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A stabilized upwind finite-element model is developed to solve the three-dimensional

incompressible steady Navier-Stokes equations. The test function is constructed to have
15a larger weight on the upstream side. This has been achieved by adding a stabilized term

to the shape function so as to optimize the numerical wavenumber for convection terms.

To avoid Lanczos or pivoting breakdown while solving the resulting unsymmetric and indefi-

nite mixed finite-element matrix equations iteratively, the finite-element equation has been

modified by pre-multiplying it with its transpose. The resulting normalized matrix equation
20becomes symmetric and positive-definite. We can therefore apply a computationally efficient

conjugate gradient Krylov iterative solver to get an unconditionally convergent solution.

However, the condition number of the new system becomes the square of the original

unsymmetric indefinite system. To fully exploit excellent convergence nature of the conju-

gate gradient iterative solver, an element-by-element strategy is adopted to avoid assembling
25of all the stiffness matrices obtained at element level. We alleviate the drawback of slower

convergence of the conjugate gradient method due to the increased condition number by

preconditioning the positive-definite matrix. The resulting preconditioned matrix equation

is solved in a matrix-free manner using the preconditioned conjugate gradient iterative

solver. The developed finite-element code is first verified by solving a problem amenable
30to analytical solution. The benchmark lid-driven cavity problem is also solved in a cube

for assessing the three chosen iterative solvers.
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1. INTRODUCTION

Simulation of incompressible viscous fluid flow by the finite-element method
encounters several kinds of numerical oscillation. The first oscillation type results

35from the approximation of convective terms in flow equations. The second kind of
numerical instability is attributed to the absence of a pressure term in the continuity
equation. The incompressibility (or divergence-free) constraint condition on the
equations of motion, which can be unconditionally satisfied by using a mixed finite-
element model, is subject, however, to satisfaction of the Ladyzhenskaya-Babu�sska-

40Brezzi (LBB) stability condition. The necessity of imposing compatability condition
to avoid numerical instability inhibits an arbitrary choice of finite-element basis
functions. In other words, an element endowed with the LBB condition is required
when adopting the mixed finite-element formulation.

The first origin leading to numerical oscillation has association with the local
45flow direction along which the Reynolds (or Peclet) number is very high. Finite-

element solution can very often deteriorate due to the node-to-node oscillation when
employing the Galerkin method. An artificial damping term needs to be added to the
finite-element equation to eliminate this type of pathologic oscillation. The predicted
solution very often becomes, however, overdiffusive along a direction orthogonal to

50the local streamline. The numerical accuracy deteriorates as well if the flow angle is
not well aligned with the grid line. This motivates development of a new convectively
more stable and accurate three-dimensional Petrov-Galerkin model in tri-quadratic
elements. The concept of the streamline upwind Petrov-Galerkin (SUPG) [1] model
will be adopted as our guideline to get a computationally more stable solution in

55tri-quadratic elements for the steady incompressible Navier-Stokes equations.
To improve the dispersive accuracy for a flow problem investigated at high

Reynolds number, a new stabilized weighting function for the convection term is
developed to yield an optimized numerical wavenumber. The upwinding finite-
element equation developed for solving the steady Navier-Stokes equations at high

60Reynolds numbers is always unsymmetric. If a fluid flow under investigation is
incompressible, its finite-element matrix equation becomes less diagonally dominant
because of the presence of many diagonal zeros in the stiffness matrix. These diagonal

NOMENCLATURE

A global stiffness matrix

b global right-hand side

B
e

Eth element Boolean matrix

Bi biased stabilized term

B
J

Jacobi preconditioner

B
P

polynomial preconditioner

B
SP

scaling polynomial preconditioner

h H=2

H element size

K Krylov subspace

L characteristic length

Ml(l¼ 1–8) tri-linear interpolation functions

n unit outward normal vector

Ni(i¼ 1–27) tri-quadratic interpolation

functions

Re Reynolds number (�q u1L=m)
u1 reference velocity

da upwind parameter at center node

db upwind parameter at corner node

j wavenumber

m kinetic viscosity

q fluid density

ni, gi, fi normalized coordinate

s stabilized parameter

x scaling parameter
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zeros owing to the continuity equation can further increase the matrix condition
number. A complex distribution of eigenvalues for thematrix equation free of symmetry

65can furthermore cause the equation to become indefinite. While use of direct solution
solvers together with an efficient data storage strategy is suitable for performing the
finite-element calculation of the two-dimensional problem, the storage demand becomes
prohibitive in the course of fill-in for the three-dimensional analysis. Application of
direct solvers may no longer be practical, calling for an iterative solver. In addition to

70the problems regarding the LBB constraint condition and the large-sized finite-element
equations derived from the three-dimensional mixed formulation, matrix asymmetry
and indefiniteness in the finite-element equation pose a grand computational challenge.
Employment of a Gaussian-elimination-based direct solution solver has long been con-
sidered as a trivial means of circumventing these difficulties. In three-dimensional flow

75simulations, demand on the continued fill-in in the calculation of finite-element solution
from a direct solver is infeasible even if one uses state-of- the-art computer technology.
We have thus no choice but to turn to the iterative solution solvers.

Iterative methods developed for solving a large system of linear equations
Ax ¼ b avoid performing matrix–matrix operations that normally exist in direct

80solution solvers. One can multiply the vector b by the matrix A and then deal with
the resulting vector to get A2 and so on. Such an iterative algorithm is referred to
as the Krylov subspace method. This iterative method is among the most successful
methods and is therefore adopted in this study. When applying the Krylov subspace
iterative method, either an Arnolid algorithm or a Lanczos algorithm can be chosen

85to span the Krylov subspace by a series of orthogonal vectors. Depending on the way
the basis is constructed, iterative solvers can be seperated into Arnoldi and Lanczos
types. GMRES (Generalized Minimum RESidual) is the best-known Arnoldi-type
Krylov subspace method. In the Lanczos class of Krylov subspace iterative methods,
the BICGSTAB (BIConjugate Gradient STABilized), QMR (Quasi Minimal

90Residual), TFQMR (Transpose-Free QMR) [2], and MINRES (MINimal RESidual)
methods are often referred to [3].

