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Abstract In this work, we have proposed two new combined compact difference (CCD)
schemes for the solution of Navier–Stokes equations. These spatial discretization schemes
have not only high spectral resolution for obtaining first and second derivative terms, but also
have improved dispersion relation preserving properties when the fourth-order four-stage
Runge–Kutta scheme is used for time integration. Out of the two proposed CCD schemes,
the first scheme has upwind stencil, while the second scheme has a central stencil. Important
numerical properties of these schemes have been analyzed and their effectiveness have been
shown by solving the model wave equations, as well as Navier–Stokes equations. Results
show that the upwind CCD scheme is suitable for high accuracy large eddy simulation of
transitional and turbulent flowfields.
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1 Introduction

A space-time accurate numerical simulation of fluid flow and heat transfer problems requires
higher spatial resolution and dispersion relation preservation (DRP) properties [1–3,13]. Such
schemes act as an important numerical tool to solve complex physical problems displaying
a large bandwidth of spatio-temporal scales. Although a very fine mesh correctly captures
the important spatial flow structures, use of higher resolution methods offers similar spectral
accuracy with fewer grid points. This benefits in saving considerable computational cost.
Compact schemes have been studied intensively in this regard [4–12,14–17].

For approximating spatial derivatives, any numerical scheme can be represented in the
matrix form as [A]{u′} = [B]{u} or {u′} = [D]{u}, where [D] = [A]−1[B]. Matrix [A] for
an explicit scheme is an identity matrix in contrast to tri-diagonal or penta-diagonal matrix
for compact schemes. This results in a sparse matrix [D] for explicit schemes, in compar-
ison to large band-width matrix [D] for compact schemes. Thus, while evaluating spatial
derivatives using compact schemes, many nodes in the domain contribute to achieve higher
spectral resolution [19]. This idea is further used to develop a three point combined compact
difference scheme (CCD) in [20] in which first and second derivative terms are implicitly eval-
uated simultaneously. Combined calculation of the first and the second derivatives makes the
scheme more compact and accurate than the compact difference schemes for first derivative.
New boundary closure was suggested in [21] for obtaining better numerical properties and the
corresponding dissipation and de-aliasing properties were discussed in [22]. Improvement
in spectral properties of CCD schemes were further attempted in [9,17].

While developing new numerical schemes, one aims to achieve higher spectral resolution
along with the ability to numerically preserve dispersion relation accurately over a consid-
erable wavenumber range. This ensures each and every resolved component of energy to
propagate at the correct physical speed. Fluid flow can exhibit complex phenomena which
involve interactions among different scales. With this idea, a new DRP upwind CCD scheme
has been developed in [1]. The proposed scheme in [1] has higher spectral resolution and
better DRP properties as compared to the scheme proposed in [20].

However, compact schemes with high spectral resolution are also prone to aliasing error.
While performing computations in the transformed plane both the linear, as well as, non-
linear terms in the transformed governing equations contribute to aliasing error as these
terms involve product of spatial derivative terms [19,22]. Researchers have proposed var-
ious ways to reduce aliasing error. Different formulation of the governing equations was
suggested in [23,24] to control aliasing error. Discussion on aliasing error while performing
computations on non-uniform grids was given in [11,25]. Use of multidimensional filter
was recommended in [19,26] while the necessity of upwind CCD scheme was highlighted
in [11,22] to take care of aliasing error. Thus while designing high accuracy DRP schemes,
one should pay close attention to control aliasing error [19].

In the present work, we have extended this idea of developing new optimized CCD scheme
and proposed two new central and an upwinded CCD schemes. Developed schemes have
higher spectral resolution and improved DRP properties than the earlier proposed central
scheme in [20] and upwinded scheme in [1]. We also discuss de-aliasing nature of the pro-
posed upwind compact scheme here.

Numerical properties of the proposed schemes are analyzed using a global spectral analysis
tool as in [5,6]. This full domain analysis explains simultaneous effects of one-sided boundary
and near-boundary nodes on the important numerical properties everywhere in the domain.
While analyzing high accuracy, explicit and implicit methods in [5], differences between
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numerical properties of near boundary and central nodes are clearly indicated using this
global matrix analysis methodology.

The full domain analysis approach [5,6] is completely different as compared to the pop-
ular semi-discretization eigen-value analysis approach attempted in many previous works.
Unlike semi-discretization analysis approach, full domain analysis does not wrongly assume
the time discretization as perfect entity. When one deals with analysis of unsteady flows,
numerical properties must be obtained by considering space-time discretization together as
in full domain analysis. The stable or unstable behavior of the numerical schemes depends
significantly on the chosen time discretization scheme. Any attempt to draw conclusion about
stability properties of the numerical scheme by considering just spatial derivative scheme is
going to give a wrong picture and should not be attempted. In this regard, we have analyzed
our proposed numerical schemes following full domain analysis of [6].

In [1,3], DRP schemes were constructed by optimizing the spectral resolution of the
spatial derivative terms. In contrast, authors in [13] proposed new DRP schemes by combined
optimization of spatial and temporal discretization schemes. Since the dispersion relation
involves the relation between the spatial and temporal scales, combined optimization of spatial
and temporal discretization schemes was emphasized in [13]. For the proposed schemes, we
have obtained numerical group velocity contours for the solution of one dimensional wave
equation following [5,6] to mark improvements in DRP properties.

Proposed upwind and central CCD schemes have been identified as schemes A and B,
respectively. The stencils and numerical properties for these schemes are discussed in the
next section while the methodology to design the stencil for upwind CCD scheme has been
given in the “Appendix” following the work of [1].

2 Numerical Properties for Non-periodic Problems Using Fourier–Laplace Spectral
Theory

To analyze nodal properties for non-periodic problems, a matrix spectral analysis technique
has been developed in [5,6,19]. In this work, we have used this methodology to obtain
the numerical properties for the developed high spectral resolution DRP schemes. For any
numerical scheme, the first derivative f ′ = ∂ f

∂x can also be explicitly written as,

{ f ′} = 1

h
[C]{ f } (1)

where { f } and [C] are column vector and matrix, respectively, with h as the constant grid
spacing.

Representation of numerically obtained first derivative at a grid point x j in the spectral

plane is given as f ′(x j , t) = ∫ kmax
kmin

ikeq F(k, t) eikx j dk. In this expression, kmax and kmin

give the maximum and minimum resolved wavenumbers by the grid. Assuming the domain is
divided into N +1 equi-spaced points with h as grid spacing, an expression for the equivalent
wavenumber is given as [5,19,39],

ikeq(x j ) = 1

h

N+1∑

l=1

Cl j e
ik(xl−x j ) (2)

The term keq is in general a complex quantity, with its real part signifies the phase and the
imaginary part represents the added numerical diffusion or anti-diffusion. We have analyzed
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these properties for the CCD scheme with central stencil [20,39], upwind CCD scheme [1]
and two new CCD schemes proposed in this work.

