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I. INTRODUCTION

Unlike the integrable KdV and Boussinesq equations applied to study soliton wave interaction, the
integrable Camassa–Holm (CH) equation given below can be used to model not only the soliton
interaction but also the breaking of wave

ut + 2κux − uxxt + 3uux = 2uxuxx + uuxxx . (1)

The solution of the nonlinear dispersive equation given above will be sought subject to the
initial condition which satisfies w(x,0) > 0 and

∫
R

(1 + |x|)1+l(|w(x, 0) − κ| + |wx(x, 0)| +
|wxx(x, 0)|)dx < ∞ for integers l. The momentum variable at t = 0 is w(x, 0) = u(x, 0) −
uxx(x, 0)+κ [1]. Equation (1) derived under the shallow water assumption has a positive constant
κ = (gh0)

1/2 in the inviscid limit, where g stands for the gravity and h0 denotes the undisturbed
water depth. Provided that κ = 0, Eq. (1) turns out to be the special case of the b-family of the
equations ut − uxxt + (b + 1)uux = buxuxx + uuxxx [2]. This class of equations includes the
integrable CH equation, where b = 2, and the Degasperis–Procesi equation, where b = 3 [3].

The CH equation has been the subject of intensive studies for many years for understanding its
possible generation of breaking or peaked solitary wave, and other solitary waves whose natures
are different at the peaks. Provided that there is a discontinuity in the first derivative at the solution
peak, it is referred to as the peakon solution. In other words, peakon (or peaked solitary wave),
by definition, is a soliton accommodating the finite-valued discontinuous first derivative term. As
Eq. (1) permits peakon and cuspon solutions, calculation of these locally high gradient solutions
near wave crest numerically is a challenging task.

In comparison with the first-order spatial derivative term and the temporal derivative term,
both of the third-order spatial derivative term and the mixed space-time derivative term shown in
Eq. (1) were much less studied numerically. For this reason, the third-order CH equation has been
transformed to its equivalent system of equations containing only the first-order spatial and tem-
poral derivative terms. In this spirit, the u – m formulation was used in [4] to retain its symplectic
solution property using the sixth-order accurate iterative symplectic Runge–Kutta scheme. All
the first-order derivative terms were approximated by the proposed modified wavenumber opti-
mized fourth-order accurate spatial scheme. This u – m formulation failed to numerically resolve
the peaked wave crest. The u – P equations, which contain the equation ut + uux = −Px and
the inhomogeneous Helmholtz equation for P, were therefore applied to conserve not only the
symplecticity but also preserve the numerical modified wavenumber. Moreover, application of
the u − P − α formulation helps to capture peakon and cuspon sharp profiles. In this light, the
energy density α = u2 +u2

x is taken into account in the simulation of CH equation by solving the
transport equation αt + (uα)x = −Qx for α, where Q = 2Pu − u3 − 2κu2 [6, 5].

In 1944, Camassa et al. showed that smooth solitary wave solutions are permitted for all κ >
0 but solutions with the derivative discontinuity are not allowed to appear at the peak of solitary
wave [7]. In the stability analysis of the CH solitons, Constantin and Strauss [8] proved however
that CH solution is stable under small disturbances. Similar to the finding in [9], Liao derived
the peaked solitary wave for the case of κ > 0 through the Homotopic Analysis Method (HAM).
However, such a peaked solitary wave has never been observed experimentally as κ > 0. This
is the impetus for us to clarify numerically whether or not peaked solution is permitted in CH
equation under the condition of κ > 0.

The rest of this article is organized as follows. The nonlinear CH equation and some of its
intriguing solution natures will be presented in Section II. In Section III, the CH equation is trans-
formed to a system of equations containing one equation for u with the reduced differential order
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and the other inhomogeneous Helmholtz equation for P. In Sections IV.A—IV.C, the numerical
methods developed for solving the equations shown in the u – P formulation are described. Section
IV.D is devoted to the dispersion analysis of the proposed combined compact difference scheme.
In Section V, the CH solutions will be sought subject to different initial conditions for the CH
equation with/without inclusion of the linear first-order advection term. Our objective is to show
their traveling/nontraveling one-solitary wave natures. Finally, some concluding remarks will be
drawn in Section VI.

