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This study aims to get some details of the chemotaxic phenomena in a domain containing an incompress-
ible viscous fluid by the proposed numerical method. We are also aimed to numerically revisit the
classical blow-up phenomenon regarding the initially prescribed cell density in an infinitely larger
domain. To get a computationally more accurate scheme for solving the Keller-Segel (KS) [1] equations
with/without coupling with the nonlinear hydrodynamic equations, a combined compact difference
scheme of fifth-order spatial accuracy is developed in a three-point grid stencil. Three different sets of
Keller-Segel equations, which are all amenable to exact solutions with/without coupling with the incom-
pressible Navier–Stokes (NS) equations, are solved to numerically verify the proposed combined compact
difference scheme and the incompressible flow solver. How the cell density and chemical concentration
are affected by flow convection and diffusion effects will be investigated by solving the coupled KS–NS
differential equations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Chemotaxis is a biological process observed quite often in vari-
ous chemical-containing environments, within which somatic
cells, bacteria, and many other single/ multiple organisms coexist
[8]. This cellular function appears also in life cycle of animals dur-
ing cancer metastasis. As chemical gradient is non-negligibly small,
bacteria may chemotax through the methyl-accepting chemotaxis
proteins (MCPs). These transmembrane receptors can bind either
with attractants or repellents through a complex protein interac-
tion. Signals released from these receptors can transmit into the
cytosol across the plasma membrane.

The direct consequence of chemotaxic event is the generation of
an overall movement or an orientation of the organism (or cell)
along the chemical concentration gradient [2]. This distinguished
cell movement has been known to occur along the direction
toward or away from the chemical stimulus. Positive chemotaxis
corresponds to cell movement toward a higher concentration of
the chemical in question. Conversely, negative chemotaxis has
association with cell movement along opposite direction. This con-
centration-driven movement is important for the survival of bacte-
ria [3]. While a bacterium senses a concentration gradient in its
living environment, it will move in correct direction. The nature
of bacteria moving toward an attractant, glucose for example,
and away from a repellent, phenol for example, plays an essential
role of determining whether its life will get better or become worse
on the contrary.

The rest of this paper is organized as follows. The Keller-Segel
(KS) equations, which are coupled with the incompressible hydro-
dynamic equations, are presented in Section 2. In Section 3, the
combined compact difference scheme (CCD) developed in a stencil
of three grid points is proposed to solve the equations cast in a
convection–diffusion-reaction form. Incompressible flow solver
developed for a viscous fluid is also briefly described in this sec-
tion. To verify the proposed high-order accurate combined com-
pact difference scheme and the divergence-free compensated
solution algorithm, three sets of equations containing the Keller-
Segel equations amenable to exact solutions are solved in Section
4. In Section 5, the numerically verified finite difference code is
applied to study first the blow-up phenomenon in KS equations
[4,5]. The physical details of chemotaxis in the investigated incom-
pressible fluid flow is then enlightened. Finally, we draw some
conclusions in Section 6.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.07.023&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.07.023
mailto:twhsheu@ntu.edu.tw
http://dx.doi.org/10.1016/j.compfluid.2014.07.023
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


Table 1
Coefficients shown in the working Eqs. (6)–(8).

Equations / a b c k f

(6) u0 u0 v 0 0 Sc �ScrP0 � cScn0 � @u0

@t

(7) n0 u0 v 0 0 1 ar � ½rðc0Þn0rc0 � � @n0
@t

(8) c0 u0 v 0 0 d �brðc0Þn0 � @c0
@t

Fig. 3. Illustration of the specified boundary conditions for u; v ;p;n and c.
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2. Mathematical model

In this study we aim to study the time evolving motile cell, bac-
terium for example, motion in a flow domain containing oxygen.
To model the chemotaxis-driven flow motion generated by oxy-
gen-sensitive bacteria, many mathematical biology models have
been developed in the literature since 1970. These model develop-
ments are related to many biological applications regarding the
proliferation of bacteria, tumor growth/angiogenesis/haptotaxis,
and immunology for the production of chemokines near infection
sites. The insemination of breeding concern for sea urchins is
another representative example. Depending on the biological
dx
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Fig. 1. The computed rates of convergence (roc) for n and c governed by the original K
roc ¼ 6:32325 for c.
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Fig. 2. The computed rates of convergence (roc) for n and c governed by the elliptic–para
(b) roc ¼ 5:66896 for c.
complexity, chemotaxis can exhibit nonlinear behavior due to
the indispensable kinetics in the transport equation for cell
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eller-Segel equations investigated in Section 4.1. (a) roc ¼ 6:15915 for n; and (b)
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bolic Keller-Segel equations investigated in Section 4.2. (a) roc ¼ 5:74771 for n; and