The CCD scheme in [20,39] is given as,

7

16

(
f ′
i+1 + f ′

i−1

) + f ′
i − h

16

(
f ′′
i+1 − f ′′

i−1

) = 15

16h
( fi+1 − fi−1) (3)

9

8h

(
f ′
i+1 − f ′

i−1

) − 1

8

(
f ′′
i+1 + f ′′

i−1

) + f ′′
i = 3

h2 ( fi+1 − 2 fi + fi−1) (4)

For a non-periodic problem one needs four additional boundary stencils at the nodes 1
and N + 1. These have been provided in [20] as,

f ′
1 + 2 f ′

2 − h f ′′
2 = 1

h
(−3.5 f1 + 4 f2 − 0.5 f3) , (5)

h f ′′
1 + 5h f ′′

2 − 6 f ′
2 = 1

h
(9 f1 − 12 f2 + 3 f3) , (6)

f ′
N+1 + 2 f ′

N − h f ′′
N = −1

h
(−3.5 fN+1 + 4 fN − 0.5 fN−1) , (7)

h f ′′
N+1 + 5h f ′′

N + 6 f ′
N = 1

h
(9 fN+1 − 12 fN + 3 fN−1) . (8)

In [21], authors have proposed a modified CCD scheme (NCC D) with different near-
boundary stencils as the above boundary closure leads to anti-diffusion. To determine first
and second derivatives at N + 1 grid points in the domain, one needs 2N + 2 equations. As
explained in [21], Eq. (3) has been used for the nodes 3 to N −1 while Eq. (4) has been used for
the nodes 2 to N . At the boundary points, explicit stencils for the first and second derivatives
are provided at j = 1: f ′

1 = (−1.5 f1 + 2 f2 − 0.5 f3)/h and f ′′
1 = ( f1 − 2 f2 + f3)/h2 [21].

Derivatives at the point N + 1 are obtained using the same stencils with a reverse sign on the
right hand side. Four additional near-boundary stencils for the nodes 2 and N are provided
to improve numerical diffusion at the near boundary points. These are given as,

f ′
2 = 1

h

[(
2β2

3
− 1
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)
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(

8β2

3
+ 1
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(
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)
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3
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, (9)
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h
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]

, (10)

f ′′
2 = ( f1 − 2 f2 + f3)/h2, (11)

f ′′
N = ( fN+1 − 2 fN + fN−1)/h2 (12)

where β2 = −0.025 and βN = 0.09
In the present work, we have proposed and analyzed two new CCD schemes, schemes A

and B. Stencil for scheme A is given as,

a1u f ′
i−1 + f ′

i + a3u f ′
i+1 + h

(
b1u f ′′

i−1 + b2u f ′′
i + b3u f ′′

i+1

)

= 1

h
(c1u fi−2 + c2u fi−1 + c3u fi ) (13)

9

8h

(
f ′
i+1 − f ′

i−1

) − 1

8

(
f ′′
i+1 + f ′′

i−1

) + f ′′
i = 3

h2 ( fi+1 − 2 fi + fi−1) (14)
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The optimized coefficients in Eq. (13) are given as,

a1u = 0.888251792581; a3u = 0.049229651564

b1u = 0.150072398996; b2u = −0.250712794122

b3u = −0.012416467490; c1u = 0.016661718438

c2u = −1.970804881023; c3u = 1.954143162584

Three point stencil for scheme B is given as,

a1c f ′
i−1 + f ′

i + a3c f ′
i+1 + h

(
b1c f ′′

i−1 − b3c f ′′
i+1

) = 1

h
(c1c fi−1 + c3c fi+1) (15)

9

8h

(
f ′
i+1 − f ′

i−1

) − 1

8

(
f ′′
i+1 + f ′′

i−1

) + f ′′
i = 3

h2 ( fi+1 − 2 fi + fi−1) (16)

The optimized coefficients in Eq. (15) are given as,

a1c = a3c = 0.446675232769736

b1c = b3c = 0.065558410923245

c1c = c3c = 0.946675232769736

While analyzing numerical properties for schemes A and B, we have used the near-
boundary stencils as given by Eqs. (9)–(12) to obtain f ′ and f ′′ at the respective nodes.
We have considered a domain with 101 equi-spaced points for the purpose of analysis. For
the central node of the domain, we have analyzed the effectiveness of the proposed CCD
schemes in evaluating the first and second derivatives and compared these with the CCD
schemes in [1,20].

In Fig. 1, discretization effectiveness for the central node has been shown by plotting the
real and the imaginary parts of keq/k and −k2

eq/k2 versus non-dimensional wavenumber
kh. Effectiveness in obtaining spectral resolution is shown by the variation of real part of
keq/k versus kh. One can observe that the spectral resolutions of both the schemes A and
B are higher as compared to the scheme of [20]. In all the four analyzed CCD methods, the
scheme A has the highest spectral resolution and it outperforms the upwind CCD scheme
suggested in [1]. The spectral resolution of scheme A remains close to the ideal limiting
value of one almost up to kh = 2.75 as shown in Fig. 1a. Added numerical diffusion or anti-
diffusion is represented by the negative or positive imaginary parts of keq/k respectively,
and is shown in Fig. 1b. As proposed in [11,27], one can use upwind numerical methods to
control the aliasing error in the high wavenumber components while performing LES. Thus
to obtain a physically meaningful solution, the proposed method should have the numerical
diffusion in the higher wavenumber range only. We have developed upwind scheme A in this
aspect. From Fig. 1b one can observe that the scheme A is better as compared to the upwind
scheme proposed in [1], since the added numerical diffusion is restricted more to the high
wavenumber region. As the CCD scheme of [20] and scheme B have central stencils, these
methods do not add any numerical diffusion.

Effectiveness of the proposed CCD schemes in estimating second derivative is shown in
Fig. 1c by plotting the variation of the real part of −k2

eq/k2 versus kh. In [26], overshoot
in real part of −k2

eq/k2 above one in high wavenumber region is advocated to eliminate
numerical instabilities originating from aliasing error and other nonlinear effects. In Fig. 1c,
one can observe the effectiveness of schemes A and B remains close to the ideal value of one
over complete wavenumber range. The imaginary part of −k2

eq/k2 gives additional dispersion
error, as discussed in [21]. For the central stencil of scheme B and CCD scheme of [20], this
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Fig. 1 Comparison of the effectiveness in evaluating the first and the second order derivative terms at the
central node in the spectral plane. Here, k denotes the exact wavenumber while keq denotes the numerically
obtained wavenumber while evaluating the first derivative. Similarly, the terms k2 and k2

eq denote the exact
and numerically obtained wavenumbers while evaluating the second derivative, respectively
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quantity is zero while this error for the upwind scheme A is less as compared to the upwind
CCD scheme proposed in [1].