No Krylov subspace iterative solver can generate unconditional convergence
of the unsymmetric finite-element matrix equations obtained from convection-
dominated flow equations. In particular, this is true if the system involves a complex

95eigenvalue distribution and a large condition number. For these reasons, in this
study the original unsymmetric indefinite finite-element matrix equations will be
transformed to a symmetric positive-definite counterpart. The matrix equations will
be normalized first, and one can then apply the conjugate gradient method to get the
convergent solution from the symmetric and positive-definite normal matrix equa-

100tion. When applying an iterative solver, a memory-efficient element-by-element
concept [4] needs to be adopted to avoid storing the global matrix array. To fully
exploit the element-by-element capability, the symmetric positive-definite matrix
equations need to be preconditioned so that the condition number of the finite-
element coefficient matrix can be reduced.

105This article is organized as follows. In Section 2, the finite-element model is
developed in tri-quadratic elements for suppressing the node-to-node checkerboard-
ing of velocity solutions as well as the pressure oscillation. For enhancing convective
stability for the case of high Reynolds number, the stabilized part of the weighting
function will be applied mainly along the streamline direction. Within the resulting
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110streamline upwind Petrov-Galerkin finite-element framework, the required amount
of stabilization will be rigorously derived so as to get the best numerical wavenumber
for the advection term which can, in turn, improve dispersive accuracy. The resulting
three-dimensional unsymmetric and indefinite mixed finite-element matrix equations
will then be solved iteratively in an element-by-element fashion. In Section 3, some

115iterative methods that have been widely referred to in the literature are first reviewed.
We then present the CGNR iterative method in Section 4 and apply it to get the
unconditionally convergent solution element by element from the matrix equations
derived in Section 2. Since the matrix condition number will be increased substantially
through the applied normalized procedure, preconditioning of the positive-definite

120matrix by the preconditioners described in Section 5 is needed. For the sake of com-
parison, two preconditioned iterative solvers, BICGSTAB and GMRES, are also
assessed in Section 6. In Section 7, the proposed element-by-element finite-element
model is first verified. The performance of the polynomial preconditioned iterative
solver is then assessed through the calculation of three-dimensional lid-driven cavity

125flow at high Reynolds numbers. In Section 8, concluding remarks are drawn based on
the simulated results.

2. FINITE-ELEMENT EQUATIONS WITH OPTIMIZED
NUMERICAL WAVENUMBER

When investigating incompressible viscous flow problems, one can adopt any
130of three formulations: the primitive-variable, vorticity-vector potential, or vorticity–

velocity formulation. Among them, the primitive-variable formulation is preferred
because of the availability of rigorous closure boundary conditions. The steady
incompressible Navier-Stokes equations in primitive-variable form, given as

r � u ¼ 0 ð1Þ

u � ruþrp� 1

Re
r2u ¼ f ð2Þ

will be solved in a three-dimensional domain X by the finite-element method. In this
formulation, u¼fu, v, wg and p are denoted as the velocity vector and pressure.
The above elliptic differential equations will be solved subject to a Dirichlet-type
condition u¼ g along the boundary qX¼C. Note that the boundary vector g is

140constrained by
R
Cn � gdC¼ 0. The Reynolds number Re¼ qu1L=m is the result of

normalization of primitive variables. We denote Su and Sp as the set of trial function
spaces for the respective velocity and pressure:

Su ¼ fuju 2 H1ðXÞ; u ¼ g on Cg

Sp ¼ fpjp 2 L2ðXÞg

where

L2ðXÞ ¼ uju 2 X;
Z
X
u2 dX <1

� �
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H1ðXÞ ¼ uju 2 X; u;
qu
qxk
2 L2ðXÞ

� �

In conjunction with trial function spaces, the weighting function spaces are also
defined as

Vu ¼ fwjw 2 H1ðXÞ;w ¼ 0 on Cg ð3Þ

Vp ¼ Sp

Given the above functional spaces, the mixed variational problem characterizing
Eqs. (1)–(2) and their associated boundary conditions for the chosen velocity–
pressure pair of primitive variables (u, p)2 (Su�Su)�Sp will be dealt with. The
following equations are solved to get the corresponding weak solutions of u and p:Z

X
ðu � rÞu � wdXþ 1

Re

Z
X
ru : rwd X�

Z
X
pr � wdX ¼

Z
X
f � wdX ð4Þ

Z
X
ðr � uÞq dX ¼ 0 ð5Þ

The above variational statement holds for all admissive functions w2 (Vu�Vu) and
160q2Sp.

In this article, univariant rather than multivariant finite-elements are adopted
because of the programming simplicity. The primitive velocities are approximated
using the following tri-quadratic basis functions Ni (i¼ 1� 27):

Ni ¼
3

2
�nn2 þ 1

2
�nnþ 1þ n2 � n2i

� �
3

2
�gg2 þ 1

2
�ggþ 1þ g2 � g2

i

� �

3

2
�ff2 þ 1

2
�ffþ 1þ f2 � f2i

� �
ð6Þ

165In the above, ni, gi, and fi denote the normalized coordinates for the i-th node
and �nn ¼ nni; �gg ¼ ggi;

�ff ¼ ffi. To satisfy the compatability (or inf-sup, or LBB)
condition, the pressure unknown is approximated by the eight nodal pressure values
stored at element corners using the following basis functions Ml (l¼ 1–8):

Ml ¼
1

8
ð1þ �nnÞð1þ �ggÞð1þ �ffÞ ð7Þ

170

The quality of finite-element simulation of incompressible fluid flow in a
convection-dominated flow depends on, among other factors, numerical accuracy
and convective stability. One can easily get second-order spatial accuracy by apply-
ing the center-based Galerkin approach. The Galerkin model for the differential