II. CH EQUATION AND ITS DISTINGUISHED FEATURES

The nonlinear dispersive CH equation has many mathematically intriguing properties and phys-
ically rich phenomena. For example, CH equation has bi-Hamiltonian structure and has two
associated infinite dimensional Hamiltonian formulations. This integrable equation possesses
therefore infinitely many conservation laws. This mathematically fruitful wave equation accom-
modates many remarkable geometric structures. First, CH equation can be completely integrated
through the Lax pair equations constructed by Camassa and Holm [10]. The CH equation is also
classified to be multisymplectic. According to the work of Bridges and Reich [11], two variables
(ω, κ) exists which can conserve symplecticity because of ∂ω

∂t
+ ∂κ

∂x
= 0. Given an initial condition

u0(x, t = 0) belonging to the Sobolev space H1, Eq. (1) investigated at κ = 0, for example, has
been shown to have the well-known conservation laws given in Section V [12–14].

III. ITERATIVE SOLUTION ALGORITHM

The dimensionless CH equation has two space-time mixed derivative and third-order dispersive
terms. We are therefore motivated to rewrite Eq. (1) to the equivalent system of equations having
only the first-order derivative terms. One can reduce the differential order of the CH equation
by rewriting (1) to the equation mt + umx + 2uxm = −2κux , where the momentum variable is
defined by m = u − uxx − κ [15, 16]. The CH equation can be also transformed to the u – P
system of equations. In the current study, the u – P formulation is adopted as this formulation has
been known to be more suitable to predict solitary wave propagation involving either a peakon or
a cuspon.

Given a properly prescribed boundary condition, the solution u for (1) will be first sought
subject to an initial condition u(x, t = 0) = f ∈ H 1 from the following nonlinear equation

ut + uux = −Px . (2)

The variable P is known as the dimensionless pressure (or surface elevation) and is governed by

P − Pxx = u2 + uux + 2κu. (3)

Thanks to Eqs. (2) and (3), Eq. (1) is classified to be elliptic-hyperbolic provided that the solution
remains smooth.

IV. SYMPLECTIC SEMI-DISCRETIZATION METHOD

In the literature, Camassa and Lee [17–20] solved the Eq. (1), subject to different specified bound-
ary conditions, by introducing a proper number of “particles” along the characteristic curve of CH
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equation. In finite difference method, a rigorous convergence proof was presented in the work of
Holden and Raynaud [21, 22]. The pseudospectral scheme of Kalisch and Lenells [23] has also
been known to be applicable to predict the solution from the CH equation. The semidiscretized
Fourier–Galerkin and Fourier-collocation methods were applied as well to get a convergent CH
solution [24]. Peakon solutions were predicted by Artebrant and Schroll [25] using the adaptive
upwinding finite volume discretization method. The local discontinuous Galerkin method has also
been used to solve the CH equation [26]. Besides these numerical methods, the multisymplectic
method [6], energy-conserving Galerkin method [27] and self-adaptive mesh method [28] have
also been proposed previously to solve the currently investigated integrable equation. To get an
accurately predicted result for the soliton-cuspon or the cuspon-cuspon problem, one can refer to
[29] for additional details.

The CH Eq. (1) or Eqs. (2) and (3) can be recast in a symplectic or a multisymplectic for-
mulation described in Section II. While solving this highly nonlinear equation, it is therefore
essential to preserve its discrete invariance and local/global conservation laws using the methods
underlying the geometric numerical integration. In this study the symplectic method [30, 31] is
chosen. Symplectic numerical discretization refers to the approach of discretizing the integrable
equation in space to a Hamiltonian ordinary differential equation (ODE). A symplectic method is
then applied to preserve the discrete symplectic structure partly described in Section II. Within the
context of the symplectic semidiscretization methods, approximation of the spatial and temporal
derivative terms shown in (2) and (3) will be respectively given below.