Use of matrix spectral analysis allows us to calculate the nodal properties everywhere in
the domain. Nodal properties are shown for the near boundary nodes j = 2 and j = 100
in Figs. 2 and 3, respectively. In these figures, one observes undesirable overshoot of the
real part of keq/k above one for the CCD scheme of [20], but is absent for the schemes A
and B for nodes j = 2 and j = 100. Additionally, the imaginary part of keq/k shows large
numerical anti-diffusion for the node j = 2 and large diffusion for the node j = 100 for
the CCD scheme of [20]. These problems are significantly reduced for the schemes A and
B. Figures 2 and 3 also show that scheme A and scheme B outperform the CCD scheme
of [20] in terms of the spectral resolution of the second derivative and the reduced additional
dispersion error given by the real and imaginary parts of −k2

eq/k2, respectively. Thus Fig. 1
provides effectiveness while evaluating first and second derivatives at the interior nodes.
Similar information is provided in Figs. 2 and 3 for the near boundary nodes. Use of different
stencils at the boundary and near-boundary points causes significant variation in numerical
properties such as spectral resolution, numerical amplification factor and numerical phase
and group velocity [18,19]. Use of compact schemes sets up undesired directional bias in the
computed solution and a symmetrization procedure has been suggested in [18,19] to avoid
it. Thus use of proper discretization schemes for the boundary and near-boundary nodes is
essential while performing LES and DNS studies as a choice of wrong boundary stencil can
cause evolution of unphysical flow structures.

In [2,29], properties of the numerical schemes are analyzed by choosing 1D wave equation
as the model equation for convection dominated flows with an emphasis on the numerical
properties such as the numerical amplification factor |G(k)|, numerical phase speed cN (k),
and numerical group velocity VgN (k). Similarly, we have analyzed the basic numerical prop-
erties of the CCD schemes. Ideally, for a chosen numerical method one requires neutral
stability (|G| = 1) and zero phase and dispersion error. We consider the model equation for
convection dominated flows as the following 1D convection equation,

∂u

∂t
+ c

∂u

∂x
= 0, c > 0 (17)

Equation (17) has an analytical solution which can be used to make a direct comparison
with the numerical results. Additionally, the initial condition given for solving this equation
does not decay, amplify or disperse with time. Thus one can directly check the accuracy of a
numerical scheme from the computed solution, whether there are dissipation and dispersion
errors present in it or not.

For the analysis of 1D convection equation, consider the following initial condition for
the numerical solution of Eq. (17),

u0
m = u(xm, t = 0) =

∫
A0(k) eikxm dk (18)

The general numerical solution for Eq. (17) is obtained by substituting the above initial
condition in Eq. (17) as,

un
m = u(xm, tn) =

∫
A0(k) (G2

r + G2
i )

n/2 ei(kxm−nβ) dk (19)

In Eq. (19), the numerical amplification factor G(k) is defined as G(k) = U (k,tn+1)
U (k,tn)

and is a
complex quantity represented as G(k) = Gr + iGi . Term β is obtained as tan β = −Gi/Gr
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Fig. 2 Comparison of the effectiveness in evaluating the first and the second order derivative terms at the
near-boundary node j = 2 in the spectral plane. Here, k denotes the exact wavenumber while keq denotes the
numerically obtained wavenumber while evaluating the first derivative. Similarly, the terms k2 and k2

eq denote
the exact and numerically obtained wavenumbers while evaluating the second derivative, respectively
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Fig. 3 Comparison of the effectiveness in evaluating the first and the second order derivative terms at the
near-boundary node j = 100 in the spectral plane. Here, k denotes the exact wavenumber while keq denotes
the numerically obtained wavenumber while evaluating the first derivative. Similarly, the terms k2 and k2

eq
denote the exact and numerically obtained wavenumbers while evaluating second derivative, respectively
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Fig. 4 Comparison of the numerical amplification factor |G j | contours for the central node corresponding
to the solution of Eq. (17) when the indicated spatial discretization schemes are used with the fourth order
Runge–Kutta (RK4) scheme. Note that the areas hatched with dashed lines denote the neutrally stable regions

and is a function of wavenumber k. The numerical phase speed and numerical group velocity
are obtained as [6,29],

cN (k)

c
= β

ω �t
(20)

VgN (k)

c
= 1

Cr h

dβ

dk
(21)

where Cr denotes the CFL number.
We have analyzed these important properties for the central nodes. In Figs. 4 and 5, we

have shown the numerical properties in (Cr , kh)-plane for the solution of Eq. (17) using the
fourth-order Runge–Kutta RK4 scheme for the time integration and the spatial discretization
by the indicated CCD schemes. Figure 4 shows the comparison of variation of |G| for the CCD
schemes in [1,20] and the proposed schemes A and B. In these plots, we have highlighted the
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Fig. 5 Comparison of the numerical group velocity |V gN /c| contours for the central node corresponding
to the solution of Eq. (17) when the indicated spatial discretization schemes are used with the fourth order
Runge–Kutta (RK4) scheme. Note that the areas marked with dashed lines denote the q-wave regions with
negative-valued group velocity

neutrally stable region by hatched lines to identify the suitable region for direct numerical
simulation (DNS). Being a central scheme, proposed scheme in [20] and the scheme B have
neutrally stable regions over a complete kh range for a small Cr values. Due to the upwind
nature of the scheme A and the scheme in [1], neutrally stable region is limited to only low
wavenumber range as marked in the respective frames with the corresponding wavenumber
values. However the proposed scheme A has a higher neutrally stable region as compared to
the scheme in [1] and is applicable to large eddy simulation (LES).

Figure 5 shows comparison of variation of VgN /c in (Cr , kh)-plane for the numerical
schemes discussed in Fig. 4 for the central nodes. Among all the four methods, scheme
A has the best DRP properties. If one considers the area bounded by VgN /c = 0.99 and
VgN /c = 1.01 contour lines as a DRP region then one obtains DRP region almost up to
kh = 2.5 for scheme A as compared to kh = 1.35 for scheme in [20], kh = 2.1 for scheme
of [1] and kh = 1.55 for the scheme B, when small Cr values are considered. Thus the
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upwind scheme A has better DRP ability with respect to the upwind scheme of [1] and the
central scheme B has a better DRP ability with respect to the central scheme of [20].

We have shown the negative group velocity contours by the dashed lines in this figure.
Solution components in this range have a opposite direction of propagation as compared to
the physical direction and are described as q-waves [30]. Such spurious high wavenumber
oscillations can cause unphysical flow transition as well as numerical instabilities. Scheme A
has the least q-wave region among the four methods and it exists only in the region where the
solution is numerically damped. As indicated in the figure, for small CFL number calculations,
q-wave region for scheme A starts from kh = 2.7365 as compared to kh = 2.6305 for the
CCD scheme in [1]. For the central CCD scheme B and CCD scheme in [20], one observes a
larger q-wave region above kh = 2.4077 and kh = 2.3657, respectively. For the scheme A,
q-waves which are responsible for undesirable numerical artifacts are limited to very small
(Cr, kh)-region which is significantly damped, thereby avoiding a need of upwind filters as
suggested in [30].