dx

L
2-

n
o

rm

0.05 0.1 0.15 0.2

10-6

10-5

10-4 (a)

dx

L
2-

n
o

rm

0.05 0.1 0.15 0.2

10-6

10-5

(b)

dx

L
2-

n
o

rm

0.05 0.1 0.15 0.2

10-4

10-3

10-2

(c)

dx

L
2-

n
o

rm

0.05 0.1 0.15 0.2

10-6

10-5

(d)

dx

L
2-

n
o

rm

0.05 0.1 0.15 0.2

10-6

10-5

(e)

Fig. 4. The computed rates of convergence (roc) for the coupled set of Navier–Stokes and Keller-Segel equations. (a) roc ¼ 4:16056 for u; (b) roc ¼ 3:67536 for v; (c)
roc ¼ 4:90904 for p; (d) roc ¼ 4:14300 for n; and (e) roc ¼ 4:21698 for c.
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density. Biological complexity can be also resulted from the func-
tional dependence of chemotaxis coefficient on the cell density
itself and on the chemical concentration.

In this study, the biological model is considered without taking
the logistic event into account. The resulting set of the equations
given below is adopted for governing the transport of bacterium
cell density (or concentration) n ½ML�3� and the time evolving con-
centration of oxygen c½ML�3�:

@n
@t
þ u � rn ¼ Dnr2n�r � J; ð1Þ

@c
@t
þ u � rc ¼ Dcr2c þ nf ðcÞ � cj: ð2Þ
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Fig. 5. Comparison of the predicted and referenced solutions along the line y ¼ 0 for the values of n computed at two different times and meshes. (a) t ¼ 5� 10�6; and (b)
t ¼ 2� 10�5.
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Fig. 7. The predicted profiles of n along the line x� y ¼ 0. (a) at t ¼ 0:05; and (b) at t ¼ 0:072.
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Fig. 6. (a) The predicted total mass difference E ¼
R R

n0dx dy�
R

nðx; y; tÞdx dy with respect to time; (b) the predicted maximum value ofrn along the line x ¼ 0 versus time.

Table 2
The blowup times predicted at different grid spacings Dx.

dx 0.02 0.01 0.005 0.004 0.0025

Total mass 6:614� 109 3:633� 107 3:100� 108 1:019� 108 5:867� 108

Blowup time 5:362� 10�5 5:034� 10�5 5:101� 10�5 5:179� 10�5 5:399� 10�5
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Fig. 9. The simulated distribution of n solutions along the line x� y ¼ 0 at t ¼ 0:02 and t ¼ 0:072. (a) three-dimensional view of the predicted value of n at t ¼ 0:02; and (b)
three-dimensional view of the predicted value of n at t ¼ 0:072; (c) the predicted distribution of nðx; tÞ solutions along the line x� y ¼ 0.

t

M

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

40

M( t = 0 )
M( t )

(a)

t

m
ax

( 
|∇

n
| )

0 0.02 0.04 0.06 0.08 0.1

104

105

(b)

Fig. 8. (a) The predicted total mass M ¼
R R

nðx; y; tÞdx; and (b) The predicted maximum value of rn along the line x� y ¼ 0 is plotted with respect to time.
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Fig. 12. The predicted diffusion flux vectors for the case investigated at Umax ¼ 0 in the upper right square 0 6 x; y 6 0:5 and 0:3 6 x; y 6 0:5. (a) the diffusion force vector
predicted at t ¼ 0:0128; and (b) the diffusion force vector predicted at t ¼ 0:072.