A. Combined Compact Difference Scheme for ux and Px

To capture such a sharply varying solution near the peaks, we need to apply a scheme which
can provide us a very accurate numerical phase at a smaller grid stencil. Otherwise, nonphysical
oscillatory solution will appear. To get a well predicted CH solution, the scheme shall not only
yield a higher accuracy in smooth region but can also capture the sharp solution. We are therefore
motivated to develop an upwinding combined compact difference scheme with the smallest phase
error in a grid of four-point stencil. The derivative terms ∂u

∂x
and ∂2u

∂x2 are approximated implicitly
as follows

a1
∂u

∂x

∣∣∣∣
i−1

+ ∂u

∂x

∣∣∣∣
i

+ a3
∂u

∂x

∣∣∣∣
i+1

= 1

h
(c1ui−2 + c2ui−1 + c3ui) − h

(
b1

∂2u

∂x2

∣∣∣∣
i−1

+ b2
∂2u

∂x2

∣∣∣∣
i

+ b3
∂2u

∂x2

∣∣∣∣
i+1

)
, (4)

− 1

8

∂2u

∂x2

∣∣∣∣
i−1

+ ∂2u

∂x2

∣∣∣∣
i

− 1

8

∂2u

∂x2

∣∣∣∣
i+1

= 3

h2
(ui−1 − 2ui + ui+1) − 9

8h

(
−∂u

∂x

∣∣∣∣
i−1

+ ∂u

∂x

∣∣∣∣
i+1

)
.

(5)

The derivative term ∂2u

∂x2 is approximated by the centered scheme. The coefficients shown in (5)
can be derived simply by applying the method of Taylor series expansion to make the leading
truncation error terms shown in the derived modified equations to be zero, yielding the sixth-order
formal accuracy.

Derivation of the coefficients in (4) for the case involving a positive-valued con-
vective coefficient is started by performing Taylor series expansion on the terms
ui−2, ui−1, ∂u

∂x
|i−1, ∂u

∂x
|i , ∂u

∂x
|i+1, ∂2u

∂x2 |i−1, ∂2u

∂x2 |i and ∂2u

∂x2 |i+1 with respect to ui . The modified equation
for (4) is derived first and the seven leading truncation errors are then eliminated to get a set of
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algebraic equations. One more algebraic equation is needed for uniquely determining all the eight
introduced coefficients shown in (4) for ∂u

∂x
|i .

Our strategy of reducing the dispersion error while approximating the first-order derivative
term is to get a good match between the exact and numerical wavenumbers. One can refer to [32]
for details about the exact wave number α and the numerical wave number α′. Note that the real
and imaginary parts of the numerical modified wavenumber α′h are responsible respectively for
the dispersion error (phase error) and the dissipation error (amplitude error). A better dispersive
accuracy for α′ can be obtained provided that the value of αh is closer to �[α′h], where �[α′h]
denotes the real part of α′h. The magnitude of the error function E(α) defined below should be
very small and positive over the integration interval given below for αh

E(α) =
∫ 7π

8

0
[W · (

α h − �[α′ h])]2
d(αh). (6)

Employment of the weighting function W, which is chosen to be the denominator of
(α h − �[α′ h]) [33], enables us to analytically integrate E(α). To make the above error func-
tion to be positive and minimal, the extreme condition ∂E

∂c3
= 0 is enforced to minimize the

numerical wavenumber error. This constraint equation will be used together with the algebraic
equations derived through the modified equation analysis to get not only a higher dissipation accu-
racy but also an improved dispersion accuracy. Note that 7π

8 shown in (6) has been numerically
determined so that we can get the smallest value of E.