Following the discussion on the numerical properties of the proposed CCD schemes, the
efficiency of these proposed CCD schemes for the solution of model wave equations, as well
as, Navier–Stokes equations is demonstrated in the next sections.

3 Solution of Wave Equation

Here, we report solutions of 1D and 2D wave equations corresponding to initial conditions
with sharp gradient. We have reported and compared the numerical solutions for these prob-
lems obtained using the schemes A and B.

3.1 Solution of One-Dimensional Wave Equation with a Ramp Discontinuity

In many fluid flow and heat transfer problems, flow admits strong gradients of pressure, den-
sity and temperature. Capturing these sharp gradient events is computationally challenging
since discontinuous solution in physical plane excites a complete band of frequencies in the
spectral plane. Hence a numerical method with poor resolution will not correctly represent the
physical solution with large dispersion and dissipation errors. Such poor numerical methods
also show oscillating erroneous solution near discontinuities which is known as Gibbs’ phe-
nomenon. These high wavenumber oscillations are associated with the formation of q-waves
which can lead to numerical instabilities [30]. Here, we will study this aspect by considering
propagation of a steep ramp following the Eq. (17).

As an initial condition for this problem, we have specified the ramp function with a 81◦
slope, as shown in Fig. 6a, b. Numerical solution at subsequent times is prone to display
a wide range of wavenumbers due to discontinuous slope in the initial condition. We have
solved Eq. (17) with the schemes A and B using the RK4 scheme for time integration.

We have considered a domain 0 ≤ x ≤ 30, with 4096 equi-spaced points. Initially, the
ramp is located between x = 14 and 15, as shown in Fig. 6a, b. While solving Eq. (17), we
have chosen the phase speed c = 0.5 with a time step corresponding to the CFL number of
0.1. Along with the initial condition, numerical solutions computed using schemes A and B
at t = 3 and 6 are shown in Fig. 6a, b, respectively. Amplitude of oscillating error generated
near the ramp discontinuities is small as compared to the amplitude of ramp itself and these
high wavenumber errors in the solution are not directly visible from the solutions shown in
Fig. 6a, b. However, it is visible in Fig. 6c, d which show the errors between the analytical
and the numerical solutions of Eq. (17) over the complete domain. Scheme A being an
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Fig. 6 Wave propagation profiles of a ramp function following Eq. (17) using the CCD scheme A and CCD
scheme B have been shown in a and b, respectively. Error between the computed and the analytical solutions
has been shown in c and d for the scheme A and scheme B, respectively
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upwind scheme with a very small q-wave region (as seen from Fig. 5c), numerical solution
in Fig. 6c shows only localized high wavenumber oscillations at the ramp discontinuities.
There are no q-waves with significant amplitude at t = 3 and t = 5, as shown in Fig. 6c.
However scheme B, being a central scheme with a small DRP region as compared to scheme
A, admits q-waves in the solution as observed at t = 3 and t = 5 in Fig. 6d. Presence of
these high wavenumber components in the numerical solution can have destabilizing effects
and low-pass filtering is necessary, as suggested in [30]. However, computations performed
with scheme A do not require this additional filtering due to its superior DRP properties,
as well as the presence of numerical diffusion which is restricted to high wavenumber only.
Thus for spatial discretization, use of scheme A is more beneficial.

3.2 Solution of Two-Dimensional Wave Equation with a Steep Wave Packet

Here, we have considered a model equation for 2D wave motion as,

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= 0 (22)

In Eq. (22), cx and cy are the phase speeds in the x and y directions obtained using the
expression cx = c cos θ and cy = c sin θ, where θ is the angle between the direction of
propagation of wave packet and the horizontal co-ordinate axis. In the current computational
exercise, we have chosen a domain 0 ≤ (x, y) ≤ 6, with 501 equi-spaced points with a
grid spacing h = 0.012. We have specified a steep wave packet initially located at (xo =
1.5, yo = 1.5) following the equation,

u = e−500
[
(x−xo)2+(y−yo)2]

cos

[

100
√

(x − xo)2 + (y − yo)2

]

(23)

moving along a line inclined at θ = 45◦ to x-axis. We have considered the phase speeds as
cx = cy = 0.1 with a time step corresponding to the CFL number of Cr x = 0.1, where
Cr x = cx �t

h .
We have compared solutions of this problem when the schemes A and B are used for spatial

discretization and the RK4 scheme is used for time integration, as shown in Fig. 7. The initial
condition of the wavepacket is shown in Fig. 7a while the packet amplitude distribution along
the line y = 1.50 is shown in Fig. 7b. In Fig. 7c, the results obtained using the scheme A at
the indicated time instants are shown, while in Fig. 7d results obtained using the scheme B
are shown. The choice of CFL number as cr x = cr y = 0.1 corresponds to the neutrally stable
region over a complete wavenumber range for the scheme B shown in Fig. 4d. However, for
scheme A such a neutrally stable region is limited to low wavenumber region only. Thus, the
calculations obtained with scheme A shows subsequent damping of the wavepacket at the
indicated times in Fig. 7. Results obtained using the scheme B show the presence of q-waves
in the solution caused by the steep nature of the initial wave packet. As for the calculations
obtained using the scheme B, even though the calculations are performed inside a neutral
region, yet the peak amplitude of the wavepacket decreases with time. This reduction of the
amplitude of the signal, despite performing calculations in the neutrally stable region, is due
to the dispersion error as pointed out in Fig. 2 of [30].

We have solved an additional example of propagation of 2D wavepacket following Eq. (22)
on a skewed grid to further demonstrate capabilities of proposed CCD schemes on a highly
skewed grid. Grid plays important role in the numerical simulation. While dealing with
complex geometries in real applications, many times researchers encounter skewed grids. This
particular example is chosen to evaluate effects of highly skewed grids on the performance
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Fig. 7 Initial condition for the propagation of a steep wavepacket following Eq. (22) is shown in a, while the
initial packet amplitude distribution along the line y = 1.50 is shown in b. Results obtained using the CCD
scheme A and CCD scheme B have been shown in c and d, respectively. One can observe q-waves in the
solution obtained using the central CCD scheme B
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of proposed numerical schemes. Figure 8a shows the chosen domain and a wavepacket.
The initial location of the wavepacket (x0, y0) is selected as the center of the domain. The
wavepacket is given as

u = e−128
[
(x−xo)2+(y−yo)2]

cos

[√
(x − xo)2 + (y − yo)2

]

. (24)

The packet is chosen to move along x-axis with a phase speed of cx = 1.0 with a time
step corresponding to the CFL number of Cr x = 0.1, where Cr x = cx �t

h . The domain has
been divided into 501 × 501 grid points. The grid is highly skewed with a included angle
between the x, y = constant lines is close to 11.31◦. Figure 8b, c show the computed
solution using the proposed CCD schemes. One again observes significant reduction of
q-waves for Scheme A as compared to Scheme B. The reason behind these results is clear
from the Fast Fourier transform (FFT) of the solution amplitude on a y = y0 line at t = 1.5
as shown in Fig. 8d. One observes that the high wavenumber components associated with
the spurious q-waves in Fig. 5 are highly attenuated due to added numerical diffusion. One
should also note that the amplitude of low wavenumber components for Scheme A is same as
Scheme B, as the added numerical diffusion is significant only near the Nyquist limit. Thus,
Scheme A attenuates high wavenumber components associated with q-waves and does not
bring unphysical modification in low wavenumber components.

