamiltonian preserving solution from equation (16).

3.1. Numerical method for the linear Schrödinger equation

A pair of conjugate momenta v = qx and w = px is introduced to rewrite the canonical linear Schrödinger equation to 
the following system of first-order differential equations

pt + vx = −2(p2 + q2)q, (18)

−qt + wx = −2(p2 + q2)p. (19)

The above set of equations is identical to the multi-symplectic Hamiltonian differential system given as M zt + K zx = ∇ S(z), 
where z = (p, q, v, w)T and S(z) = 1

2 (v2 + w2 + 1
2 (p2 + q2)2) [3]. The two matrices shown above are expressed as M =⎛

⎜⎜⎝
0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and K =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠.

Since equations (4) and (16) possess multi-symplectic structure, any numerical method capable of preserving, for exam-
ple, symplecticity and invariant should be adopted. In comparison with the conventional numerical integrators, application 
of geometric numerical discretization methods enables us to get the Schrödinger solution with an improved accuracy and 
an enhanced stability [20,21]. We are therefore prompted to adopt the method of lines to discretize the Hamiltonian partial 
differential equation.

In this study, the spatial derivative term ψxx is approximated firstly by the five-point centered scheme given below

ψxx = γ ψi−2 + (1 − 4γ )ψi−1 + (6γ − 2)ψi + (1 − 4γ )ψi+1 + γ ψi+2

�x2
+ O (�x4). (20)

The symplectic method described in Section 3.1.1 is then applied to integrate the resulting Hamiltonian ordinary differential 
equations. Within the semi-discretization context, the introduced coefficient γ shown in equation (20) will be determined 
in Section 3.1.2.

3.1.1. Symplectic integrator for the temporal derivative term
Either a symplectic or a Poisson type numerical integrator can be employed to conserve the integral invariants in 

Schrödinger equation. In this study, the explicit symplectic integrator is applied so that the numerical dispersion relation 
equation can be derived. Besides retaining the embedded symplectic structure in the currently investigated Hamiltonian 
equation, we are also aimed to get a higher temporal accuracy while solving the linear Schrödinger equation (16). These two 
objectives in the scheme development can be both achieved using the general s-stage r-order explicit symplectic temporal 
scheme given in [23]. Not only the symplectic solution structure can be preserved, we can also get a more accurate solution 
even after a long-time calculation. According to [5], the following four-stage (s = 4) fourth-order (r = 4) accurate explicit Par-
titioned Runge–Kutta (PRK) symplectic scheme, which is derived at the coefficients chosen as c1 = 0, c2 = c4 = (2 − 21/3)−1, 
c3 = 1 − 2(2 − 21/3)−1, d1 = d4 = 1

2 (2 − 21/3)−1 and d2 = d3 = 1
2 [1 − (2 − 21/3)−1], is applied.

First-stage:

p1 = pn − τ c1L1(q
n, tn),

q1 = qn + τd1L2(p1),

τ1 = tn + τd1. (21)

Second-stage:

p2 = p1 − τ c2L1(q1,τ1),

q2 = q1 + τd2L2(p2),

τ2 = τ1 + τd2. (22)

Third-stage:

p3 = p2 − τ c3L1(q2,τ2),

q3 = q2 + τd3L2(p3),

τ3 = τ2 + τd3. (23)
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Fig. 1. Illustration of the 4-stage 4th-order explicit scheme applied between the two consecutive time steps n and n + 1
2 . Calculation of the solution starts 

from qn to p1 and, then, to q1, p2, q2, p3, q3, pn+ 1
2 and, finally, ends at qn+ 1

2 . (Note: The blue dash dot line, red solid line, black thin line and black bold 
line indicate the next time stage p. They are computed from the previous time-step solution of q, the next time-step solution q which is computed from 
the previous time-step solution of p, the temporary time stage and the updated time-step, respectively). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fourth-stage:

pn+ 1
2 = p3 − τ c4L1(q3,τ3),

qn+ 1
2 = q3 + τd4L2(pn+ 1

2 ),

τn+ 1
2 = τ3 + τd4. (24)

In the above, τ is defined as �t
2 . Likewise, the functions L1(q, τi) and L2(p) are expressed as 2qxx and 2pxx , respectively, 

at the corresponding time stage. Advancement of the solutions p and q from tn = n�t to the next time tn+ 1
2 = (n + 1

2 )�t is 
illustrated in Fig. 1.

Based on the four-stage fourth-order accurate explicit symplectic PRK scheme given in equations (21)–(24), we can now 
easily derive the relations for pn+ 1

2 from pn and qn+ 1
2 from qn at two consecutive time steps. By substituting pn into 

equation (21), then into equation (22), and finally into equation (24), we can get

pn+ 1
2 = pn − �tqn

xx − �t2

2! pn
xxxx + �t3

3! q(6) + �t4

4! p(8)

+ 0.09585�t5q(10) + 0.06475�t6 p(12),

qn+ 1
2 = qn + �tpn

xx − �t2

2! qn
xxxx − �t3

3! p(6) + �t4

4! q(8)

− 0.09585�t5 p(10) + 0.06475�t6q(12) + 0.04375�t7 p(14). (25)

Using the Taylor series expansion formula, or f n+ 1
2 = f n + f n

t (�t
2 ) + 1

2! f n
tt(

�t
2 )2 + 1

3! f n
ttt(

�t
2 )3 . . . , the following two modified 

equations can be derived

pt + qxx = �t4(0.09585q(10) − 1

255! pn
ttttt)

+ �t5(0.06475p(12) − 1

266! pn
tttttt) + O (�t6,�x4),

qt − pxx = −�t4(0.09585p(10) + 1

255!qn
ttttt)

+ �t5(0.06475q(12) − 1

266!qn
tttttt) + �t6(0.04375p(14) − 1

277!qn
tttttt) + O (�t7,�x4). (26)

Note that p(n) and q(n) denote the discrete expressions of ∂n p
∂xn |t=n�t and ∂nq

∂xn |t=n�t , respectively. The scheme under investi-
gation has therefore the temporal accuracy of order four.