X

Y

0 0.2 0.4
0

0.2

0.4

200
(a)

X

Y

0.3 0.4 0.5
0.3

0.4

0.5

20000

(b)

Fig. 10. The predicted total flux vector for the case with Umax ¼ 0 in the upper right square 0 6 x; y 6 0:5 and 0:3 6 x; y 6 0:5. (a) total flux computed at t ¼ 0:0128; and (b)
total flux computed at t ¼ 0:072.
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Fig. 11. The predicted chemotaxic force vectors for the case with Umax ¼ 0 in the upper right square 0 6 x; y 6 0:5 and 0:3 6 x; y 6 0:5. (a) the chemotaxic force vector
predicted at t ¼ 0:0128; and (b) the chemotaxic force vector predicted at t ¼ 0:072.
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On the right hand side of Eq. (1), the vector J ½ML�2 T�1� denotes the
current generated by chemotaxis. This flux term accounts for the
chemotaxis-driven motion and its formation has relevance to
the spatially non-uniform distributed oxygen concentration c in
the following way

J ¼ vnrc: ð3Þ

The chemotactic coefficient vðcÞ ½M�1 L5 T�1� shown in Eq. (3)
decreases very often with the chemoattractant concentration c. It
is worthy to address here that the gradient term rc accounts for
the characteristic motion of bacteria moving along the direction
of chemical (oxygen in this study) concentration gradient. In sum-
mary, the time rate of the change of the bacterium density Dn

Dt

� @n
@t þ u � rn

� �
in a fluid flow is governed by the diffusion effect

r2n and the chemotaxic current J in the direction of oxygen gradi-
ent. Beside the diffusion and convection effects in the oxygen flow,
the fact that bacteria can consume oxygen must be taken into
account when modeling oxygen transport processes. The uptake
of oxygen by bacteria should be included in Eq. (2).

Provided that there is no flow motion, the biological Eqs. (1) and
(2) turn out to be the celebrated Patlak-Keller-Segel (PKS) equa-
tions. The Patlak-Keller-Segel parabolic model has been obtained
at the diffusion limit [7,8]. In other words, the propagation of cells
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Fig. 13. The predicted ratios of junj
jrnj and jnrcj

jrnj at t ¼ 0:016 for the case investigated at Umax ¼
(d) the dominant vector in F, which is the diffusion force vector.
in PKS model is controlled entirely by the diffusion process.
Existence and uniqueness of the finite volume solution for the par-
abolic PKS equations has been proven in [10]. Provided that the ini-
tial mass is smaller than the threshold value, convergent solution
to the PKS system was also revealed in the same article. The recent
research addresses the development of hyperbolic model for che-
motaxis [9,12]. This hyperbolic system of equations for chemosen-
sitive movement takes the population flux of cell into account and
respects the finite propagation speed of cells. This physically more
complex model has been solved numerically by the finite volume
method in [11].

To better understand the effect of chemotaxis in the original
PKS equations, Eq. (1) investigated under a velocity-free condition
can be rewritten as @n

@t þr � ðvnrcÞ ¼ r2n. By introducing the
vector field ðu�;v�Þ, defined as rc, the transport equation for n at
v ¼ 1, for example, can be rewritten to the following convection–
diffusion-reaction (CDR) equation

@n
@t
þ u�

@n
@x
þ v� @n

@y
� ðnxx þ nyyÞ þ ðcxx þ cyyÞ n ¼ 0: ð4Þ

Thanks to the above derived CDR equation obtained at v ¼ 1, chem-
ical concentration is known to have an effect on the time-evolving
cell density n not only by way of advection (or ðu�;v�Þ � rn) but also
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by virtue of reaction with the amount of r2c. Because of the con-
vection-like term shown in Eq. (4), one should apply a scheme of
upwinding type to model the time-evolving cell density n so as to
properly smooth-out or resolve the possible numerical convective
instabilities [6].

Due to the convective flux terms u � rn and u � rc included in
the current simulation of chemotaxic processes, the hydrodynamic
equations for an incompressible viscous fluid flow must be coupled
with the transport equations for the cell density n in (1) and the
chemical concentration c in (2). The gravitational force is modeled
by rUð� ð0;Vbnrgðq0 � qÞÞ. The resulting set of the elliptic–para-
bolic equations given below will be solved subject to the prob-
lem-dependent initial and boundary conditions

r � u0 ¼ 0; ð5Þ

@u0

@t0
þ u0 � ru0 ¼ Scr2u0 � Scrp0 � n0rU0; ð6Þ

@n0

@t0
þ u0 � rn0 ¼ r2n0 � ar � ½rðc0Þn0rc0�; ð7Þ

@c0

@t0
þ u0 � rc0 ¼ dr2c0 � brðc0Þn0: ð8Þ
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Fig. 14. The predicted ratios of junj
jrnj and jnrcj

jrnj at t ¼ 0:0528 for the case investigated at Umax

and (d) the dominant vector in F, which is the chemotaxic force vector.
The above dimensionless equations result from the normalization of
equations using the chosen characteristic length x0 ¼ x