175Equations (4)–(5) will in general lead to notorious velocity oscillations. To circum-
vent this numerical instability, a large number of upwinding finite-element models
has been developed. In this study, we aim to develop a computationally accurate
and numerically stable upwinding finite-element model within the context of Petrov-
Galerkin models.
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180By substituting the expressions u ¼
P27

j¼1 ujNj and p ¼
P8

l¼1 plMl for the
respective u and p into the weighted residuals statement, an unsymmetric indefinite
matrix system Ax ¼ b can be derived, where x¼fuj, vj, wj, plgT:

A ¼
Z
Xh

Cij 0 0 �Ml
qNi

qx1

0 Cij 0 �Ml
qNi

qx2

0 0 Cij �Ml
qNi

qx3

Ml
qNj

qx1
Ml

qNj

qx2
Ml

qNj

qx3
0

0
BBBBB@

1
CCCCCA
dXh ð8Þ

and

b ¼ �
Z
Ch
out

Ni

pnx � 1
Re

quj
qn

pny � 1
Re

qvj
qn

pnz � 1
Re

qwj

qn
0

0
BBBBB@

1
CCCCCA
dCh ð9Þ

The components Cij in (8) can be expressed using Bi ¼ sðNm~uumÞ qNi=qxkð Þ as

Cij ¼ ðNi þ BiÞðNm~uumÞ
qNj

qxk
þ 1

Re

qNi

qxk

qNj

qxk
ð10Þ

In each element, the unsymmetric matrix shown in (8) needs to be calculated
sequentially. All these matrices are then mapped into their appropriate global row

190and column. Their assembly yields a large system of algebraic equations. We proceed
to solve the resulting finite-element solutions from the sparse and unsymmetric
matrix equation shown schematically in Figure 1. The number of diagonal zeros is
the same as the number of continuity equations.

Our strategy of enhancing the numerical stability of the Galerkin formulation
195is to add a proper amount of artificial damping to the Galerkin formulation so as to

suppress oscillatory velocities while maintaining the predicted accuracy. Like many
artificial viscosity models, the predicted finite-element solution may be excessively
smeared by the numerically introduced damping term. This type of numerical error
is in particular serious as the velocity vector deviates very much from the grid line.

200The stabilized term Bi therefore needs to be added only to some proper upstream
nodal points along the streamlines without sacrificing solution accuracy.

To enhance stability along the streamline in Bi � sðNm~uumÞ qNi=qxkð Þ½ �, the
coefficient s given as

s ¼ dpuH

2juj2

will be derived by minimizing the wavenumber error, for example, in a uniform mesh
of size H. In the above relation for s, the superscript p in dp is a or b, depending on
its nodal classification in an element. Since the quadratic element is adopted, the
upwinding coefficient dp will be determined at the center node da and the corner

6 N. S. C. KAO ET AL.



Figure 1. Illustration of a 402� 402 finite-element matrix equation derived in the 23 tri-quadratic

elements. The green, red, and blue markers represent the nonzero entries owing to the continuity equation,

momentum equation, and boundary data, respectively. (a) Global matrix profile, (b) matrix profile in the

dashed block of the matrix shown in color (a).
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node db. The coefficient dp is called optimal if the finite-element solution is nodally
exact. In this study, we adopt the method of minimizing the numerical wavenumber
error for the convection term, which is different from the way it was derived in [5].

As an example, consider the term /x in one dimension. By substituting
/¼

P
jNj/j and the weighting function wi ¼ Ni þ su qNi=qxð Þ, where Ni(i¼ 1, 2, 3)

are quadratic basis functions, into the weighted-residuals formulation for /x, the
215discretized equations at the center and corner nodes are derived respectively as

/xjcenter �
1

h
a1/i�1 þ a2/i þ a3/iþ1
� �

ð11Þ

/xjcorner �
1

h
b1/i�2 þ b2/i�1 þ b3/i þ b4/iþ1 þ b5/iþ2
� �

ð12Þ

In the above, a1 ¼ � 1
2� da; a2 ¼ 2da; a3 ¼ 1

2þ da; b1 ¼ 1
4þ 1

4 d
b; b2 ¼ �1� 2db; b3 ¼

7
2 d

b; b4 ¼ 1� 2db, and b5 ¼ � 1
4þ 1

4 d
b. As in the work of Tam and Webb [6],

220the Fourier transform ~//ðaÞ ¼ 1=2pð Þ
R1
�1 /ðxÞ expð�ijxÞ dx and its inverse

/ðxÞ ¼
R1
�1

~//ðjÞ expðijxÞ dj will be applied, where i ¼
ffiffiffiffiffiffiffi
�1
p

. By conducting
Fourier transform on each term shown in Eqs. (11)–(12), the numerical wavenumber
j at the center node can be derived as j � �i=hð Þ a1 expð�ijhÞ þ a2 þ a3 expðijhÞ½ �:
The exact wavenumber ~jj is regarded as the right-hand side of the above relation,

225thereby leading to

~jj ¼ �i
h

a1 expð�ijhÞ þ a2 þ a3 expðijhÞ½ � ð13Þ

To make j be close to ~jj, the integral quantity E(j) defined below should be a very
small and positive value:

EðjÞ ¼
Z p=2

�p=2
jjh� ~jjhj2 dðjhÞ ð14Þ

230To make E a minimum, the limiting condition qE=qa1 is enforced in this study to get
the coefficient da. The coefficient db can be derived similarly. The derived upwinding
coefficients d are summarized below.

da ¼ 1

2
at center node

db ¼ 8� 3p
�22þ 6p

at corner node

Determination of the stabilized coefficient s in the multidimensional equation
follows the guideline of performing operator splitting approximation to get the
following artificial viscosity:

s ¼ dnVnhn þ dgVghg þ dfVfhf
2VjVj

ð15Þ

where VYi
¼ êeYi

� u, and ðY1;Y2;Y3Þ ¼ ð�nn; �gg;�ffÞ:

8 N. S. C. KAO ET AL.



2403. ITERATIVE SOLUTION SOLVERS

Two popular classes of Krylov subspace methods developed to cope with the
problem of matrix asymmetry are known as the GMRES [7] and BICGSTAB iterat-
ive solvers [8]. The GMRES method minimizes the residual over every vector in the
Krylov subspace, within which the orthonormal basis is generated by the Arnoldi

245procedure. The storage requirement for the GMRES method increases accordingly
as the iteration proceeds. To alleviate this drawback, a restart procedure has been
employed to reduce the memory requirement and the computational cost of GMRES.