3.1.2. DRE-preserving centered scheme for the linear Schrödinger equation
To minimize the numerical phase error while solving the linear Schrödinger equation (16), the idea of preserving disper-

sion relation equation (DRE), which was proposed firstly in the area of computational aeroacoustics by Tam and Webb [24], 
is adopted. One can refer to the work of Hairer [21] for other structure-preserving algorithms applied to solve the ordi-
nary differential equation. In the current article, the spatial derivative term is approximated after applying the four-stage 
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fourth-order accurate explicit symplectic PRK temporal scheme for the linear part of the CNLS equation. To reduce the dis-
persive error generated normally from finite difference time domain (FDTD) methods, the difference between the exact and 
numerical dispersion relation equations for the linear Schrödinger equation is minimized.

By substituting the plane wave solution into the linear equation (16), the exact relation between the angular frequency 
ω and the wavenumber k is given by ωexact = 2k2 or

ωexact�t = 2(k�x)2 Cr, (27)

where Cr = �t
�x2 . To derive the numerical dispersion relation equation, the discrete plane wave solution is substituted into 

the nodal representations of ψn
j , ψn+ 1

2
j , ψn

j±m to yield ψn
j = ψn

j , ψn+ 1
2

j = e−ıω �t
2 ψn

j and ψn
j±m = e±ımk�xψn

j . Development of 
the proposed scheme is followed by substituting them into the discrete equation

ıψn+ 1
2 = ıψn − �tψn

xx − ı
�t2

2! ψn
xxxx + �t3

3! ψ(6)+ ı
�t4

4! ψ(8) + 0.09585�t5ψ(10) + ı0.06475�t6ψ(12), (28)

which stems from the combination of equation (25) and the relationship (6). Note that ψ(n) denotes the discrete expression 
of ∂nψ

∂xn |t=n�t . The term 0.04375�t7 p(14) will be truncated in this study. The numerical dispersion relation equation (DRE) 
for the linear Schrödinger equation can be derived as

ωnumerical�t = arcsin(2 sin(
ωnumerical�t

2
) cos(

ωnumerical�t

2
)), (29)

where sin(
ωnumerical�t

2 ) and cos(ωnumerical�t
2 ) result from the real and imaginary parts of equation (28), respectively. For the 

optimization of the numerical dispersion relation equation, we define the error function E as

E = sin2(
ωexact�t

2
− ωnumerical�t

2
) (30)

= [sin(
ωexact�t

2
) cos(

ωnumerical�t

2
) − cos(

ωexact�t

2
) sin(

ωnumerical�t

2
)]2.

The reason why we prefer the error function E defined in equation (30) is to make the integration of the equation ∫ mπ
−mπ E d(k�x) possible. The error function E can now be minimized in an integral sense given below

∂

∂γ

mπ∫
−mπ

E d(k�x) = 0. (31)

The value of m is in the range between 0 and 1.
Since equation (31), which involves unknowns m and γ , is not amenable to analytical integration, we resort to the 

numerical approach by changing the value of m in the range between 0 and 1. Through a series of computational exercises, 
the optimal value of γ (≡ −0.08336826007), which is now the only unknown in (20), is obtained at m = 0.104329. It is 
worthy to note here that the numerically determined values for m and γ render the minimal value of E defined in (30). 
Having obtained the optimal value of γ , the derived numerical dispersion relation equation gives us the relation between 
the numerical angular frequency ωnumerical�t and the modified wavenumber k�x. The derived expression of dispersion 
relation equation is very complex and we only plot ωnumerical�t versus the modified wavenumber k�x in Fig. 2.

The phase velocity v p describes the speed at which the phase of a wave propagates in the direction normal to the propa-
gating waveform. It is therefore worthy to plot the physically meaningful velocity with respect to the modified wavenumber 
k�x in Fig. 3. As the value of k�x becomes smaller than 1.35, good match between the numerical and exact dispersion 
relation equations can be clearly seen.

Since the FDTD method developed in this study is explicit, Von Neumann (or Fourier) stability analysis needs to be 
performed on the system of four-stage fourth-order accurate explicit symplectic PRK equations. Here the condition |G| ≤ 1, 
where |G| is the amplification factor, is enforced to ensure that numerical stability condition is deemed satisfied. In Fig. 4, 
it can be easily seen that |G| ≤ 1 when the value Cr (≡ �t

�x2 ) is smaller than 0.25. For completeness, one can refer to 
Appendix A for the detailed stability analysis.

3.2. Numerical method for nonlinear part of Schrödinger equation

Since |ψ |2 is equal to ψψ , one can get

∂t |ψ |2 = ψtψ + ψψ t . (32)

According to the nonlinear equation (17), the term ψt is substituted into equation (32) to yield the following equation

∂|ψ |2
∂t

= 0. (33)

The value of |ψ |2 is therefore invariant with time.
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Fig. 2. Comparison of the derived numerical and exact angular frequencies ω�t , which are plotted with respect to the modified wavenumber k�x.

Fig. 3. Comparison of the numerical and exact phase velocities v p (≡ ω�t
k�x ), which are plotted with respect to the modified wavenumber k�x, using the 

proposed scheme.