L, time t0 ¼ Dn

L2 t,

velocity u0 ¼ L
Dn

u, pressure p0 ¼ L2

gDn
p, cell density n0 ¼ n

nr
, chemical

concentration c0 ¼ c
cair

, and gravitational force rU0 ¼

ð0; gVbnr gðq0�qÞL3

Dnq
Þ. Normalization of the four equations leads to

Sc ¼ g
Dnq

;a ¼ vcair
L ;b ¼ jnr L2

cair Dn
; c ¼ Vbnr gðq0�qÞL3

gDn
and d ¼ Dc

Dn
. In what fol-

lows, the superscript ’’ ’ ’’ shown in (5)–(8) is omitted for brevity.
Note that the transport equations for u0; n0, and c0can be recast into
a general form as /t þ a/x þ b/y þ c/ ¼ kr2/þ f . The coefficients
a; b; c; k and the source term f are tabulated in Table 1.

3. Numerical method

After approximating /t using the Euler time-stepping scheme
for the model equation /t þ a /x þ b /y þ c / ¼ k r2/þ f , which
represents the Eqs. (6)–(8) shown in the previous section, the
semi-discretized equation is derived as follows for /ð� /DtÞ,
where f ¼ fDt þ /n and c� ¼ c þ 1

Dt

a
@/
@x

����
n

þ b
@/
@y

����
n

� k
@2/
@x2

�����
n

þ @
2/
@y2

�����
n !
þ c�/

��nþ1 ¼ f
���nþ1

: ð9Þ
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In the above, the coefficients a and b are denoted as the constant
velocities along the respective x- and y-direction, k the constant dif-
fusion coefficient, and f the source term. The first-order and second-
order spatial derivative terms shown in Eq. (9) are both approxi-
mated in a mesh of constant grid spacing Dx ¼ Dy ¼ h.

The first-order derivative term @/
@x and the second-order deriva-

tive term @2/
@x2 in Eq. (9) at the same time nDt are approximated

below within the combined compact difference context in a
three-point stencil

a1
@/
@x
ji�1 þ

@/
@x
ji ¼

1
h
ðc1/i�1 þ c2/i þ c3/iþ1Þ

� h b1
@2/
@x2 ji�1 þ b2

@2/
@x2 ji þ b3

@2/
@x2 jiþ1

 !
; ð10Þ

b1
@2/
@x2 ji�1 þ

@2/
@x2 ji þ b3

@2/
@x2 jiþ1 ¼

1

h2 ðc1/i�1 þ c2/i þ c3/iþ1Þ

� 1
h

a1
@/
@x
ji�1 þ a2

@/
@x
ji þ a3

@/
@x
jiþ1

� �
: ð11Þ

The other two terms @/
@y and @2/

@y2 can be similarly expressed along the

y-direction. Note that the combined compact representations of @/
@x ji

and @2/
@x2 ji are coupled with each other through the terms @/

@x ji�1, @/
@x ji,
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Fig. 15. The predicted ratios of junj
jrnj and jnrcj

jrnj at t ¼ 0:0224 for the case investigated at Umax

and (d) the dominant force vector in F, which is the convection force vector.
@/
@x jiþ1, @

2/
@x2 ji�1, @

2/
@x2 ji, @

2/
@x2 jiþ1, /i�1, /i and /iþ1. For ease of description of

the present numerical method, only the case involving positive con-
vective coefficients is derived below in detail.