The introduced unknown coefficients in (4) can now be uniquely determined as a1 =
0.888251, a3 = 0.049229, b1 = 0.150072, b2 = −0.250712, b3 = −0.012416, c1 =
0.0166617, c2 = −1.970804 and c3 = 1.954143. The above upwinding scheme developed for
∂u

∂x
has the spatial accuracy of order six according to the following derived modified equation

∂u

∂x
= ∂u

∂x

∣∣∣∣
exact

+ 0.424003657 × 10−6h6;
∂7u

∂x7
+ H .O.T .. (7)

For u < 0, the proposed noncentered combined compact difference scheme can be similarly
derived. The above sixth-order accurate upwinding combined compact difference scheme is also
applied to approximate the gradient term Px shown in (2).

B. Compact Difference Scheme for the Helmholtz Equation

The compact difference scheme originally developed in [4] for solving the variable Helmholtz
equation efficiently is applied. This scheme involves relating the terms uxx and uxxxx with u at
two adjacent nodal points to get a three-point implicit scheme. The Helmholtz equation [or Eq.
(3)] is approximated as follows for fi = −(u2

i + 1
2u

2
x,i + 2κui)

Pi+1 −
(

2 + h2 + 1

12
h4 + 1

360
h6

)
Pi + Pi−1

= h2fi + 1

12
h4

(
fi + ∂2fi

∂x2

)
+ 1

360
h6

(
fi + ∂2fi

∂x2
+ ∂4fi

∂x4

)
. (8)

The derived modified equation ∂2P

∂x2 − P = f + h6

20160
∂8P

∂x8 + h8

1814400
∂10P

∂x10 + · · · + H .O.T . for (3)
shows that the proposed three-point compact difference scheme is indeed sixth-order accurate.
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C. Symplectic Time Integration Scheme

The sixth-order accurate symplectic structure-preserving numerical integrator [34] is used to
conserve symplecticity existing in the currently investigated nondissipative Hamiltonian system,
leading to

u(1) = un + �t

[
5

36
F (1) +

(
2

9
+ 2c̃

3

)
F (2) +

(
5

36
+ c̃

3

)
F (3)

]
, (9)

u(2) = un + �t

[(
5

36
− 5c̃

12

)
F (1) +

(
2

9

)
F (2) +

(
5

36
+ 5c̃

12

)
F (3)

]
, (10)

u(3) = un + �t

[(
5

36
− c̃

3

)
F (1) +

(
2

9
− 2c̃

3

)
F (2) + 5

36
F (3)

]
, (11)

un+1 = un + �t

[
5

18
F (1) + 4

9
F (2) + 5

18
F (3)

]
. (12)

In the above, c̃ = 1
2

√
3
5 and F (i) = F(u(i), P (i)), i = 1, 2, 3. Calculation of the solution un+1 from

Eq. (12) needs to solve Eqs. (9)–(11) implicitly so as to get the values of u(1), u(2) and u(3) from
the above symplectic Runge–Kutta scheme. The Helmholtz equation (3) is then solved to get
P (1), P (2), and P(3). Upon reaching the specified convergence criteria, we can get first the solution
un+1 and then the solution Pn+1. The above iterative procedures are repeated until the difference,
cast in a L2-norm form, of the solutions calculated from two consecutive iterations falls below
the user’s specified tolerance ( 10−9 used in the current study).

D. Analysis and Verification of the Proposed Scheme

The equation ut + cux = 0 will be used as the model for the verification and analysis of the
proposed scheme given in Sections IV.A. The solution to this model equation is u = ûα(t)e

iαx ,
where i ≡ √−1 and ûα is the Fourier mode of the wavenumber α. Differentiation of the exact
solution leads to ∂u

∂x
|exact = iαh ûα

h
eiαx . Note that the wavenumber has been scaled by the gird

spacing h = L

N
, where L and N denote the length of physical domain and the number of grid

intervals, respectively. This derivative term can be written as

∂u

∂x

∣∣∣∣
numerical

= iα′h
ûα

h
eiαx = (Kr + iKi)

ûα

h
eiαx . (13)

In the above, Ki(= �[α′h]) and Kr(= −�[α′h]) accounting for the dispersion and dissipation
errors are the real and imaginary parts of α′h, respectively.