One can also apply a Lanczos procedure to solve the unsymmetric matrix
equation, by which a nonorthogonal basis in Krylov subspace is built [8]. The

250BICGSTAB method of Van der Vorst is a variant of the biconjugate (BICG) method
[8]. It was proposed mainly for getting a faster and smoother converged solution for
the unsymmetric linear system of equations. In Lanczos context, the variants of BICG
such as the conjugate gradient squared (CGS) [9] and the quasi-minimal residual
(QMR) [10] are the alternatives that can be applied to resolve the difficulty regarding

255the matrix asymmetry. Product methods have dual orthogonal vector sets, and they
are distinguished by their way of combining the construction polynomials. The QMR
method of Freund and Nachtigal [11] can be applied to get rid of irregular conver-
gence behavior, but this method still suffers from the necessity of transposing the
matrix equation. On the contrary, CGS method developed on the basis of the BICG

260method has no need to perform transpose operations. This method, however, inhibits
a rather irregular convergence of the solution because it accommodates the contrac-
tion polynomial of the BICG. Besides the transpose-free version of the QMR
solver, the BICGSTAB solver is also known to be able to eliminate the oscillatory
convergence behavior of the solution encountered in the CGS solver through the

265introduction of the product of polynomial terms presented in [8]. The BICGSTAB
method is not effective to resolve irregular convergence problems when the eigenspec-
trum has imaginary components [12]. This situation happens quite often in advection-
dominated cases [13]. Elimination of this irregular convergence problem motivated
the development of the BICGSTAB2 [13] and BICGSTAB (l) [14] solvers, where l

270denotes the degree of polynomial.

4. ELEMENT-BY-ELEMENT ITERATIVE SOLVER

One can adopt the Gaussian elimination method together with efficient data
storage to get the two-dimensional solution directly from the finite-element matrix
equations. Calculation of the three-dimensional finite-element flow solution directly

275from the Gaussian elimination method may no longer be practical because of the
substantial increase of the degrees of freedom and bandwidth. In order to reduce
the memory demand and save computation time, an iterative solver will be chosen
to get the finite-element solutions in three-dimensions.

Iterative solvers can be implemented together with the element-by-element
280(EBE) strategy [4] to avoid assembling element matrices. The reason for not necessar-

ily forming a global system of equations from all element matrices A
e
and the element

solution vectors xe is the following. By applying the Boolean connectivity matrix B
e
,

which maps the entries of every element matrix A
e
into a global n -by- nmatrix A, the

METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 9



global matrix–vector product A x can be formulated at element level by means of

285
Ax ¼

Pn
e¼1 B

T
e
A

e
B
e

� 	
x ¼

Pn
e¼1 B

T
e

A
e
xe

� 	
. A global matrix–vector product can be,

as a result, represented by the operations carried out at element level for A
e
xe. Any

iterative method applied in conjunction with the element-by-element strategy has,
therefore, a much lower memory demand. Because of this advantage, a large three-
dimensional flow simulation can be carried out on a relatively modest computer.

290As a result, the EBE concept has been incorporated into the solution procedure when
solving the linear algebraic equations by the iterative solver described below.

The Krylov subspace method will be chosen in this study to solve the sparse
matrix equations iteratively. The finite-element solution is updated from an initial
guess solution x 0 through x 02 x 0þKk. The kth Krylov subspace Kk is the span of

295
fr0;A r0; . . . ; A

k�1r0g, where A is the matrix equation and r0 � b� A x0

� 	
is the

initial residual vector. In this study the orthogonal residual (OR) method, which
is one of the Krylov methods, is chosen. This method iterates the solution by the

orthogonal means ðrkÞ
TV

k
¼ 0 between the residual vector r k and the matrix V

k
,

whose columns are the basis vectors of the Krylov subspace Kk.
300The orthogonal residual method may break down for a non-SPD (symmetric

positive definite) matrix. As a result, the unsymmetric indefinite finite-element matrix
equation shown in (8) is transformed first to its equivalent symmetric positive-definite
matrix form. The conjugate gradient normal residual (CGNR) method is adopted to

multiply first the matrix system Ax ¼ b by AT to get the normal equation ATAx ¼
305ATb. The resulting matrix ATA becomes symmetric and positive-definite. The conju-

gate gradient (CG) Krylov iterative method of Hestenes and Stiefel [15] can then be
applied. The convergence bound of the resulting symmetric positive-definite linear
system depends on the condition number of the matrix equation.

The CGNR Krylov method changes the original unsymmetric matrix to its
310symmetric counterpart, and use of this method in turn alters the distribution of eigen-

values. More precisely, the nature of the matrix is changed from an indefinite matrix
featuring imaginary eigenvalues to a definite matrix containing only real eigenvalues.
However, use of this technique increases the condition number of the system. Note

that the condition number of ATA is the square of the condition number of the orig-

315inal matrix A. Because of the increase of condition number in the normal equation

ATAx ¼ ATb, the convergence of CG iteration becomes far too slow. To overcome

this drawback, the matrix equation needs to be preconditioned using a properly
chosen preconditioner, prior to application of the CG iterative solver.