Thanks to the existing invariant nature of |ψ |2 within each time increment while employing the linear–nonlinear tem-
poral splitting method, the solution of the nonlinear ordinary differential equation (17) can be derived analytically as 
ψ = ei4|ψ |2t . The discretized representation of this equation is ψn+1 = ψn+ 1

2 ei2|ψ |2�t . The resulting expressions for p and 
q turn out to be pn+1 = pn+ 1

2 cos(2|ψ |2�t) − qn+ 1
2 sin(2|ψ |2�t) and qn+1 = pn+ 1

2 sin(2|ψ |2�t) + qn+ 1
2 cos(2|ψ |2�t), where 

|ψ |2 is equal to (pn+ 1
2 )2 + (qn+ 1

2 )2 at the time step n + 1
2 .

4. 2D cubic nonlinear Schrödinger equation solver

In this section we intend to solve the following NLS equation in (x, y) plane

ıψt + ψxx + ψyy + β|ψ |2ψ = 0. (34)

The linear–nonlinear splitting strategy described in Section 3 for solving the one-dimensional equation can be applied as 
well to compute the solution of the above two-dimensional CNLS equation. This splitting of equation (34) leads to the 
respective linear and nonlinear equations given below

ıψt + 2ψxx + 2ψyy = 0, (35)

ıψt + 2β|ψ |2ψ = 0. (36)
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Fig. 4. The magnitudes of the amplification factors, or |G|, are plotted with respect to the modified wavenumber at different values of Cr (≡ Crx = �t
�x2 ) for 

the proposed one-dimensional scheme.

Fig. 5. The magnitudes of the amplification factor, or |G|, are plotted with respect to the modified wavenumber at different values of Cr (≡ Crx = �t
(�x)2 ) for 

the proposed two-dimensional scheme developed under �x = �y.

Explicit symplecticity- and dispersion-relation-equation-preserving scheme can be directly developed from the two-
dimensional linear equation (35). One can see clearly from Fig. 5 that a direct calculation of the two-dimensional equation 
suffers a comparatively stringent stability condition imposed on the adopted explicit scheme. The details of the two dimen-
sional stability analysis can be also seen in Appendix A.

To alleviate the problem of stability condition described above when applying the proposed explicit scheme to solve the 
two-dimensional equation (34), the method of fractional steps or the method of splitting is adopted in this study. The basic 
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Table 1
Comparison of the L2-error norms for the real part (top) and the imaginary part (bottom) of the complex-valued wavefunction ψ , which are computed at 
different grid spacings using (a) Crank–Nicolson scheme [27]; (b) linearized Crank–Nicolson scheme I [27]; (c) linearized Crank–Nicolson scheme II [27]; 
(d) three-level explicit scheme [27]; (e) Hopscotch scheme [27]; (f) Hopscotch scheme with extrapolation [27]; (g) splitting-spectral scheme [27]; (h) present 
scheme, respectively.

L2-error norms of 	(ψ) ≡ p

n 1 2 4 8 16 Rate of convergence (spatial)

(a) 3.32E−02 8.16E−03 2.09E−03 5.07E−04 1.27E−04 2.0069
(b) 3.47E−02 8.17E−03 2.03E−03 5.07E−04 1.27E−04 2.0198
(c) 3.43E−02 8.16E−03 2.03E−03 5.07E−04 1.27E−04 2.0167
(d) 3.34E−02 8.10E−03 2.03E−03 5.07E−04 1.27E−04 2.0077
(e) 8.77E−03 2.25E−03 5.70E−04 1.44E−04 5.72E−05 1.8482
(f) 4.94E−02 1.26E−02 3.16E−03 7.75E−04 2.13E−04 1.9738
(g) 1.79E−04 1.66E−04 1.60E−04 1.57E−04 1.55E−04 0.0482
(h) 1.48E−03 2.95E−04 7.76E−05 1.98E−05 4.98E−06 2.0327

L2-error norms of 
(ψ) ≡ q

n 1 2 4 8 16 Rate of convergence (spatial)

(a) 3.43E−02 8.40E−03 2.03E−03 5.22E−04 1.30E−04 2.0089
(b) 3.25E−02 8.42E−03 2.09E−03 5.22E−04 1.30E−04 2.0022
(c) 3.32E−02 8.40E−03 2.09E−03 5.22E−04 1.30E−04 1.9990
(d) 3.23E−02 8.34E−03 2.08E−03 5.21E−04 1.30E−04 1.9903
(e) 8.26E−03 2.09E−03 5.28E−04 1.34E−04 6.52E−05 1.7927
(f) 5.13E−02 1.30E−02 3.25E−03 7.97E−04 2.14E−04 1.9833
(g) 2.47E−04 2.41E−04 2.38E−04 2.36E−04 2.35E−04 0.0171
(h) 1.44E−03 3.13E−04 8.45E−05 2.16E−05 5.45E−06 1.9949

idea of our adopted method to resolve the stability problem is to split the two-dimensional equation into the following set 
of one-dimensional linear equations

ıψt + ψxx = 0, (37)

ıψt + ψyy = 0. (38)

The operator splitting of equation (34) makes it possible to advance the calculation of Schrödinger solution in x- and 
y-directions subject to their respective maximum allowable time steps. This fractional step method has a close relation to 
the alternating direction implicit (ADI) method that was developed at about the same time. Use of this splitting method 
renders a compelling advantage over a non-splitting method provided that the allowable time increments �tx and �t y are 
much different from those using the currently employed explicit scheme because of the large difference in the grid spacings. 
The reader is urged to consult the book of Yanenko [25].

Now we will make use of the explicit FDTD scheme developed in Section 3.1 to solve the one-dimensional linear 
Schrödinger equation. Application of the three-term splitting method in [26] yields the following equations for p and q, 
where ψ = p + ıq.