The computed values of Ki and Kr are plotted with respect to the scaled (or modified) wavenum-
ber αh in Fig. 1. It can be easily seen that the proposed upwinding combined compact difference
scheme performs better than the CCD scheme in [35, 36] owing to the improved dispersive accu-
racy while the positive-valued Kr, on the contrary, is less accurate than the nondissipative (or
Kr = 0) centered-type combined compact difference scheme of Chu and Fan [36].

To verify the proposed scheme, the solution of the wave equation ut + 0.1ux = 0 will be
sought subject to the initial condition given by u(x, 0) = e−20000(x−x0)2

cos[50(x − x0)], where
x0 = 7.998778998779. Subject to the periodic boundary condition, the solution is sought at the
time step chosen to be �t = �x in 4096 uniformly distributed grids. Figure 2 shows the negligi-
bly small computed difference between the exact waveform and the waveform obtained from the
present scheme at t = 30.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. Comparison of the profiles K r and K i with respect to the modified wavenumber αh amongst
the proposed sixth-order accurate optimized upwinding combined compact difference scheme, fifth-order
accurate upwinding combined compact difference scheme (CCD-5th) [35], and the three-point sixth-order
accurate centered combined compact difference scheme (CCD-6th) [36]. (a) K i ; (b) K r . [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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8 YU ET AL.

FIG. 2. Comparison of the present, Ref. [35],and exact solutions for the wave equation obtained at t = 30
in the domain of 4096 nodal points. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

V. NUMERICAL RESULTS

The proposed scheme will be verified first by solving the CH equation at κ = 0 in Section V.A
to get the peakon solution and at κ > 0 in Section V.II to get the peakon, cuspon and soliton
solutions. The following Hamiltonians will be computed and plotted with respect to time for each
test problem for indirectly verifying the proposed scheme based on the predicted CH solution

H0 =
∫

udx, (14)

H1 = 1

2

∫
(u2 + u2

x)dx, (15)

H2 = 1

2

∫
(u3 + uu2

x + 2κu2)dx. (16)

A. Numerical Studies of the CH Equation at κ = 0

Subject to smooth and nonsmooth initial conditions, whether these time-evolving solutions of (1)
obtained at κ = 0 are classified to be the traveling type or are evolved to have different speeds and
phase shifts will be examined.

Smooth Initial Condition

Traveling Wave Solution. In this example, the CH equation is solved at κ = 0. Given the initial
conditions φ(0) = 1 and φx(0) = 0, the smooth traveling solution in a periodic domain has the
solution form given by u(x, t) = φ(x − ct). Here, φ is the solution of the second-order ordinary

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 3. (a) The smooth traveling wave solution predicted at t = 4 for the case of κ = 0 in a domain of 8192
grids; (b) The computed Hamiltonians H0, H1 and H2 are plotted with respect to time. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

differential equation φxx = φ − α̃

(φ−c)2 . Provided that α̃ = c = 3, the period of the resulting
smooth traveling wave is approximately equal to 6.46954603635 [15, 26]. The predicted solution
profile at t = 4, which is plotted in Fig. 3(a), agrees well with the exact solution. It can be clearly
seen from Fig. 3(b) that the Hamiltonians H0, H1, and H2 don’t change their values all the time.

Nontraveling Wave Solution. The smooth initial condition u0 = sech(x) is then considered in
a periodic domain of length L = 40, which is uniformly divided into 8192 cells. Figure 4(a) shows
the predicted solution at t = 5.0. The time step chosen for this calculation is �t = 0.05�x. The
Hamiltonians H0, H1, and H2 plotted in Fig. 4(b) are conserved very well.