To make full use of the EBE advantage, one should choose a proper precondi-
320tioner and then multiply it with the normal matrix equation from right, left, or both

sides to reduce the condition number. While an efficient preconditioner can be derived
by the methods of successive overrelaxation [16], incomplete Cholesky factorization
[17], polynomial expansion [18], and multilevel multigrid [19], they all require
constructing their own global preconditioners. Such a requirement imposes a heavy

325demand on the storage capacity. Therefore, one should choose an EBE-based precon-
ditioner. Besides the simplest EBE-based Jacobi preconditioner, one can also adopt
other more complex EBE-based preconditioners developed, for example, from the

10 N. S. C. KAO ET AL.



approximate Cholesky factorization [20] on LU splitting technique [21]. Other
applicable preconditioners can be found in [22].

330Having normalized the mixed finite-element matrix equations, we can now
apply the conjugate gradient iterative solver to get the finite-element solution from
the resulting symmetric positive-definite matrix equation. In order to reduce the
memory requirement while solving the three-dimensional incompressible viscous
equations, an element-by-element strategy is adopted, and it is implemented together

335with the conjugate gradient iterative solver. The element-by-element CGNR iterative
solver applied in the current study is as described below:

Algorithm 1. The element-by-element CGNR solver for ATAx ¼ ATb
Starting from an initial guess x 0

Compute x0 ¼
P

e Ae
x0; x

00
0 ¼

P
e A

T
e
x 00; b

0 ¼
P

e A
T
e
b EBE procedure

340Compute the initial residual r0¼ b0 � x000
p0¼ r0
For j¼ 1, 2,. . .,

p0
j�1 ¼

P
e A

e
p
j�1

� 	
 EBE procedure

p00
j�1 ¼

P
e AT

e
p0
j�1

� 	
 EBE procedure

345
aj�1 ¼ p

j�1; rj�1

� 	
p
j�1; p

00
j�1

� 	.
xj ¼ xj�1 þ aj�1pj�1
rj ¼ rj�1 � aj�1p00j�1
Convergence check

bj�1 ¼ ðrj ; rjÞ=ðrj�1; rj�1Þ
350p

j
¼ rj þ bj�1pj�1

End

5. IMPLEMENTATION OF POLYNOMIAL PRECONDITIONERS

To reduce the matrix condition number without deterioration of prediction
accuracy, the finite-element matrix equation derived in Section 2 is preconditioned

355prior to calculation of the solution through iterative steps. In this study, two precon-
ditioners belonging to the class of polynomial preconditioners will be chosen.

Within the CGNR solution context, the normalized matrix ATA is precondi-

tioned first. This symmetric positive-definite matrix can be rewritten as ATA ¼

D I � I �D�1ATA
� 	h i

or ATA
� 	�1

¼ I � I �D�1ATA
� 	�1
 �

D�1, whereD denotes

360the diagonal matrix of ATA. Approximation of the matrix ðATAÞ�1 starts with defin-

ing the matrix given by G ¼ I �D�1ATA. The matrix ATA can then be expressed in

terms of the n-by-n matrix G as ðATAÞ�1 ¼ ðI � GÞ�1D�1. Given this matrix G, one

can rewrite ðI � GÞ�1 analytically in a form of binomial series as ðI � GÞ�1 ¼P1
k¼0 G

k, provided that the spectral radius of G or qðGÞ has a value between �1 and

3651. The inverse of the symmetric positive-definite matrix ATA can be expressed

METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 11



analytically terms of the following infinite series of matrix summation:

ATA
� 	�1

¼
X1
k¼0

GkD�1 ð16Þ

Approximation of ATA
� 	�1

by choosing k¼ 0 and k¼ 1 leads respectively to D�1

and GD�1, which correspond to preconditioning the matrix equation ATA by

370employing the currently employed Jacobi preconditioner and polynomial precondi-
tioner, respectively.

6. ELEMENT-BY-ELEMENT PRECONDITIONED ITERATIVE SOLVERS

While finite-element matrix equations become positive-definite after normaliz-
ing the original mixed finite-element matrix equations, the resulting matrix condition

375number increases substantially. To accelerate convergence during calculation of the
finite-element solution iteratively from the CGNR matrix, two preconditioners
described in the previous section are adopted. The first preconditioner is known as
the Jacobi preconditioner M

J
, which is nothing but the matrix containing only the

diagonal part of the matrix ATA, i.e.,

M
J
¼ diagðATAÞ ð17Þ

The second preconditioner chosen in this study is the polynomial precondi-
tioner M P given below:

M
P
¼ 2D�1 �D�1ATAD�1 ð18Þ

385

Algorithm 2. The preconditioned CGNR solver for ATAx ¼ ATb
Starting from an initial guess x0
Compute x 00 ¼

P
e Ae

x0; x
00
0 ¼

P
e A

T
e
x00; b

0 ¼
P

e A
T
e
b EBE procedure

Compute the initial residual r0¼ b0 � x 000

390z0 ¼M�1r0  M ¼M
J
orM

P

p
0
¼ z0

For j¼ 1, 2, . . .,

p0
j�1 ¼

P
e A

e
p
j�1

� 	
 EBE procedure

p00
j�1 ¼

P
e AT

e
p0
j�1

� 	
 EBE procedure

395
aj�1 ¼ p

j�1; rj�1

� 	
p
j�1; p

00
j�1

� 	.
xj ¼ xj�1 þ aj�1pj�1
rj ¼ rj�1 � aj�1p00j�1

Convergence check

zj ¼M�1rj  M ¼M
J
orM ¼M

P

400bj�1 ¼ zj; rj
� �

= rj�1; rj�1
� �

p
j
¼ zj þ bj�1pj�1

End

12 N. S. C. KAO ET AL.



Prior to applying the above element-by-element preconditioned iterative
solver to solve the large-size matrix equation, it is instructive first to perform calcu-

405lation in the smallest set of 23 tri-quadratic elements. The polynomial precondi-
tioner M

P
can be employed, provided that the spectral radius of the matrix G is

less than 1. For this reason, the eigenvalues of G are plotted in Figure 2, which

shows that not all the eigenvalues of G lie in the unit circle. This means that the

spectral radius is greater than 1, implying that iterative solvers cannot be applied
410to get a convergent solution.