Thus, we list here the following three important conclusions drawn from the study of 1D
and 2D wave equation problems.

1. For the space-time accurate numerical simulations, one should restrict the numerical
calculations in the neutrally stable zone only.

2. Although a numerical scheme gives a neutrally stable region across the whole wavenum-
ber range without providing correct dispersion relation at high wavenumbers, solution
amplitude still decays as the q-waves draw energy from the main signal itself and thus
attenuate the original signal.

3. The q-waves are spurious waves which give rise to unphysical events or result in numerical
instability [30]. In order to get rid of these spurious waves one needs to use additional
low-pass filter [30] or one can use a upwinding scheme like scheme A, which has the
required numerical diffusion at high wavenumbers.

4 Discrete Vortex in a Uniform Flow

The presence of spurious waves is not only seen in the numerical solution of the model wave
problems but also observed in the solution of Navier–Stokes equation. Here, we consider a
problem regarding the convection of a discrete shielded vortex in a uniform flow. We have
solved the Navier–Stokes equations using the proposed central and upwind CCD schemes.
We have used a domain of size −1 ≤ (x, y) ≤ 1, with 512 equi-spaced points in the respective
directions. As an initial condition, we have kept a discrete shielded vortex [32] close to the
origin in a uniform flow. The schematic of this problem is shown in Fig. 9a. The flow domain
is defined by a square region ABCD with an initial discrete vortex near the origin. As shown
in this figure, flow enters the domain from the left boundary AB. One can prescribe a discrete
shielded vortex as in [32]

ω = K (1 − β r2) e−β r2
(25)
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Here, r is a distance between any point in the domain and the center of the vortex and is used
to specify the initial vorticity distribution in the domain. Maximum amplitude at the center
of the vortex is fixed by the parameter K which is chosen as 500 for the present simulations.

We have obtained solution of the Navier–Stokes equations following the formulation
and methodology of [19], in the streamfunction—vorticity formulation. These equations in
(x, y)-plane can be written in the transformed (ξ,η)-plane as

∂

∂ ξ

[
h22

h11

∂ ψ

∂ ξ

]

+ ∂

∂ η

[
h11

h22

∂ ψ

∂ η

]

= −h11h22 ω (26)

h11h22
∂ ω

∂t
+ h22u

∂ ω

∂ ξ
+ h11v

∂ ω

∂ η
= 1

Re

[
∂

∂ ξ

(
h22

h11

∂ ω

∂ ξ

)

+ ∂

∂ η

(
h11

h22

∂ ω

∂ η

)]

(27)

where the parameters h11 =
√

(x2
ξ + y2

ξ ) and h22 =
√

(x2
η + y2

η) are grid scale factors. As

shown in Fig. 9a, we have prescribed a uniform flow at the inflow boundary AB. To update
streamfunction and vorticity values at the rest of the boundaries BC, CD and D A, a convective
outflow boundary condition [30] is applied on the normal component of the velocity vector.
For the spatial discretization of convective and diffusion terms in Eq. (27), we have used
either the scheme A or the scheme B. Dissipation terms in Eq. (26) are discretized using
C D2 scheme while we have used RK4 time integration method for temporal discretization.
Equations (26) and (27) are in non-dimensionalized form with the free-stream velocity U∞
as a reference velocity scale and 1/K as the time scale. Thus the Reynolds number is defined

as Re = U 2∞
νK . The present simulations are performed for Re = 105 with a time step of

�t = 0.0001.
We have chosen β = 30,000 and the initial vorticity distribution along the vortex center

line (y = 0.0019) has been shown in Fig. 9b. Navier–Stokes solutions using the scheme A at
different instants are shown in Fig. 9c while the results obtained using the scheme B are shown
in Fig. 9d at the same instants. These frames show the zoomed view of the solution. As the
flow direction is from left to right, vortex convects to the right direction along with the flow in
subsequent time frames. We have marked the maximum and minimum values of the vorticity
in the respective frames. Here, we have purposely chosen the higher value of β = 30,000
which gives rise to steep variation of the vorticity gradient in order to show the presence
of q-waves. In the right column, computations performed with the scheme B show the left
running q-waves while such spurious waves are not present in the left column corresponding
to the results obtained using the scheme A. Thus the use of the scheme A is beneficial, as its
solution does not show spurious q-waves, even for the solution of Navier–Stokes equations.

5 Flow Inside a Lid-Driven Cavity

Two-dimensional lid-driven cavity problem is a well known benchmark problem and has
been the subject of many studies [1,21,31,33–36]. In this problem, fluid motion inside a
square cavity is considered when the side and bottom walls are kept stationary, while the
top surface moves with a uniform velocity. This problem has well defined domain as well as
boundary conditions. We have first calibrated our results obtained from the schemes A and
B by comparing with the results in the literature [1,21,31,33–35]. Results for a steady state
solution observed at Re = 1,000 have been compared with the previous studies while the
efficiency of scheme A has been shown from its de-aliasing nature observed for an unsteady
flow at Re = 104. We have used a grid with 301 equi-spaced points in both directions and
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Fig. 9 a Schematic of the propagation of a steep discrete vortex in a uniform flow following Eqs. (26) and
(27); b vorticity distribution along the centerline y = 0.0019 of the domain; numerical simulation results
using the CCD scheme A and CCD scheme B have been shown in c and d, respectively. One can observe
q-waves in the solution obtained using the central CCD scheme B
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the calculations are performed with a time step of 0.001. We have used the discretization
methodology of Navier–Stokes equations as discussed for the problem of the discrete vortex
in uniform flow in the last section.

In Fig. 10, we have compared the streamfunction contours for Re = 1,000 obtained using
the proposed CCD schemes with results in [33]. The contours correspond to the steady state
condition which is defined as the solution corresponding to the condition of ( ∂ ω

∂t )max < 10−9.
For this Reynolds number, Ghia et al. [33] identified a central rotating eddy as a primary
eddy P . Additionally, there are two eddies at the left and right bottom corners of the cavity
which are identified as the corner eddies BL and B R. From Fig. 10, one can observe a good
qualitative match between the results computed using the proposed CCD schemes and the
results provided in [33]. The predicted region of the left and right corner vortices in the
present computations is same as in [33] and Fig. 10 gives us a good qualitative match with
previously published result.