Nonsmooth Initial Condition

Traveling Wave Solution. In −20 ≤ x ≤ 20, Eq. (1) is solved at κ = 0 to numerically demon-
strate that CH equation permits the solitary wave solution (or peakon) given by the exact solution

Numerical Methods for Partial Differential Equations DOI 10.1002/num



10 YU ET AL.

FIG. 4. (a) The non-traveling wave solution predicted at t = 5 for the case of κ = 0 in a domain of 8192
grids and (b) The predicted Hamiltonians H0, H1, and H2 are plotted with respect to time. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

u(x, t) = ce−|x−ct |. This peaked solitary wave solution satisfies the CH equation everywhere
except at the wave crest x = c t, where c denotes the phase speed. As a result, this close-form
solution is known as the weak solution of (1) according to the work of Constantin and Molinet [37].

Given the initial solution u(x, t = 0) = e−|x|, the CH solution will be sought subject to the
periodic boundary conditions prescribed at x = ±20 under �x = 5

514 and �t = 0.02�x. In Fig.
5(a), the peakon solution predicted in a domain of 4096 uniformly discretized grids is compared
excellently with the exact result. As no wave breaking has been observed, this peakon problem
is known to have a global traveling wave solution. Under our expectation, all the Hamiltonians
shown in Fig. 5(b) remain unchanged with time.

Nontraveling Wave Solution. In this example, we consider the case with u0(x) = 10
(3+|x|)2 , which

has a discontinuous derivative in 0 ≤ x,y ≤ 30. In Fig. 6(a), the solution obtained in the domain

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 5. (a) Comparison of the predicted and exact peakon solutions computed in a domain of 4096 grids
at t = 10 and (b) The computed Hamiltonians H0, H1 and H2 are plotted with respect to time. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

of 8192 grids at t = 20 compares very well with the solutions in [26]. In Fig. 6(b), the quanti-
ties H0, H1, and H2 are still conserved very well regardless of the predicted nontraveling wave
solutions.

B. Numerical Studies of the CH Equation at κ > 0

More recently, the closed-form solutions of the peaked solitary wave type for the KdV, BBM
(Benjamin–Bona–Mahony) and Boussinesq equations were derived in [38]. All the derived peaked
solitary wave solutions satisfy their respective physically meaningful Rankine–Hogoniot jump
conditions. They are therefore considered as the weak solutions of their corresponding shallow
water equations. Another KdV-type shallow water equation was also shown to have the soliton,
peakon, and cuspon solutions [39]. While these closed-form solutions have been derived under
the traveling wave assumption and the wave-symmetry condition, none of these peaked solitary

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 6. (a) Comparison of the predicted and numerical solutions in a domain of 8192 grids at t = 20 and
(b) The computed Hamiltonians H0, H1 and H2 are plotted with respect to time. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

waves have been observed numerically or experimentally. We are therefore motivated to clarify
whether the CH equation permits traveling peaked solitary wave solution for κ > 0 in (1).

Initial Condition of Smooth Solitary Wave Type

Traveling Wave Solution. The following analytic problem admitting a periodic traveling wave
solution u(x, t) = U(x − ct) is chosen to solve the nonlinear CH equation at κ > 0 [17]

U ′ = ±
√

−U 3 + (c − 2κ)U 2 + C(A) U

c − U
. (17)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 7. (a) The predicted smooth traveling wave solutions at κ = 1
2 in a domain of 256 grids at t = 3.1509

and (b) The computed Hamiltonians H0, H1, and H2 are plotted with respect to time. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

In the above, c and A are denoted as the wave speed and the wave amplitude, respectively.
Integration of Eq. (17) leads to the expression

x = 2√
a1(a2 − a3)