To make the spectral radius of G smaller than 1, the so-called scaling parameter

x is introduced for the approximation of ATA. In the derivation, we start with xATA

instead of ATA. Following the same derivation procedure described in Section 4, the

inverse of ATA can be derived as xðI � G�1
S
ÞD�1, where G

S
¼ I � xD�1ATA. By

415employing the theorem of binomial series, the scaling polynomial preconditioner is
derived as

M
SP
¼ x I � G

S

� 	
D�1 ¼ 2xD�1 � x2D�1ATAD�1 ð19Þ

We determine the user’s specified scaling parameter x in such a way that the
420spectral radius of G

S
should be less than unity. For choosing a proper range of x,

we perform as before the finite-element calculation in a domain of 23 tri-quadratic
elements. In Figure 3, the spectral radius q is plotted with respect to the scaling
parameter x for the matrix equation G

S
. It can be seen that the spectral radius is less

than 1 in the range of 0�x� 0.1. In this study, we fix x¼ 0.05 in the rest of our
425calculations. For completeness, the eigenvalues calculated at x¼ 0.05 are also

plotted in Figure 4.

Figure 2. Computed eigenvalues from the matrix equation I �D�1ATA in a domain of 23 elements.
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For the sake of comparison, two highly recommended BICG-based iterative
methods are also applied. Since BICGSTAB typically has a much smoother conver-
gence than CGS [23], the following element-by-element BICGSTAB method

430described in [24] will be used for the assessment purpose. We aim to show that
the norm of the BICGSTAB residual still oscillates considerably when solving the
investigated three-dimensional lid-driven cavity problem.

Algorithm 3. The preconditioned BICGSTAB solver for Ax ¼ b
Starting from an initial guess x0

435Compute the initial residual vector r0 ¼ b� Ax0. Choose r0, such that (r0, r0) 6¼ 0

For j¼ 1, 2, . . .,

qj�1 ¼ r0; rj�1
� �

if qj� 1< e1 (near breakdown)
if j¼ 1

440p
j
¼ rj�1

else

bj�1 ¼ ðqj�1=qj�2Þ=ðaj�1=xj�1Þ
p
j
¼ rj�1 þ bj�1 p

j�1 � xj�1vj�1

� 	
end if

445p0
j
¼M�1p

j

vj ¼
P

e A
e
p0
j

� 	
 EBE procedure

aj ¼ qj�1 r0; vj

� 	.
if (r 0, vj)< e2 (near breakdown)

Figure 3. Predicted spectral radius versus scaling parameter x.
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sj ¼ rj�1 � ajvj

450s0j ¼M�1sj

t ¼
P

e A
e
s0j

� 	
 EBE procedure

if jjsjjj2< e
xj¼ 0

else

455xj¼ (t, s)=(t, t)
end if

xj ¼ xj�1 þ ajp0j þ xjs
0
j

rj ¼ sj � xj t

Convergence check
460End

The other well-known iterative solver, GMRES, is also applied in conjunction
with the Jacobi preconditioner. The GMRES iterative solver implemented in an
element-by-element fashion in [24] is given below.

Algorithm 4. The preconditioned GMRES solver for Ax ¼ b
465Starting from an initial guess x 0

For j¼ 1, 2,. . .,
rj ¼ b� Ax0  EBE procedure

Solve rj ¼M�1rj
v1 ¼ rj=jjrjjj2

470s :¼ jjrjjj

Figure 4. Computed eigenvalues for the matrix equation I � xD�1ATA in a domain of 23 elements.
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for i¼ 1, 2, 3, . . ., m
z ¼ Avj  EBE procedure

Solve w ¼M�1z

Figure 5. Predicted spectral radius versus scaling parameter x.

Table 1. Computed L2 error norms for the problem given in Section 6.1

Number of elements

Solver 43 83 163

Frontal u 1.5322� 10�3 8.2419� 10�4 —

v 8.9738� 10�3 5.4890� 10�3 —

w 9.3387� 10�3 6.0440� 10�3 —

p 3.1943� 10�2 2.0691� 10�2 —

BICGSTAB u 1.4609� 10�3 8.2539� 10�4 4.1915� 10�4

v 8.9158� 10�3 5.5351� 10�3 2.7610� 10�3

w 9.4792� 10�3 6.0045� 10�3 3.0656� 10�3

p 3.0718� 10�2 1.4773� 10�2 6.6294� 10�3

GMRES u 1.4609� 10�3 8.2539� 10�4 4.1915� 10�4

v 8.9158� 10�3 5.5351� 10�3 2.7613� 10�3

w 9.4792� 10�3 6.0045� 10�3 3.0656� 10�3

p 3.0737� 10�2 1.4814� 10�3 6.6954� 10�3

CGNR u 1.4609� 10�3 8.2540� 10�4 4.1913� 10�4

v 8.9158� 10�3 5.5351� 10�3 2.7610� 10�3

w 9.4792� 10�3 6.0045� 10�3 3.0661� 10�3

p 3.5336� 10�2 1.4813� 10�2 6.6612� 10�3

In this table, ‘‘—’’ means that the solution is not computable.
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for k¼ 1,. . ., i
475hk;i ¼ w; vkð Þ

w ¼ w� hk;ivk
end
hiþ1;i ¼ jjwjj
v ¼ w=hiþ1;i

480Apply J1, . . ., Ji� 1 on (h1,i), . . ., (hiþ 1,i)
Construct ji, acting on the ith and (iþ 1)th components of h., i

such that the (iþ 1)th component of Ji h., i has the value of 0
s:¼ Jis

Table 2. Total CPU times needed for the execution of one entire calculation and CPU times spent on the

three chosen iterative solvers for the calculations involving 163 elements

Solver Total CPU time (s) CPU time (s) and percentage in (%) for iterative solver