However, a quantitative match is also essential and we have given the maximum and min-
imum values of stream function for Re = 1,000 obtained by different researchers in Table 1.
The values of the maximum and minimum streamfunctions for the present computations
are in a close match with the results of Bruneau and Saad [35] obtained on the grid of size
(1,024 × 1,024) and the highly accurate results of Botella and Peyret [34] obtained using the
Chebyshev collocation method. This highlights the efficiency of the proposed schemes for
solving this flow problem. Comparison of the predicted eddy centers of the primary eddy P
and the corner eddies BL and BR along with the vorticity values at the center of eddies is
shown in Table 2 for Re = 1,000. Once again, one observes a close match between the com-
puted results and the results available in the literature. Further, we have shown the variation
of the velocity component u in the direction of lid motion and the component v perpendicular
to the direction of lid motion at the geometric center of the lid driven cavity in Fig. 11. The
present computational results obtained using the CCD schemes A and B are in close match
with the results in [33].

We have further compared the results for lid driven cavity flow in Fig. 12 which are obtained
using the proposed CCD schemes for Re = 10,000. Unlike the steady flow field results shown
for Re = 1,000, numerical solution of lid driven cavity flow for Re = 10,000 has unsteady
nature as shown in [22]. Presence of a weak triangular vortex structure was reported at the
center of the cavity for this Reynolds number case [22]. Existence of this triangular vortical
structure was attributed to the use of high accuracy numerical schemes which control level of
background numerical disturbances along with the numerical error associated with dissipation
and dispersion. Present calculations have captured similar triangular vortex which has also
transient nature. In [22], three primary vortices gyrating around the central triangular vortex P
were identified as satellites (S1, S2, S3). Additionally, secondary vortices (SS1, SS2, SS3)

along with the three sets of corner vortices (C1, C2, C3) were observed. In Fig. 12, we
have marked similar vortical structures corresponding to the results obtained using proposed
CCD schemes. Due to the higher resolving ability of the present schemes, triangular vortical
structure at the center of the cavity along with the primary and secondary satellite structures
have been resolved accurately.

In [22], the computed lid driven cavity results for this Reynolds number were analyzed
from the view point of aliasing error. It was found that, the overshoot of the second derivative
discretization effectiveness for the CCD scheme of [20] near the high wavenumber region
helps in de-aliasing the numerical solution. However, it was also found that when the same
CCD scheme was used to solve the problem of receptivity in boundary layer, aliasing problem
becomes serious outside the shear layer. As a remedy to this problem, modification of the
convection terms using the upwinding concept was suggested in [22].
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Fig. 10 Comparison of the predicted streamfunction contours for the lid driven cavity flow at Re = 1,000
using the scheme A and the scheme B with the results of Ghia et al. [33]
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Table 1 Maximum and minimum values of streamfunctions for Re = 1,000

S. No Methods and grids ψmax ψmin

1 CCD scheme A (301 × 301) 0.118692 −1.76008 × 10−3

2 CCD scheme B (301 × 301) 0.11869 −1.76 × 10−3

3 Botella and Peyret [34] (N=160) 0.1189366 −1.729717 × 10−3

4 Bruneau and Saad [35] (1,024 × 1,024) 0.11892 −1.7292 × 10−3

5 Ghia et al. [33] (129 × 129) 0.118735 −1.74562 × 10−3

6 Sengupta et al. [21] (257 × 257) 0.118908 −1.72577 × 10−3

Table 2 Comparison of predicted eddy centers (primary eddy P, corner eddies BL and BR) and vorticity
values at the center of eddies for Re = 1,000

Eddy type Methods and grids Center of the eddy ω

Primary eddy (P) CCD scheme A (301 × 301) 0.5302, 0.5660 2.06614

CCD scheme B (301 × 301) 0.5303, 0.5659 2.0661

Botella and Peyret [34] (N=160) 0.5308, 0.5652 2.067753

Sheu and Chiu [31] (129 × 129) 0.5311, 0.5637 −
Ghia et al. [33] (129 × 129) 0.5313, 0.5625 2.04968

Corner eddy (BL) CCD scheme A (301 × 301) 0.0835, 0.0773 −0.346663

CCD scheme B (301 × 301) 0.0834, 0.0773 −0.345295

Botella and Peyret [34] (N=160) 0.0833, 0.0781 −0.3522861

Sheu and Chiu [31] (129 × 129) 0.0850, 0.0776 −
Ghia et al. [33] (129 × 129) 0.0859, 0.0781 −0.36175

Corner eddy (BR) CCD scheme A (301 × 301) 0.8633, 0.1131 −1.1195

CCD scheme B (301 × 301) 0.8634, 0.1131 −1.1193

Botella and Peyret [34] (N=160) 0.8640, 0.1118 −1.109789

Sheu and Chiu [31] (129 × 129) 0.8626, 0.1105 −
Ghia et al. [33] (129 × 129) 0.8594, 0.1094 −1.15465

Here, we have computed the same lid driven cavity problem for Re = 10,000 to check
whether the solutions of CCD schemes A and B display aliasing error. The top frames (a)
and (b) of Fig. 13 show the streamfunction contours at time = 250 for the schemes A
and B, respectively, while the corresponding zoomed views near the top right corner are
shown in Fig. 13c, d, respectively. The streamfunction contours for the scheme B show high
wavenumber oscillations near the top corner while the contours for the scheme A do not show
such oscillations. Solution for the scheme A is smooth as compared to the solution obtained
from the scheme B. This is due to the upwind nature of scheme A. Fast Fourier transform of
the vorticity data obtained on the second last horizontal line near the top surface for scheme
B shows rise in amplitude near the Nyquist limit. This attribute suggests the scheme B is very
much prone to aliasing error as pointed out in [22]. While the FFT for the results of scheme
A do not show the rise in tail amplitude. Thus the upwinding nature of scheme A helps in
de-aliasing the numerical solution as predicted in [11,22]. Hence the scheme A has both the
desirable features; DRP property as well as de-aliasing nature.
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Fig. 11 Comparison of u and v components of the velocity vector at the geometric center of the lid driven
cavity for the flow investigated at Re = 1,000

We have further applied the proposed optimized CCD Scheme A to solve the flow inside a
three-dimensional cavity. Schematic of the three-dimensional cavity flow problem has been
shown in Fig. 14. Geometry of the cavity is considered as a cube of unit dimension. For the sake
of computational efficiency, the incompressible Navier–Stokes solutions are carried out by
the divergence free condition (DFC) compensated method [31]. The viscous incompressible
flow equations which include the continuity and momentum equations have been cast in the

123



J Sci Comput

Numerical results of Scheme A
Re = 10000, t = 1000

Numerical results of Scheme B
Re = 10000, t = 800

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P

S1

S2

S3

SS3

SS1

SS2

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P

S3

S2

S1SS3

SS2

SS1

Numerical results of Sengupta et al.
Re = 10000, t = 300

0 0.25 0.5 0.75 1
0

0.2

0.1

0.3

0.4

0.6

0.5

0.7

0.8

1

0.9

Fig. 12 Comparison of the vorticity contours for the lid driven cavity flow at Re = 10,000 using the scheme
A and the scheme B with the results of Sengupta et al. [22]

primitive-variable pair (u, p) form and are solved corresponding to the Reynolds number Re
as