(a1 − a2)	, (18)

where 	 is the elliptic function, a1 = c, a2 = 1
2 (c − 2κ +

√
(c − 2κ)2 + 4C, and a3 =

1
2 (c − 2κ −

√
(c − 2κ)2 + 4C). Verification of the code will be carried out at c = 2, κ = 1/2,

C = 1, �t = 1
4�x and �x = 0.0246166. In Fig. 7(a), the predicted waveform matches excel-

lently with its initial waveform. The values of H0, H1, and H2 given in (14–16) are also calculated.
It can be clearly seen from Fig. 7(b) that all the Hamiltonians don’t change with time and remain
to be equal to the initial values of 3.428082, 2.996138, and 5.163344 for H0, H1, and H2, respec-
tively. According to the results in Table I, the proposed method is sixth-order accurate and has
the smallest L2 norm error for the case solved in the finest mesh.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE I. The predicted L2-error norms at t = 3.1509 for the results obtained at �t = 0.00615415 and
different mesh spacings in −3.15092964 ≤ x ≤ 3.15092964.

Grid number L2 error norms Rates of convergence

32 4.096896E-3
64 3.702604E-5 6.78985
256 2.794334E-8 5.18591

FIG. 8. (a) The predicted non-traveling wave solution for the case of κ = 1
0.044 in a domain of 8192 grids

at t = 1.64; (b) The computed Hamiltonians H0, H1, and H2 are plotted with respect to time. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Nontraveling Wave Solution. According to Camassa and Lee [40], Eq. (1) will be solved at
κ = 1

2δ
subject to the initial condition u(x, 0) = 1

3δ
cos(πδx) and the periodic boundary condition

u(0, t) = u( 2
δ
, t), where δ = 0.022. This shallow-water wave tends to develop a discontinuity [29].

We choose this problem to demonstrate the ability of applying the proposed scheme to resolve
sharp solution.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 9. (a) The predicted cuspon traveling wave solutions at κ = 1
10 in a domain of 32768 grids at t =

1.0; (b) The computed Hamiltonians H0, H1, and H2 are plotted with respect to time. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

In the domain of the length 2
0.022 or 90.91, the solutions of the CH equation will be solved in

the uniformly distributed 8192 nodal points. One can see from Fig. 8(a) that the nonoscillatory
solution predicted in this study compares fairly well with the particle solution. Similar to all the
examples studied in the previous sections, the computed values of H0, H1, and H2 in Fig. 8(b)
show that the proposed numerical method indeed can preserve all the theoretically conserved
quantities. Note that in Fig. 8(b) the values of H1 and H2 have been divided by 1000 and 100,000,
respectively.

Initial Condition of Nonsmooth Solitary Wave Type

Traveling Wave Solution. We solve the problem with the cuspon solution given below [28]

u(y, t) = 2p2cv

(c2 + p2) − (c2 − p2)cosh ξ
, x = 2cy + ln

(g

h

)
. (19)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 10. The predicted non-traveling peakon solutions at κ = 1
100 in a domain of 4096 and 8192 grids at

different times. (a) t = 0; (b) t = 10; (c) t = 20; and (d) t = 40. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

In the above, g = 1 − (
c−p

c+p
)eξ , h = 1 − (

c+p

c−p
)eξ , ξ = p(2y − vt), v = 2

c2−p2 with c = 1
κ

= 10.0
and p = 10.15. The time-evolving cuspon solution was predicted in −2.0 ≤ y ≤ 1.5 containing
32768 uniformly discretized grids. Figure 9(a) shows good agreement between the results that
are plotted at t = 1.0. For the verification sake, we also plot in Fig. 9(b) the values of H0 and H1,
which are all unchanged with time except H2, for the case investigated at κ = 0.1.

Through the study of this problem, we found that the peaked solitary wave solution can remain
orbitally stable. A wave initially close to a peaked solitary wave type can remain approximately
the same for all times. This computational finding agrees with the stability analysis in [8].