The second-order derivative terms are normally approximated
using the centered schemes. As a result, for getting a better spatial
accuracy the weighting coefficients shown in Eq. (11) are deter-
mined solely from the modified equations analysis. Derivation of

a1, a2, a3, b1; b3, c1, c2, and c3 in (10) and (11) is started with per-

forming the Taylor series expansions for /i�1;
@/
@x ji�1 and @2/

@x2 ji�1 with

respect to /i;
@/
@x ji and @2/

@x2 ji. The leading error terms derived in the
modified equations are then eliminated. Elimination of the eight
leading error terms shown in the modified equation enables us
to get the eight algebraic equations for Eq. (11). By solving these
equations, the coefficients shown in Eq. (11) are derived as

a1 ¼ � 9
8, a2 ¼ 0, a3 ¼ 9

8, b1 ¼ � 1
8, b3 ¼ � 1

8, c1 ¼ 3, c2 ¼ �6, c3 ¼ 3.

The resulting derived modified equation for @2/
@x2 , which is

@2/
@x2 ¼ @2/

@x2 jexact þ h6

20160
@8/
@x8 þ h8

604800
@10/
@x10 þ Oðh12Þ þ � � �, clearly shows that

the proposed scheme for @2/
@x2 has the spatial accuracy of order six.

The coefficients a1, b1 	 b3, c1 	 c3 are partly determined as

before by expanding the terms /i�1;
@/
@x ji�1 and @2/

@x2 ji�1 in Taylor ser-

ies with respect to /i;
@/
@x ji and @2/

@x2 ji, respectively. By eliminating the
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leading error terms derived in the modified equation, the following
set of equations for Eq. (10) can be derived

c1 þ c2 þ c3 ¼ 0; ð12Þ
� a1 � c1 þ c3 ¼ 1; ð13Þ

� a1 þ b1 þ b2 þ b3 �
c1

2
� c3

2
¼ 0; ð14Þ

a1

2
� b1 þ b3 þ

c1

6
� c3

6
¼ 0; ð15Þ

� a1

6
þ b1

2
þ b3

2
� c1

24
� c3

24
¼ 0; ð16Þ

a1

24
� b1

6
þ b3

6
þ c1

120
� c3

120
¼ 0: ð17Þ

One more algebraic equation is needed for us to uniquely determine
all the seven introduced coefficients shown in Eq. (10).

For accurately approximating the first-order derivative term
from Eq. (10), the dispersive nature embedded in @/

@x must be well
retained. To preserve the dispersion nature, the Fourier transform
and its inverse for / given below are applied

~/ðaÞ ¼ 1
2p

Z þ1

�1
/ðxÞ expð�iaxÞ dx; ð18Þ

/ðxÞ ¼
Z þ1

�1
~/ðaÞ expðiaxÞ da: ð19Þ
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Fig. 16. The predicted ratios of junj
jrnj and jnrcj

jrnj at t ¼ 0:032 for the case investigated at Umax

and (d) the dominant vector in F, which is the chemotaxic force vector.
The notation i shown above is equal to
ffiffiffiffiffiffiffi
�1
p

. A dispersively accurate
scheme for the first-order derivative term can be developed by
performing Fourier transform on each term shown in Eqs. (10)
and (11). The expressions of the exact wavenumber a for these
two equations can be therefore derived. The effective wavenumbers
a0 and a00 are then equated to the exact wavenumber to get the fol-
lowing equations for a0 and a00

ia0hða1 expð�iahÞ þ 1Þ ¼ c1 expð�iahÞ þ c2 þ c3 expðiahÞ

� ðia00hÞ2ðb1 expð�iahÞ þ b2 þ b3

� expðiahÞÞ; ð20Þ
ia0h �8
9

expð�iahÞ þ 8
9

expðiahÞ
� �
¼ 3 expð�iahÞ � 6þ 3 expðiahÞ

� ðia00hÞ2 �1
8

expð�iahÞ þ 1� 1
8

expðiahÞ
� �

: ð21Þ

By solving the above two equations, the expressions for a0 and a00

can be derived [13]. To get a better dispersive accuracy for a0, it is
demanded that ah 
 R½a0h�, where R½a0h� denotes the real part of
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jrnj; (c) contours of the ratio jnrcj
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a0h. The value of EðaÞ defined below should be very small and
positive

EðaÞ ¼
Z p

2

�p
2

W ah�R½a0h�ð Þ½ �2dðahÞ

¼
Z p

2

�p
2

W c�R½c0�ð Þ½ �2dc; ð22Þ

where c ¼ ah and c0 ¼ a0h. To integrate the above equation exactly,
one trivial way can be chosen is to set W as the denominator of the
above integral.