BICGSTAB 4,608.6 4,527.5 (98.24%)

GMRES 11,459.1 11,257.4 (98.23%)

CGNR 3,015.2 2,967.4 (98.71%)

Figure 6. Illustration of the three-dimensional lid-driven cavity problem.
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if s(iþ 1) becomes small enough, then UPDATE (~xx, i) and quit
485end

UPDATE (~xx;m)
End

Figure 7. Comparison of the predicted velocity profiles at the mid-plane y¼ 0.5. (a) Re¼ 400,

(b) Re¼ 1,000.
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The UPDATE (~xx, i) procedure is as follows.
Compute y from Hy ¼ s

490in which the upper i� i triangular part of H has hi,j as its elements.
s is the first i components of s

x ¼ x0 þ y
1
v1 þ y

2
v2 þ . . .þ y

i
vi

siþ1 ¼ jjb� A~xxjj  EBE procedure

If ~xx is accurate enough, then terminate the calculation
495else x0 ¼ ~xx

It is worth noting that the polynomial preconditioner is not applicable to
indefinite matrix calculation using either the GMRES or the BICGSTAB solver.
Hence only the Jacobi preconditioner will be implemented in the GMRES and
BICGSTAB iterative solvers. As before, the finite-element calculation in 23 tri-

500quadratic elements is carried out. One can clearly see from Figure 5 that the spectral
radius can by no means be less than unity.

Table 3. Finite-element results computed from three iterative solvers for the problem investigated in a

domain of 213 nodal points

Solver

Reynolds

number

CPU

time (s)

No. of outer

iterations

No. of inner iterations

at the nth outer iteration

BICGSTAB 100 682.7 8 1,465 (n¼ 4)

400 � � Breaks down

1,000 � � Breaks down

GMRES 100 300.2 6 430 (n¼ 3)

400 1,238.4 8 1,350 (n¼ 4)

1,000 2,623.3 9 2,120 (n¼ 5)

CGNR 100 795.4 8 2,073 (n¼ 4)

400 862.2 8 2,788 (n¼ 4)

1,000 1,937.7 10 5,463 (n¼ 5)

The notation ‘‘�’’ means that the solution is not computable.

Table 4. Finite-element results computed from three iterative solvers for the problem investigated in a

domain of 413 nodal points

Solver

Reynolds

number

CPU

time (s)

No. of outer

iterations

No. of inner iterations

at the nth outer iteration

BICGSTAB 100 5,853.1 7 3,040 (n¼ 3)

400 30,622.5 8 5,585 (n¼ 4)

1,000 � � Breaks down

GMRES 100 4,652.1 6 850 (n¼ 3)

400 12,468.4 7 1,760 (n¼ 4)

1,000 � � Breaks down

CGNR 100 4,384.9 6 3,460 (n¼ 3)

400 9,490.4 7 4,428 (n¼ 4)

1,000 29,845.3 11 7,611 (n¼ 6)

The notation ‘‘�’’ means that the solution is not computable.
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7. NUMERICAL RESULTS

7.1. Verification Study

The first step toward verification of the proposed incompressible Navier-Stokes
505finite-element model is to solve equations amenable to analytical solution. The

problem under investigation is defined in a hexahedron of length 1. Along the cube
surfaces, the nodal velocities are analytically prescribed by u ¼ 1

2 ðy2 þ z2Þ; v ¼ �z,
and w¼ y. The corresponding exact pressure takes the form

p ¼ 1

2
y2 þ z2
� �

þ 2

Re
x

In this finite-element verification study, which involves a total number of N
unknowns, the memory is estimated to be O(N4=3) using the Frontal solver. Such

Table 5. Finite-element results computed from three iterative solvers for the problem investigated in a

domain of 613 nodal points

Solver

Reynolds

number

CPU

time (s)

No. of outer

iterations

No. of inner iterations

at the nth outer iteration

BICGSTAB 100 57,630.5 6 3,090 (n¼ 3)

400 172,855.2 8 9,995 (n¼ 4)

1,000 � � Breaks down

GMRES 100 71,598.2 6 2,840 (n¼ 3)

400 151,312.7 7 4,070 (n¼ 4)

1,000 � � Breaks down

CGNR 100 46,097.8 6 4,281 (n¼ 3)

400 88,192.9 8 6,001 (n¼ 4)

1,000 272,705.7 12 10,657 (n¼ 6)

The notation ‘‘�’’ means that the solution is not computable.

Table 6. Finite-element results computed from three iterative solvers for the problem

investigated in a domain of 213 nodal points

Solver

Reynolds

number

CPU

time (s)

No. of outer

iterations

No. of inner iterations at

the nth outer iteration

PBICGSTAB 100 294.6 6 1,400 (n¼ 3)

400 3,852.5 8 1,870 (n¼ 4)

1,000 � � Breaks down

PGMRES 100 254.1 6 300 (n¼ 3)

400 1,033.5 8 930 (n¼ 4)

1,000 2,094.9 9 1,470 (n¼ 5)

PJCG 100 93.2 6 364 (n¼ 3)

400 362.5 8 1,230 (n¼ 4)

1,000 1,466.9 15 2631 (n¼ 8)

PPCG 100 107.5 6 361 (n¼ 3)

400 425.4 8 1,229 (n¼ 4)

1,000 1,051.4 9 2,600 (n¼ 5)

The notation ‘‘�’’ means that the solution is not computable. PJCG, CG iterative

solver used together with Jacobi preconditioner; PPCG, CG iterative solver used

together with polynomial preconditioner.
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a large memory demand prohibits us from getting an accurate solution effectively
using the direct solver.