ıψt + 3ψxx = 0, (39)

ıψt + 3ψyy = 0, (40)

ıψt + 3β|ψ |2ψ = 0. (41)

Our implementation of the time marching scheme to get the two-dimensional Schrödinger solution from tn to tn+1 is 
described below. In the first fractional step of calculating the solution from tn = n�t to t1 = (n + 1

9 )�t , we perform firstly 
the calculation of equation (41) and then from t1 to t2 = (n + 4

9 )�t on (39). This is followed by calculating the solution from 
equation (41) from t2 to t3 = (n + 5

9 )�t and then from t3 to t4 = (n + 8
9 )�t on (40), and finally from t4 to tn+1 = (n + 1)�t

on (41).
In view of the above three split equations, the explicit symplecticity- and dispersion-relation-equation-preserving scheme 

developed for the one-dimensional NLS equation can now be readily applied to solve the two-dimensional NLS equation.

5. Verification study

The proposed symplecticity- and dispersion-relation-equation-preserving scheme is verified by solving the problems 
amenable to exact solutions. Both one- and two-dimensional NLS equations are considered in this section. Furthermore, 
the present scheme is applied to simulate the solution under the computationally challenging semiclassical limit.
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Fig. 6. Comparison of the relative error percentages (Erel,i ≡ Enumerical,i−Eexact,i
Eexact,i

× 100%) (i = 1 − 6) between the exact and predicted Hamiltonian values for 
F1(t), 
(F2(t)), F3(t), 
(F4(t)) in (a) and F5(t), 
(F6(t)) in (b). Comparison of the exact and predicted values of the Hamiltonians 	(F4(t)) in (c) and 
	(F6(t)) in (d) computed at Cr = 0.25 and �x = 0.025, where 	 and 
 denote the real and imaginary parts, respectively.

5.1. One-dimensional analytical problem

We start by solving the CNSE equation (4), which is amenable to the following exact solution, in the domain of −8 ≤
x ≤ 8 [6]

ψexact(x, t) = sech(

√
εx + 4t

ε
)exp(

−2ı

ε
(
√

εx + 3

2
t))/

√
ε. (42)

Subject to the initial condition ψ(x, 0) = sech( x√
ε
) exp(−2ı√

ε
x)/

√
ε, the solution of (4) is sought at ε = 0.5 and Cr

(≡ �t/(�x)2) = 0.25.
For the verification and comparison purposes, the L2-norm errors at t = 0.5 are obtained firstly from a series of calcu-

lations performed at the continuously refined meshes �x = 1/8n (n = 1, 2, 4, 8, 16) for the real part (	(ψ) or p) and the 
imaginary part (
(ψ) or q) of the complex wavefunction ψ , respectively. According to the computed results in Table 1 for 
the real (top) and imaginary (bottom) parts, respectively, the proposed scheme is verified to be applicable to solve NLS equa-
tion. The corresponding rates of convergence are also tabulated in Table 1. One can clearly see that the currently predicted 
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Fig. 7. The difference of the predicted and exact nodal crest locations xi (i = 1 − N) is plotted with respect to time computed at Cr = 0.25 and �x = 0.025.

Fig. 8. (a) The predicted values of energy E (≡ 1
2 [(p2 + q2)2 − (v2 + w2)]) are plotted with respect to time and space. (b), (c), (d) are the zoomed views of 

E at t = 1, 50, 100, respectively.

solution accuracy is better than the other finite difference schemes listed in [27]. The rates of convergence tabulated also in 
Table 1 for p (≡ 	(ψ)) and q (≡ 
(ψ)) using the current finite difference scheme, which can preserve both symplecticity 
and dispersion relation equation, are much larger than those computed by other methods.

To demonstrate that the proposed scheme is indeed symplectic, the Hamiltonians expressed in equations (10)–(15) are 
calculated and are plotted with respect to time. In Figs. 6(a)–6(d), all the Hamiltonians are perfectly conserved numerically 
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Fig. 9. (a) The predicted values of energy F (≡ wpt + vqt ) are plotted with respect to time and space. (b), (c), (d) are the zoomed views of F at t = 1, 50, 100, 
respectively.

at Cr = 0.25 and �x = 0.025 in the computational domain x ∈ [−50, 600] and t ∈ [0, 100]. To confirm the fact that the 
proposed scheme can be applied to obtain a wave solution with very accurately predicted phase speed, the discrepancy 
between the exact and the numerically predicted nodal crest locations is plotted in Fig. 7 with respect to time. In Fig. 7, the 
largest discrepancy between the exact and numerical nodal crest locations is one �x.

To provide some propagation details of the Schrödinger equation, the energy E (≡ 1
2 [(p2 +q2)2 − (v2 + w2)]), energy flux 

F (≡ wpt + vqt ), momentum I (≡ 1
2 (pv −qw)), momentum flux G (≡ [v2 + w2 + 1

2 (p2 +q2)2] − 1
2 (pqt −qpt)), N = 1

2 (p2 +q2)

and M = pqx −qpx are plotted in Figs. 8–13, respectively, based on the computed values of p, q, v and w . Having calculated 
the values of E , F , I , G , N and M for t ∈ [0, 100], three equations ∂ E

∂t + ∂ F
∂x = 0, ∂ I

∂t + ∂G
∂x = 0 and ∂N

∂t + ∂M
∂x = 0 have been 

numerically verified to be correct according to the plots shown in Fig. 14. The proposed scheme is proved again to be 
applicable to simulate the CNLS equation.