∇ · u = 0. (28)

∂u

∂t
+ (u · ∇) u = −∇ p + 1

Re
∇2u, (29)

In this flow inside a three dimensional lid driven cavity example, we have reported numer-
ical solutions for three different Reynolds number using two different (41 × 41 × 41) and
(61 × 61 × 61) grid sizes. We have purposefully kept the grid size coarser in order to
demonstrate the capabilities of the proposed numerical scheme. The velocity profiles of u
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Fig. 13 Comparison of streamfunction contours for the lid driven cavity flow for Re = 104 at the indicated
instant shown for the scheme A and the scheme B in a and b, respectively, while c and d show the zoomed
view of a and b, respectively. One can observe the presence of high wavenumber oscillations in the solution
obtained using the scheme B near the top right corner. FFT of the vorticity data along the line y = 0.99666667
is shown for the schemes A and B in e and f, respectively, at the indicated instants. Scheme B results show
rise in the tail amplitude and are more prone to the aliasing error
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Fig. 14 Geometry of lid-driven flow in a cubic cavity

component along the vertical centerline and w component along the horizontal centerline of
the plane y = 0.5 are plotted in Fig. 15 for Re = 100, 400 and 1,000, respectively. It can be
seen that the velocity profiles agree very well with the results in Lo et al. [41]. In addition,
two-dimensional planar projections of the velocity vector field at Re = 100, 400 and 1,000
on the plane is shown in Fig. 16. It can be observed from the stream function in the plane of
y = 0.5 that the axis of the primary vortex starts in the upper right half region, then gradually
moves towards the cube center as the Reynolds number increases. One can also clearly see
from Fig. 16 that the predicted stream function contours on mid-planes at y = 0.5 are similar
to those in [42].

6 Simulation of Decaying Two-Dimensional Turbulence in a Square Container

We have further obtained solution of the Navier–Stokes equations in streamfunction-vorticity
formulation as given by Eqs. (26) and (27) using the proposed CCD Scheme A to solve a 2D
decaying turbulence problem. We have considered a solid square container with a geometry
(−1 ≤ x, y ≤ 1) containing fluid. The domain has been divided into 1,024 equi-spaced
points in both the directions. For the present computation a time step of 5 × 10−4 has been
used. As an initial condition, 16 nearly equal sized Gaussian vortices with a dimensionless
radius of 0.10 are randomly located close to central region of the domain, away from the
solid walls as shown in the top left frame of Fig. 17. Positive circulation has been assigned to
the half of the vortices while for the remaining vortices have been given negative circulation.
Prescription of these vortices induces velocity field through out the domain. In order to ensure
a no slip condition at the domain boundaries for the prescribed initial condition, we have
used smoothing function on vorticity distribution as used in [38]. This smoothing function
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Fig. 15 Velocity profile for Re = 100, 400 and 1,000 on vertical and horizontal centerlines at y = 0.5: a
and b Re =100, c, d Re=400, e, f Re=1,000

forces no-slip condition at the walls of the solid container. Initially, magnitude of amplitude
of individual vortices is kept close to 150. With this initial condition and chosen domain, we
have solved the flow field corresponding to a Reynolds number of Re = 2,000. Reynolds
number is based on the characteristic velocity scale U which is a RMS velocity of the initial
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Fig. 16 Stream function on mid-planes at y = 0.5: a Re=100, b Re=100 [42], c Re=400, d Re=400 [42],
e Re=1,000, f Re=1,000 [42]
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Fig. 17 Vorticity contour plots at the indicated instants for the 2D decaying turbulence problem
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Fig. 18 Variation of 1D energy spectrum at the indicated instants for the 2D decaying turbulence problem

flow field and half width of the container as a characteristic length scale. High resolution
numerical simulations of 2D decaying turbulence are previously reported in [37,38,40]. We
have analyzed our numerical results with the flow development stages given in these previous
works.
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Results in [37] suggested that there are two specific aspects of the 2D decaying turbulence
flow dynamics. The first aspect is related to the formation of small scale structures in the
form of vorticity gradient sheets and second characteristic aspect is related to the emergence
of coherent vorticity structures. Three important stages of development of 2D decaying
turbulence were shown in [37]. In the initial stage, rapid self organization is observed in
which similar-sign vortices merge with each other and form a medium sized dipoles. This
is also accompanied by steepening vorticity gradients due to strong interaction between
the individual vortices and the formation of boundary layer on the container walls. Intense
interaction between the vortices close to wall and the boundary layer either causes ejection of
thin vorticity filaments in the interior domain or results in formation of vorticity blob. These
newly emerged secondary vortex structures form the dipolar structure with the primary vortex
which is responsible for its creation. In the second stage, there is a strong interaction between
vortices and wall boundary layer and this stage shows formation of the eddies whose sizes
are comparable to that of the size of container. In the third stage, decaying nature of the flow
causes formation of the large monopolar structure close to the center of the domain.

We have shown different stages of flow evolution in Fig. 17. One can observe formation of
boundary layer at the early time t = 2 frame on the sides of the container. As flow evolves, like
sign vortices merge with each other and form medium sized dipoles as shown in the frames
t = 5 and t = 10. Ejection of thin vorticity strips and vorticity blobs from the boundary layer
are visible at t = 10. At t = 50, eddies with size comparable to container size are formed. We
have further obtained one dimensional energy spectrum by considering velocity distribution
on the line y = −0.22 as shown in Fig. 18. At different instants, figure shows k−3 spectrum
which is an indication of 2D turbulence. Thus the developed high accuracy schemes are very
useful in the computations of fluid flow involving large bandwidth of spatio-temporal scales.

7 Summary and Conclusions

In this manuscript, we have proposed two new CCD schemes to obtain better numerical
properties as compared to the CCD schemes in [1,20]. The first scheme A has an upwind
stencil which is derived to get better numerical properties as compared to the upwind CCD
scheme in [1]. The second scheme B has a central stencil and is derived to get better numerical
properties as compared to the central CCD scheme in [20]. This scheme has slightly improved
resolution as compared to the CCD scheme in [20] as shown in Fig. 1a. It has neutrally
stable region along the complete wavenumber range for small CFL values but it also has a
significant q-wave region as shown in Figs. 4d and 5d. When the steep gradients are present
in the solution, the computations performed with scheme B show q-waves as displayed in
Figs. 6d, 7d and 9d. For a lid driven cavity flow at Re = 104, computations using the CCD
scheme B show presence of higher wavenumber oscillations near the top right corner and
these calculations are susceptible to the aliasing error as pointed out in Fig. 13.