Three uniform meshes have been used to perform the convergence test. Table 1
tabulates the computed L2 errors, from which the iterative solutions are seen to be
compatible with the Frontal direct solutions. To illustrate the error-reduction
history, the L2 residuals are plotted with respect to the iteration number. The
CPU times are summarized in Table 2. From these results, we can conclude that
the direct Frontal solver is preferable to iterative solvers when solving a smaller-size
problem. Much of the CPU time is consumed in the inner iteration. This points out
the difficulty of solving unsymmetric indefinite matrix equations.

Table 7. Finite-element results computed from three iterative solvers for the problem investigated in a

domain of 413 nodal points

Solver

Reynolds

number

CPU

time (s)

No. of outer

iterations

No. of inner iterations

at the nth outer iteration

PBICGSTAB 100 5,510.3 6 2,600 (n¼ 3)

400 10,297.1 8 4,870 (n¼ 4)

1,000 � � Breaks down

PGMRES 100 3,935.1 6 600 (n¼ 3)

400 10,537.0 7 1,610 (n¼ 4)

1,000 � � Breaks down

PJCG 100 1,918.3 6 986 (n¼ 3)

400 4,248.3 7 1,960 (n¼ 4)

1,000 13,167.7 9 5,017 (n¼ 5)

PPCG 100 2,711.5 6 978 (n¼ 3)

400 5,799.5 7 1,498 (n¼ 4)

1,000 12,230.8 9 3,301 (n¼ 5)

The notation ‘‘�’’ means that the solution is not computable.

Table 8. Finite-element results computed from three iterative solvers for the problem investigated in a

domain of 613 nodal points

Solver

Reynolds

number

CPU

time (s)

No. of outer

iterations

No. of inner iterations

at the nth outer iteration

PBICGSTAB 100 49,805.3 7 5,455 (n¼ 4)

400 98,022.3 8 6,615 (n¼ 4)

1,000 � � Breaks down

PGMRES 100 36,839.9 6 930 (n¼ 3)

400 82,338.9 7 1,670 (n¼ 4)

1,000 � � Breaks down

PJCG 100 25,153.4 6 1,996 (n¼ 3)

400 46,770.4 10 2,149 (n¼ 5)

1000 172,560.3 15 6,218 (n¼ 7)

PPCG 100 32,717.1 6 2,395 (n¼ 3)

400 51,790.1 7 2,960 (n¼ 4)

1,000 133,386.8 11 5,329 (n¼ 5)

The notation ‘‘�’’ means that the solution is not computable.
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Figure 8. Residual reduction plots in the inner iteration (at the fourth outer iteration) using the

investigated iterative solvers to solve the Navier-Stokes equations at Re¼ 400 in 413 nodal points.

(a) Nonpreconditioned solvers; (b) preconditioned solvers.
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7.2. Lid-Driven Cavity Flow in a Cube

The lid-driven cavity problem presented schematically in Figure 6 is considered
for assessment of the three iterative solvers investigated. To begin with, the predicted
and referenced [25] mid-line velocity profiles are plotted in Figure 7. This shows
a good match of the two solutions. Since one of our objectives is to explain the
necessity of normalizing the matrix equation, the computed results using the BICG-
STAB and GMRES solvers for the original matrix and the CGNR solver for the
normal matrix equation are also tabulated in Tables 3–5. Unlike the other solvers,
steady solution can be obtained by the CGNR solver for each case. The necessity
of performing matrix normalization is therefore amply demonstrated.

While matrix normalization can be applied to get the steady-state solution
using the CGNR solver, it will also bring in two drawbacks. One drawback is related
to the increased condition number, and the other difficulty involves performing
additional matrix–vector multiplication. Since the convergence behavior of the
Krylov subspace solver is very sensitive to the condition number, a larger condition
number makes the CGNR solver converge slowly or even diverge. In Tables 3–5, the
inner iteration number for the CGNR solver is greater than those of the BICGSTAB
and GMRES solvers. To reduce condition number and improve convergence, we adopt
the Jacobi and polynomial preconditioners. The numerical results of CGNR and CGNR
used together with the Jacobi preconditioner and polynomial preconditioner are shown
in Tables 6–8. For completeness, the results obtained from the BICGSTAB and
GMRES iterative solvers along with the use of Jacobi preconditioner are also shown

Figure 9. Residual reduction plots in the inner iteration (at the fifth outer iteration) using the

investigated preconditioned iterative solvers to solve the Navier-Stokes equations at Re¼ 1,000 in 413

nodal points.
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in these tables. One can clearly see from Figure 8 that for the case Re¼ 400, the num-
ber of inner iterations for the solver used together with the preconditioner is much
smaller compared to the original CGNR solver. As the Reynolds number is increased
to 1,000, one can see from Figure 9 that use of the polynomial preconditioner outper-
forms the Jacobi preconditioner in reducing the iteration number within the context
of the proposed CGNR iterative solver.

8. CONCLUDING REMARKS

The current finite-element calculation of three-dimensional incompressible
Navier-Stokes equations has been carried out in tri-quadratic elements. The basis
functions for the primitive variables u and p satisfy the compatability condition. To
enhance numerical stability in association with the predicted velocity, a stabilization
term is added along the streamline direction within the Petorv-Galerkin finite-element
context. To get better dispersive accuracy, a proper upwinding coefficient is rigorously
derived so that the difference between the numerical and exact wavenumbers for the
first-order derivative terms is minimized. An element-by-element strategy is imple-
mented in the currently chosen CGNR iterative solver for reducing the required mem-
ory. Prior to calculation of the solution from the finite-element matrix equation,
which has been transformed to become symmetric and positive-definite through the
normalization of the original unsymmetric and indefinite mixed Petrov-Galerkin
finite-element equations, we precondition the CGNR equations. This procedure is
essential to reduce the spectral radius of the normalized positive-definite finite-element
equations. Both the Jacobi and polynomial preconditioners are investigated. The per-
formance of three element-by-element iterative solvers are also assessed. It is concluded
that the CGNR iterative solver applied together with the polynomial preconditioner is
superior to the preconditioned GMRES and BICGSTAB iterative solvers.
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