The function E defined in Eq. (22) has a positive and minimum
value provided that the following extreme condition is enforced

@E
@c3
¼ 0: ð23Þ

The equation implemented to preserve dispersion relation is used
together with other six previously derived algebraic equations
through the modified equation analysis to get a smaller dissipation
error and render a better dispersion accuracy. The resulting seven
introduced unknowns can be therefore uniquely determined as
a1 ¼ 0:875; b1 ¼ 0:12512823; b2 ¼ �0:24871766; b3 ¼ 0:00012823
415; c1 ¼ �1:93596119; c2 ¼ 1:99692238; c3 ¼ �0:06096119. Given
the above coefficients, the developed upwinding scheme for @/

@x can
be easily shown to have the spatial accuracy of order five from
the modified equation derived as
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Fig. 17. The predicted ratios of junj
jrnj and jnrcj

jrnj at t ¼ 0:0064 for the case investigated at Umax

and (d) the dominant vector in F, which is the convection force vector.
@/
@x
¼ @/
@x
jexact � 0:0007009h5 @

6/
@x6 þ 0:0001984h6 @

7/
@x7

� 0:0000499h7 @
8/
@x8 þ Oðh8Þ þ � � �

In this paper, one-sided difference scheme for the problems subject
to Neumann-type boundary conditions in Sections 4 and 5 is
employed. One can refer to our previous paper [14] for details about
the derivation of compact scheme of fourth-order accuracy for Neu-
mann-type boundary condition.

Calculation of the hydrodynamic equations begins with solving
the following two equations in the projection step

unþ1 � unþ1
2

Dt
¼ �rpnþ1; ð24Þ

r � unþ1 ¼ 0: ð25Þ

Substitution of Eq. (24) into the semi-discretized momentum equa-
tion leads to

unþ1 � un

Dt
þ ðunþ1

2 � rÞunþ1
2 � 1

Re
r2unþ1

2 þrpnþ1 ¼ M1 þM2: ð26Þ

In the above, M1 ¼ ½ðunþ1
2 � rÞrpnþ1 þ ðrpnþ1 � rÞunþ1

2 � 1
Rer

2

ðrpnþ1Þ�Dt and M2 ¼ �½ðrpnþ1 � rÞrpnþ1�Dt2. Let pnþ1 ¼ p� þ p0, the
pressure-gradient step is decomposed into the solution step

containing the equation u��unþ1
2

Dt ¼ �rp� and the other solution step
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containing the equation unþ1�u�

Dt ¼ �rp0, where p� is an intermediate
pressure. Then, Eq. (26) can be reformulated as

unþ1 � un

Dt
þ ðu� � rÞu� � 1

Re
r2u� þ rp� ¼ �rp0 þM3 þM4; ð27Þ

where M3 ¼ ½ðu� � rÞrp0 þ ðrp0 � rÞu��Dt � 1
Rerðr � u�Þ and

M4 ¼ �½ðrp0 � rÞrp0�Dt2. In order to reduce the computational cost,
the algorithm proposed in [15] is employed.

4. Verification studies

4.1. Verification of the classical Keller-Segel equations

The classical Keller-Segel equations given below are solved for
verifying the proposed numerical scheme

nt ¼ Dnr2n�r � ðvnrcÞ; ð28Þ
ct ¼ Dcr2c þ nf ðcÞ � cj: ð29Þ

In the above, Dn and Dc represent the diffusion constants with the
units ½L2T � 1�. The term f ðcÞ in Eq. (29) with the unit ½T�1� denotes
the cut-off function. For oxygen, the sign of the cut-off function is
negative, while for carbon dioxide the sign is positive. The value
of the chemical decay rate j with the unit ½T�1� depends on the
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Fig. 18. The predicted ratios junj
jrnj and jnrcj

jrnj at t ¼ 0:016. The initial maximum velocity is z
predicted ratio jnrcj

jrnj ; and (d) the dominant vector in F, which is the convection force vec
chemical characteristics. The variable n, which represents the cell
density or the bacterium concentration, has the unit ½ML�3�. As for
the variable c, which denotes the concentration of the chemical, it
has the unit ½ML�3�.