Calculation of the cubic nonlinear Schrödinger solution at the so-called semiclassical limit has been known to be compu-
tationally challenging [9]. For this reason, the proposed numerical method is applied to solve the Schrödinger equation (3)
cast in the semiclassical scale. Our purpose is to compare the simulated solutions with other solutions presented in the 
works of [9,10,28] for the sake of validation. In this study, the classical Wentzel–Kramers–Brillouin (WKB) (or known as 
Liouville–Green) form is chosen as our initial condition u(x, 0) = √

n0(x)eıS0(x)/ε , where n0(x) = (e−25(x−0.5)2
)2 decays con-

siderably fast when |x| approaches to infinity. In this validation study, we consider S0(x) = − 1
5 ln(2 cosh(5(x − 0.5))) and 

V (x) = −10 in the domain of 0 ≤ x ≤ 1. As ε approaches zero, this investigated problem permits theoretically weak solu-
tion [10]. For the linear potential case considered in [9,10,28], the predicted results at ε = 0.0064, 0.0001, �x = 0.01, 0.0001
and �t = 0.0001, 5.0E−6 are shown in Fig. 15 for the physical quantity ρ(x, t) (≡ |u(x, t)|2) and for the current den-
sity J (x, t) (≡ ε

2ı
(u∇u − u∇u)), respectively. At t = 0.54, our predicted results agree well with the results of Markowich 

et al. [10] obtained at the weak limit or under the condition when the value of ε is closed to zero.
As far as the nonlinear potential V (x, |u|2) = −|u|2 is considered, the defocusing solution exhibits ε-oscillation behavior. 

The initial condition is considered as u(x, t = 0) = A(x)eıS0(x)/ε , where A(x) = e−x2
and S0(x) = − 1

5 ln(2 cosh(5x)) in the 
domain of [−4, 4]. For the cases investigated at ε = 0.01, 0.0025, �x = 0.005, 0.001 and �t = 0.001, 0.0001, the predicted 
results plotted in Fig. 16 are all compared well with the results given in [9,28–30] for ρ(x, t) (≡ |u(x, t)|2) and J (x, t)
(≡ ε

2ı
(u∇u − u∇u)), respectively, at t = 1. Our aim of showing that we can accurately predict Schrödinger solution at a very 

small value of ε is achieved.
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Fig. 10. (a) The predicted values of energy I (≡ 1
2 (pv − qw)) are plotted with respect to time and space. (b), (c), (d) are the zoomed views of I at 

t = 1, 50, 100, respectively.

Fig. 11. (a) The predicted values of energy G (≡ [v2 + w2 + 1
2 (p2 + q2)2] − 1

2 (pqt − qpt )) are plotted with respect to time and space. (b), (c), (d) are the 
zoomed views of G at t = 1, 50, 100, respectively.



T.W.H. Sheu, L. Lin / Journal of Computational Physics 299 (2015) 1–21 15
Fig. 12. (a) The predicted values of energy N (≡ 1
2 (p2 + q2)) are plotted with respect to time and space. (b), (c), (d) are the zoomed views of N at 

t = 1, 50, 100, respectively.

5.2. Two-dimensional Schrödinger equation with exact solution

The three-term splitting method applied to solve the two-dimensional NLS equation is then verified by solving equa-
tion (34) in a square [0, 2π ] × [0, 2π ]. Subject to the Dirichlet boundary condition prescribed at the domain boundary, 
the simulated solutions at t = 1 under �t = 10−4 and �x = �y = 2π

N , where N = 10, 20, 40, 80, will be compared with the 
corresponding exact solutions given below for β = 2

ψexact(x, y, t) = eı[x+y−(2−β)t]. (43)

In Table 2, we have tabulated the predicted L2 and L∞ error norms. Excellent agreement between the exact and sim-
ulated solutions confirms the legitimacy of applying the method of fractional steps in the calculation of solution from 
the two-dimensional Schrödinger equation. For a further verification of the proposed solver for the NLS equation in two 
dimensions, the following three conserved quantities are calculated and are then plotted with respect to time [26]∫

1

2
(qū − pg)d
 = C1, (44)

∫
1

2
(pv̄ − pw)d
 = C2, (45)

∫
−1

2
(p2 + q2)2 + 1

2
(ū2 + v̄2 + g2 + w2)d
 = −C3, (46)

where u, v , g and w denote px , p y , qx and qy , respectively. In the above, the integrands in (44) and (45) denote the 
momentum densities. According to Fig. 17, these conservation laws embedded in the two-dimensional NLS equation (34)
are deemed satisfied discretely.

For completeness, the energy density E , energy fluxes F1, F2, momentum densities I1, I2, and momentum fluxes Gij
(i, j = 1, 2) defined below are also calculated from the computed solution

E = −β
(p2 + q2)2 + 1

(ū2 + v̄2 + g2 + w2), (47a)

4 2
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Fig. 13. (a) The predicted values of energy M (≡ pqx − qpx) are plotted with respect to time and space. (b), (c), (d) are the zoomed views of M at 
t = 1, 50, 100, respectively.

Fig. 14. The computed L2-norms of S1, S2 and S3 defined as ∂N
∂t + ∂M

∂x = S1, ∂ E
∂t + ∂ F

∂x = S2 and ∂ I
∂t + ∂G

∂x = S3, respectively, are plotted with respect to time 
at �t = 0.0005 and �x = 0.05 for t ∈ [0, 100] and x, y ∈ [−600, 50].



T.W.H. Sheu, L. Lin / Journal of Computational Physics 299 (2015) 1–21 17
Fig. 15. Comparison of numerical and weak limit results in (a) and (b), at t = 0.54 for ρ and J computed at ε = 0.0064, �x = 0.01 and �t = 0.0001, 
respectively. Comparison of numerical and weak limit results in (c) and (d) at t = 0.54 for ρ and J computed at ε = 0.0001, �x = 0.00005 and �t = 2.5E−6, 
respectively.