Nontraveling Wave Solution. The truncated solution of the fifth-order HAM solution [9] is
considered as the initial condition given below

u0(x) = 0.100102040816326530612244897959e
− 7|x|

5
√

2

− 0.0001020408163265306122e− 7
√

2|x|
5 . (20)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 11. The predicted Hamiltonians H0, H1 and H2 are plotted with respect to time for the problem of
nontraveling wave peakon given in Section “nontraveling wave solution.” [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

TABLE II. The conclusion drawn from the cases carried out on the CH equation at κ = 0 and κ > 0. The
notation “—–” means that no solution is available for making the validation or the verification study.

Problem κ Initial solution Wave nature H0, H1 and H2 status

5.1.1.1 0 uxx = u − 3
(u−3)2

Traveling Conserved Verified
5.1.1.2 0 u0(x) = sech(x) Nontraveling Conserved —–
5.1.2.1 0 u0(x) = e−|x| Traveling Conserved Verified
5.1.2.2 0 u0(x) = 10

(3+|x|)2 Nontraveling Conserved Validated

5.2.1.1 >0 Eq.(17) Traveling Conserved Verified
5.2.1.2 >0 u0(x) = 1

3δ
cos(πδx) Nontraveling Conserved Validated

5.2.2.1 >0 Eq. (19) Traveling Conserved Verified
5.2.2.2 >0 Eq. (20) Nontraveling Conserved —–

Note that this initial solution is the perturbed HAM solution derived in [9]. The grid refinement
study is performed first. The solutions are computed at two different numbers of cells N = 4096
and N = 8192 in the domain of −20 ≤ x ≤ 20. In Fig. 10, the peakon at t = 0 was found to
suddenly change to its shape and then gradually becomes smooth. The predicted results enlighten
that the prescribed perturbation has led to another wave with different speeds and phase shifts.
As a result, the stability of solitary wave needs to be analyzed in terms of the orbital stability by
examining if this wave can remain close to some translate of the starting solitary wave at later
times. In other words, whether or not the shape of the wave remains approximately the same for
all times needs to be further clarified in the future study. The values of H0, H1, and H2 plotted in
Fig. 11 are all unchanged with time for the case investigated at κ = 0.01.

Based on the solution of (1) predicted at κ > 0 by using the proposed symplecticity-preserving
and numerical modified wavenumber optimized scheme, the conclusion drawn from this series of
studies of the CH equation at κ = 0 and κ > 0 is summarized in Table II. Depending on the pertur-
bation added to the simulation, the peaked solitary wave solution for (1) at κ > 0 can remain to be
orbitally stable all the time or, on the contrary, can be evolved to become a new one with different
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speeds and phase shifts. In other words, our conclusion agrees with Constantin and Strauss [8]
and Camassa et al. [7], respectively.

VI. CONCLUDING REMARKS

To reduce the differential order, the CH equation has been transformed to a set of equations gov-
erning respectively the transport of solution variables u and P. In this u – P formulation, following
the method of lines the time derivative term is approximated by the sixth-order accurate implicit
symplectic Runge–Kutta scheme to preserve Hamiltonians. As for the first-order spatial deriv-
ative terms, the numerical wavenumber error predicted from the proposed sixth-order accurate
upwinding combined compact difference scheme has been minimized. Another emphasis of this
study is to clarify that the CH equation with/without inclusion of the linear first-order advection
term admits the traveling and nontraveling wave solutions for the problems subject to the ini-
tial solutions taking the smooth soliton, solitary peakon, and cuspon forms. In short, our study
computationally supports the finding of Camassa, Holm and Hyman (1994) who concluded that
peaked solitary wave is amenable to the CH equation at κ = 0. On the contrary, this study also
supports the conclusion of Constantion and Strauss (2002) who pointed out that peaked solitary
wave solution can be orbitally stable provided that κ > 0. In other words, the CH solution can
remain approximately the same as its initial peaked solitary wave for all times.
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