However, the proposed scheme A has the highest spectral resolution as compared to all
the CCD methods. Additionally, it has an added numerical diffusion which is restricted
to only high wavenumber region. As proposed in [11,27,28], one can use such upwind
numerical schemes to control aliasing error present for high wavenumber components and
perform large eddy simulations. The proposed scheme A is very much suitable for large
eddy simulation calculations from this point of view. This scheme has higher neutrally stable
region as compared to the upwind CCD scheme of [1] and has the best DRP properties,
as shown in Figs. 4c and 5c, respectively. Additionally, this scheme has the least q-wave
region corresponding to the high wavenumber region which is highly attenuated with an
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added numerical diffusion. This also helps to avoid use of an extra filtering process in order
to remove q-waves from the solution suggested in [30]. Computations with the scheme A do
not show dominant q-waves as observed from Figs. 6c, 7c and 9c. Additionally, the upwind
nature of scheme A helps to control aliasing error as seen from the lid driven cavity results
for Re = 104 in Fig. 13. Thus, use of the upwind CCD scheme A is very beneficial for
obtaining a highly space-time accurate solution as observed from the results for 2D decaying
turbulence problem in Figs. 17 and 18.
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Appendix

In this section, we have provided the steps while developing an upwind combined compact

difference scheme. The first and the second derivative terms ( ∂u
∂x and ∂2u

∂x2 ) are approximated
as

a1
∂u

∂x
|i−1+ ∂u

∂x
|i +a3

∂u

∂x
|i+1 = 1

h
(c1ui−2+c2ui−1+c3ui )

− h

(

b1
∂2u

∂x2 |i−1+b2
∂2u

∂x2 |i +b3
∂2u

∂x2 |i+1

)

, (30)

−1

8

∂2u

∂x2 |i−1+ ∂2u

∂x2 |i − 1

8

∂2u

∂x2 |i+1 = 3

h2 (ui−1−2ui +ui+1)− 9

8h

(

−∂u

∂x
|i−1+ ∂u

∂x
|i+1

)

.

(31)

Here, we have used a central stencil to approximate the second-order derivative term.
Taylor series expansion has been used to obtain the coefficients shown in (31), which
results in a sixth-order accurate stencil based on the leading truncation error term. Coef-
ficients in Eq. (30) are obtained by applying the Taylor series expansion for the terms

ui−1, ui+1,
∂u
∂x |i−1,

∂u
∂x |i , ∂u

∂x |i+1,
∂2u
∂x2 |i−1,

∂2u
∂x2 |i and ∂2u

∂x2 |i+1 with respect to ui .
In Eq. (30), there are in total eight unknown coefficients. Elimination of the leading

truncation error terms gives the following set of seven algebraic equations.

c1 + c2 + c3 = 0, (32)

− 2c1 − c2 − a1 − a3 = 1, (33)

4c1 + c2 + 2a1 − 2a3 − 2b1 − 2b2 − 2b3 = 0, (34)

8c1 + c2 + 3a1 + 3a3 − 6b1 + 6b3 = 0, (35)

16c1 + c2 + 4a1 − 4a3 − 12b1 − 12b3 = 0, (36)

32c1 + c2 + 5a1 + 5a3 − 20b1 + 20b3 = 0, (37)

64c1 + c2 + 6a1 − 6a3 − 30b1 − 30b3 = 0. (38)

Derivation of one more algebraic equation is needed to determine all the eight coefficients in
Eq. (30) uniquely for ∂u

∂x |i . The first-order derivative term in Eq. (30) can be better approxi-
mated if the dispersive nature of the term ∂u

∂x is well retained [1].
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The expressions of the actual wavenumber for Eqs. (30) and (31) can be derived as

iαh (a1e−iαh + 1 + a3eiαh) �
(

c1e−2iαh + c2e−iαh + c3

)

− (iαh)2
(

b1e−iαh + b2 + b3eiαh
)

, (39)

(iαh)2
(

−1

8
e−iαh + 1 − 1

8
eiαh

)

� (3e−iαh − 6 + 3eiαh)

− iαh

(

−9

8
e−iαh + 9

8
eiαh

)

. (40)

While approximating the first-order derivative term, dispersion error is minimized if the
exact and the numerical wavenumbers are matched excellently over a complete wavenumber
range. This amounts to equating the effective wavenumbers α

′
and α

′′
to those shown in the

right-hand sides of Eqs. (41) and (42) [1]. Thus, we obtained following two equations

iα
′
h

(
a1e−iαh + 1 + a3eiαh

)
=

(
c1e−2iαh + c2e−iαh + c3

)

−
(

iα
′′
h
)2 (

b1e−iαh + b2 + b3eiαh
)

, (41)

(iα
′′
h)2

(

−1

8
e−iαh + 1 − 1

8
eiαh

)

= (3e−iαh − 6 + 3eiαh)

− iα
′
h

(

−9

8
e−iαh + 9

8
eiαh

)

. (42)

Equations (41) and (42) are solved to get the expression for α′h which has been used
subsequently to minimize the dispersion error. This expression for α′h, which is in general
complex with the real and imaginary parts of the numerical modified wavenumber α′h,
provides information regarding the dispersion error (phase error) and the dissipation error
(amplitude error), respectively. For getting better dispersive accuracy of α′, the value of αh
should be closer to �[α′h], where �[α′h] denotes the real part of α′h. Thus the error function
E(α) as defined below should be very small. It has been evaluated over the integration range
given below as

E(α) =
7π
8∫

0

[(
α h − �[α′ h])]2

d(αh). (43)

To make the error function defined in 0 ≤ αh ≤ 7π
8 to be positive and minimal, the

extreme condition ∂ E
∂c3

= 0 is enforced to minimize the numerical wavenumber error. This
constraint equation has been used together with previously derived seven algebraic equations
to obtain all the eight unknowns. The resulting eight introduced unknown coefficients can be
uniquely determined as

a1 = 0.888251792581, a3 = 0.049229651564, b1 = 0.150072398996,

b2 = −0.250712794122, b3 = −0.012416467490, c1 = 0.016661718438,

c2 = −1.970804881023 and c3 = 1.954143162584.

For u < 0, the proposed three-point stencil non-centered combined compact difference
scheme can be similarly derived below for the approximation of the derivative term ∂u

∂x
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0.049229651564
∂ φ

∂x
|i−1 + ∂ φ

∂x
|i + 0.888251792581

∂ φ

∂x
|i+1

+ h
(

0.012416467490
∂2 φ

∂x2 |i−1 + 0.250712794122
∂2 φ

∂x2 |i − 0.150072398996
∂2 φ

∂x2 |i+1

)

= 1

h

(−1.954143162584φi + 1.970804881023φi+1 − 0.016661718438φi+2
)
. (44)

One should pay a careful attention to the following important points. Significant improve-
ments in spectral resolution as shown in Fig. 1e and the DRP region shown in Fig. 5 are
possible using a small stencil because we have derived the scheme for first and second deriv-
atives in a coupled fashion. The expression for α

′
h is derived by considering Eqs. (41) and

(42) together. Figure 1f shows that efficiency in the evaluation of the second derivative is
very close to the exact value. Thus, while designing CCD schemes, use of one optimization
equation given by ∂ E

∂c3
= 0 is justified.
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