F1 = −ūpt − gqt, (47b)

F2 = −v̄ pt − wqt, (47c)

I1 = 1

2
(qū − pg), (47d)

I2 = 1

2
(pv̄ − pw), (47e)

G11 = −β

4
(p2 + q2)2 − 1

2
(ū2 + g2) − 1

2
(qpt − pqt) − 1

2
(pv̄ y + qw y), (47f)

G12 = 1
(−ū v̄ − g w + pv̄x + qwx), (47g)
2



18 T.W.H. Sheu, L. Lin / Journal of Computational Physics 299 (2015) 1–21
Fig. 16. The predicted results of ρ and J at t = 1 for the simulation carried out at ε = 0.01, �x = 0.005 and �t = 0.001 in (a), (b), respectively. The 
numerical results of ρ and J at t = 1 for the simulation carried out at ε = 0.0025, �x = 0.001 and �t = 0.0001 in (c) and (d), respectively.

G21 = 1

2
(−ū v̄ − g w + pū y + qg y), (47h)

G22 = −β

4
(p2 + q2)2 − 1

2
(v̄2 + w2) − 1

2
(qpt − pqt) − 1

2
(pūx + qgx). (47i)

Having computed these physically important quantities, they are then substituted into the equations for the energy con-
served quantity (equation (48)) and the momentum conserved quantities (equations (49) and (50))

∂ E

∂t
+ ∂ F1

∂x
+ ∂ F2

∂ y
= 0, (48)

∂ I1

∂t
+ ∂G11

∂x
+ ∂G12

∂ y
= 0, (49)

∂ I2

∂t
+ ∂G21

∂x
+ ∂G22

∂ y
= 0. (50)

We can then compute the L2-norms of the residuals for the equations governing respectively the time varying physical 
quantities E , I1 and I2. According to Fig. 18, the proposed numerical scheme is shown to be applicable to solve the two-
dimensional NLS equation.
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Table 2
Comparison of the L2- and L∞-error norms computed at different grid spacings. The values shown in (•) are the computed rates of convergence. Note that 
(a), (b) represent the error norms computed in [26] and computed by the current scheme, respectively.

N L2-error norms

	(ψ) ≡ p 
(ψ) ≡ q

(a) (b) (a) (b)

10 0.62 2.3824E−02 0.62 2.7514E−02
20 0.15 (2.05) 1.9139E−03 (3.63) 0.15 (2.05) 2.2341E−03 (3.62)

40 3.67E−02 (2.03) 1.2902E−04 (3.89) 3.67E−02 (2.03) 1.5065E−04 (3.89)

80 9.14E−03 (2.01) 1.9484E−05 (2.73) 9.14E−03 (2.01) 2.1317E−05 (2.82)

N L∞-error norms

	(ψ) ≡ p 
(ψ) ≡ q

(a) (b) (a) (b)

10 0.14 6.0535E−02 0.14 8.3842E−02
20 3.34E−02 (2.07) 4.4093E−03 (3.78) 3.34E−02 (2.07) 6.6086E−03 (3.67)

40 8.25E−03 (2.02) 3.2547E−04 (3.76) 8.25E−03 (2.02) 4.5848E−04 (3.85)

80 2.06E−03 (2.00) 5.7616E−05 (2.50) 2.06E−03 (2.00) 8.0955E−05 (2.50)

Fig. 17. The values of C1, C2 and −C3, which are shown in equations (44)–(46), computed at �t = 0.0001 and �x = �y = 2π
80 are plotted with respect to 

time for t ∈ [0, 1] and x, y ∈ [0, 2π ].

6. Concluding remarks

In this study a dispersion error reducing symplecticity-preserving FDTD scheme has been developed within the semi-
discretization context to solve the CNLS equation in semiclassical regime. Under the small-dispersion condition, our strategy 
of approximating the spatial derivative term is to minimize the discrepancy between the numerical and exact dispersion 
relation equations for this nonlinear Hamiltonian equation. A long-time accurate simulation of the CNLS equation requires 
predicting the results that should satisfy the discrete Hamiltonians. The four-stage explicit symplectic time integrator of 
fourth-order temporal accuracy is applied. Both of the Fourier stability analysis and the modified equation analysis of second 
kind for the proposed explicit symplectic PRK scheme accommodating the optimized numerical dispersion relation equation 
have been conducted. The method of fractional steps is adopted to split the two-dimensional NLS equation into two single-
dimensional equations. Through the splitting of CNLS equation, the proposed one-dimensional symplectic scheme with the 
optimized numerical dispersion relation equation can be applied to solve the two-dimensional Schrödinger equation.

Appendix A. Stability analysis on the proposed scheme

Since the nonlinear part of the CNLS equation (17) is amenable to exact solution, the stability condition to be derived 
for the proposed explicit symplecticity- and dispersion-relation-equation-preserving scheme has only association with the 
linear part of the Schrödinger equation, or (16), under current investigation. The stability condition will be derived below in 
detail.
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Fig. 18. The L2-norms of the conservation laws for E , I1, I2 (equations (48)–(50)) are plotted with respect to time for the solutions predicted at �t = 0.0001
and �x = �y = 2π

80 for t ∈ [0, 1] and x, y ∈ [0, 2π ].

When conducting Von Neumann stability analysis, one has to transform equation (28) from time domain to frequency 
domain through the discrete Fourier decomposition, which is defined as

ψn
i = ψn

i ,

ψ
n+ 1

2
i = e−ıω �t

2 ψn
i ,

ψn
i±m, j±n = e±ı(mkx�x+nky�y)ψn

i . (A.1)

By substituting the equations in (A.1) into equation (20), we have

ψxx|i = 2γ cos(2k�x) + 2(1 − 4γ ) cos(k�x) + (6γ − 2)

�x2
ψi ≡ A

�x2
ψi . (A.2)

The set of the high-order spatial discrete derivative terms shown in equation (28) can be similarly represented in the 
frequency domain by means of ψxxxx|i ≡ A2

�x4 ψi , ψ(6)|i ≡ A3

�x6 ψi , ψ(8)|i ≡ A4

�x8 ψi , ψ(10)|i ≡ A5

�x10 ψi , and ψ(12)|i ≡ A6

�x12 ψi , 
where A = 2γ cos(2k�x) + 2(1 − 4γ ) cos(k�x) + (6γ − 2) and the coefficient γ has been determined in Section 3.1.2. Note 
that ψ(n) denotes the discrete expression of ∂nψ

∂xn |t=n�t .

The amplification factor G (≡ ψ
n+ 1

2
i /ψn

i ) can be then derived as follows by substituting equation (A.1) into equation (28)

G ≡ ψ
n+ 1

2
i

ψn
i

= 1 + ıCr A − Cr2

2! A2 − ı
Cr3

3! A3 + Cr4

4! A4 − ı0.09585Cr5 A5 + 0.06475Cr6 A6. (A.3)

The necessary and sufficient condition for the proposed scheme to be conditionally stable is that the absolute value of the 
amplification factor |G| is equal to or less than one. The amplification factor for |G| ≤ 1 is plotted with respect to Cr in 
Fig. 4.

By virtue of the four-stage fourth-order accurate explicit Partitioned Runge–Kutta (PRK) scheme, the linear part of the 
two dimensional Schrödinger equation (35) can be rewritten as

ıψn+ 1
2 = ıψn − �t(ψn

yy + ψn
xx) − ı

�t2

2! (ψn
yyyy + 2ψn

xxyy + ψn
xxxx)

+ �t3

3! (ψy6 + 3ψx2 y4 + 3ψx4 y2 + ψx6) + ı
�t4

4! (ψy8 + 4ψx2 y6 + 6ψx4 y4 + 4ψx6 y2 + ψx8)

+ 0.01977�t5(ψy10 + 5ψx2 y8 + 10ψx4 y6 + 10ψx6 y4 + 5ψx8 y2 + ψx10)

+ ı0.06475�t6(ψy12 + 6ψx2 y10 + 15ψx4 y8 + 20ψx6 y6 + 15ψx8 y4 + 6ψx10 y2 + ψx12). (A.4)
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Note that ψxn ym is denoted as the discrete expression of ∂n

∂xn
∂m

∂ ym ψn|t=n�t . Following the similar derivation procedures de-

scribed above, the derived amplification factor G (≡ ψ
n+ 1

2
i /ψn

i ) under �x = �y is given below, where Crx (≡ �t
�x2 ) = Cry

(≡ �t
�y2 ) = Cr

G ≡ ψ
n+ 1

2
i

ψn
i

= 1 + ıCr(A + B) − Cr2

2! (A2 + 2AB + B2)

− ı
Cr3

3! (A3 + 3A2 B + 3AB2 + B3) + Cr4

4! (A4 + 4A3 B + 6A2 B2 + 4AB3 + B4)

− ı0.09585Cr5(A5 + 5A4 B + 10A3 B2 + 10A2 B3 + 5AB4 + B5)

+ 0.06475Cr6(A6 + 6A5 B + 15A4 B2 + 20A3 B3 + 15A2 B4 + 6AB5 + B6). (A.5)

In the above, A and B are as follows

A = 2γ cos(2k�x) + 2(1 − 4γ ) cos(k�x) + (6γ − 2),

B = 2γ cos(2k�y) + 2(1 − 4γ ) cos(k�y) + (6γ − 2). (A.6)

The coefficient γ has been determined by minimizing the discrepancy between the numerical and exact dispersion relation 
equation for the two-dimensional case. As Fig. 5 shows, the magnitudes of the amplification factor |G| approaches one as Cr
decreases. One can also see clearly that calculation of the two-dimensional stable solution suffers a comparatively stringent 
stability condition.

References

[1] A. Hasegawa, Y. Kodama, Solitons in Optical Communications, Oxford, Clarendon Press, 1995.
[2] T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water. Part 1. Theory, J. Fluid Mech. 27 (3) (1967) 417–430.
[3] J.B. Chen, M.Z. Qin, Y.F. Tang, Symplectic and multi-symplectic methods for the nonlinear Schrödinger equation, Comput. Math. Appl. 43 (2002) 

1095–1106.
[4] S. Reich, Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys. 157 (2000) 473–499.
[5] X.S. Liu, Y.Y. Qi, J.F. He, P.Z. Ding, Recent progress in symplectic algorithm for use in quantum systems, Commun. Comput. Phys. 2 (1) (2007) 1–53.
[6] L. Lee, G. Lyng, I. Vankova, The Gaussian semiclassical soliton ensemble and numerical methods for the focusing nonlinear Schrödinger equation, 

Physica D 241 (2012) 1767–1781.
[7] G.P. Agrawal, Nonlinear Fiber Optics, 2nd edition, Academic Press, San Diego, California, 1995.
[8] T.B. Benjamin, K. Hasselmann, Instability of periodic wave trains in nonlinear dispersive systems, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 299 (1456) 

(1967) 59–76.
[9] W. Bao, S. Jin, P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys. 

175 (2002) 487–524.
[10] P.A. Markowich, P. Pietra, C. Pohl, Numerical approximation of quadratic observables of Schrödinger equations in the semi-classical limit, Numer. Math. 

81 (1999) 595–630.
[11] C. Heitzinger, C. Ringhofer, A note on the symplectic integration of the nonlinear Schrödinger equation, J. Comput. Electron. 3 (1) (2004) 33–44.
[12] Z. Rapti, P.G. Kevrekidis, D.J. Frantzeskakis, B.A. Malomed, On the modulational instability of the nonlinear Schrödinger equation with dissipation, Phys. 

Scr. T 113 (2004) 74–77.
[13] G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math. 61 (15) (2001) 1680–1705.
[14] T.J. Bridges, Multi-symplectic structures and wave propagation, Math. Proc. Camb. Philos. Soc. 121 (1997) 147–190.
[15] T.J. Bridges, S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A, Math. Gen. 39 (2006) 5287–5320.
[16] X.S. Liu, L.W. Su, P.Z. Ding, Symplectic algorithm for use in computing the time-independent Schrödinger equation, Int. J. Quant. Chem. 87 (1) (2002) 

1–11.
[17] X. Liu, Y.C. Sun, Y. Tang, Conservativity of symplectic methods for the Ablowitz–Ladik discrete nonlinear Schrödinger equation, Master thesis, Chinese 

Academy of Science, 2004.
[18] V.E. Zakharov, A.B. Shabat, Interaction between solitons in a stable medium, Sov. Phys. JETP 64 (1973) 1627–1639.
[19] A. Aydin, B. Barasözen, Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions, Comput. Phys. 

Commun. 177 (2007) 566–583.
[20] T.J. Bridges, S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserves symplecticity, Phys. Lett. A 284 (2001) 

184–193.
[21] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, 

Springer Ser. Comput. Math., vol. 31, 2006.
[22] W. Bao, S. Jin, P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes, 

SIAM J. Sci. Comput. 25 (1) (2003) 27–64.
[23] J.M. Sanz-Serna, A. Portillo, A classical numerical integrators for wave-packet dynamics, J. Chem. Phys. 104 (6) (1996) 2349–2355.
[24] C.K.W. Tam, J.C. Webb, Dispersion–relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys. 107 (1993) 262–281.
[25] N.N. Yanenko, in: M. Holt (Ed.), The Methods of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables, Springer-Verlag, 

New York, 1971.
[26] Y.M. Chen, H.J. Zhu, S.H. Song, Multi-symplectic splitting method for two-dimensional nonlinear Schrödinger equation, Commun. Theor. Phys. 56 (2011) 

617–622.
[27] Q. Chang, E. Jia, W. Sun, Difference schemes for solving the generalized nonlinear Schrödinger equation, J. Comput. Phys. 148 (1999) 397–415.
[28] S. Jin, C.D. Levermore, D.W. McLaughlin, Singular Limits of Dispersive Waves: The Behavior of Solutions of the NLS Equation in the Semiclassical Limit, 

Plenum Press, New York and London, 1994.
[29] J.C. Bronski, D.W. McLaughlin, Singular Limits of Dispersive Waves: Semiclassical Behavior in the NLS Equation: Optical Shocks-focusing Instabilities, 

Plenum Press, New York and London, 1994.
[30] S. Jin, C.D. Levermore, D.W. McLaughlin, The semiclassical limit of the defocusing NLS hierarchy, Commun. Pure Appl. Math. 52 (5) (1999) 613–654.

http://refhub.elsevier.com/S0021-9991(15)00420-9/bib412E5F4861736567617761s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42656E6A616D696E5F34s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4A2E5F422E5F4368656Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4A2E5F422E5F4368656Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib532E5F5265696368s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib582E5F532E5F4C69755F3131s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4C656532303132s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4C656532303132s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4167726177616Cs1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42656E6A616D696E5F36s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42656E6A616D696E5F36s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib5765697A68755F42616F32303032s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib5765697A68755F42616F32303032s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib502E412E4D61726B6F7769636831393939s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib502E412E4D61726B6F7769636831393939s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib432E5F486569747A696E676572s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib526170746932303034s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib526170746932303034s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib472E5F466962696368s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib542E5F4A2E5F427269646765735F39s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib542E4272696467657332303036s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib582E5F532E5F4C69755F3134s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib582E5F532E5F4C69755F3134s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib592E5F432E5F53756Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib592E5F432E5F53756Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib562E5F452E5F5A616B6861726F76s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib412E5F417964696Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib412E5F417964696Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib542E5F4A2E5F427269646765735F3136s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib542E5F4A2E5F427269646765735F3136s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib452E48616972657232303036s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib452E48616972657232303036s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42616F32303033s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42616F32303033s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4A2E5F4D2E5F53616E7A2D5365726E61s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4368726973746F7068657231393933s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4E2E4E2E5F59616E656E6B6Fs1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4E2E4E2E5F59616E656E6B6Fs1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib592E4D2E5F4368656Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib592E4D2E5F4368656Es1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib512E4368616E67s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4A696E31393934s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4A696E31393934s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42726F6E736B6931393934s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib42726F6E736B6931393934s1
http://refhub.elsevier.com/S0021-9991(15)00420-9/bib4A696E31393939s1

	Dispersion relation equation preserving FDTD method for nonlinear cubic Schrödinger equation
	1 Introduction
	2 Governing equation and its mathematical properties
	3 Two-step Schrödinger equation solver
	3.1 Numerical method for the linear Schrödinger equation
	3.1.1 Symplectic integrator for the temporal derivative term
	3.1.2 DRE-preserving centered scheme for the linear Schrödinger equation

	3.2 Numerical method for nonlinear part of Schrödinger equation

	4 2D cubic nonlinear Schrödinger equation solver
	5 Veriﬁcation study
	5.1 One-dimensional analytical problem
	5.2 Two-dimensional Schrödinger equation with exact solution

	6 Concluding remarks
	Appendix A Stability analysis on the proposed scheme
	References