The above set of equations is solved at Dn ¼ Dc ¼ v ¼ f ¼ k ¼ 1
in a square 0 6 x; y � 1. The KS equations are therefore simplified
to the following two equations
nt ¼ r2n�r � ðnrcÞ; ð30Þ
ct ¼ r2c þ n� c: ð31Þ
Subject to the Neumann type boundary conditions @nexact
@n ¼ 0 and

@cexact
@n ¼ 0, where nexact ¼ ep2tðcos pxþ cospyÞ and cexact ¼ ep2t

ðcos pxþ cospyÞ, solutions will be sought at Dt ¼ 0:01ðDxÞ2 in five
continuously refined meshes. Note that n represents the unit out-
ward normal vector along the boundary. All the grid spacings are
chosen to be much greater than Dt, thereby enabling us to get the
spatial rate of convergence plotted in Fig. 1. The proposed combined
compact difference scheme is verified because of these computed L2
error norms.
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4.2. Verification of the elliptic–parabolic Keller-Segel equations with
the inclusion of convective terms

We then perform the second verification study by solving the
following set of Keller-Segel equations which contains two convec-
tion terms u � rn and u � rc, respectively

nt þ u � rn ¼ Dnr2n�r � ðvnrcÞ; ð32Þ
ct þ u � rc ¼ Dcr2c þ nf ðcÞ � cj: ð33Þ

As before, the Keller-Segel equations containing the convection, dif-
fusion, and reaction terms are solved at Dn ¼ Dc ¼ v ¼ f ¼ j ¼ 1 in
the prescribed divergence-free velocity flowfield (u ¼ �p cos
ðpxÞ sinðpyÞe�2p2t; v ¼ p sinðpxÞ cosðpyÞe�2p2t).

The results are sough subject to the Neumann conditions
@nexact
@n ¼ 0 and @cexact

@n ¼ 0. The exact values of nexact ¼ cosðpxÞ cos

ðpyÞe�2p2t and cexact ¼ cosðpxÞ cosðpyÞe�2p2t are prescribed along
the boundary of a square 0 6 x; y 6 1 with the unit outward nor-
mal vector n. Given the values Dt ¼ 0:01Dx2 and Dx ¼ Dy ¼
0:2; 0:1;0:0625;0:05, the computed L2 error norms and their corre-
sponding spatial rates of convergence are plotted in Fig. 2. One can
clearly see that the proposed scheme can accurately approximate
the Eqs. (32) and (33) containing the convective terms.
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Fig. 19. The predicted ratios junj
jrnj and jnrcj

jrnj at t ¼ 0:068. The initial maximum velocity is z
predicted ratio jnrcj

jrnj ; and (d) the dominant vector in F, which is the chemotaxic force ve
4.3. Verification of the coupled NS–KS equations

After verifying the proposed scheme for solving the Keller-Segel
equations with/without inclusion of convective terms, the follow-
ing differential set accounting for the coupled Keller-Segel and
incompressible viscous hydrodynamic equations is solved as well

r � u ¼ 0; ð34Þ

@u
@t
þ u � ru ¼ lr2u�rp; ð35Þ

nt þ u � rn ¼ Dnr2n�r � ðvnrcÞ; ð36Þ

ct þ u � rc ¼ Dcr2c þ nf ðcÞ � cj: ð37Þ

In this verification study, the physical properties are set as before at
the constant values of Dn ¼ Dc ¼ v ¼ f ¼ j ¼ 1 in 0 6 x; y � 1. For
the boundary conditions schematic as shown in Fig. 3 for u; v;n
and c, Eqs. (34)–(37) are solved at Dt ¼ 0:01Dx2 in the continuously
refined four meshes with Dx ¼ Dy ¼ 0:2; 0:1;0:0625;0:05. The pre-
dicted errors between the simulated and exact solutions, which
are uexact ¼ � cosðpxÞ sinðpyÞe�2p2t; vexact ¼ sinðpxÞ cosðpyÞe�2p2t;

p ¼ c1 � 0:25ðcosð2pxÞþ cosð2pyÞÞe�4p2t ;nexact ¼ cosðpxÞ cosðpyÞ
e�2p2t and cexact ¼ cosðpxÞ cosðpyÞe�2p2t , are cast in their
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L2 � norms. From the predicted error norms, the spatial rates of con-
vergence are plotted in Fig. 4. As before, good agreement between
the exact and simulated results and states of convergence demon-
strates the applicability of the proposed combined compact differ-
ence scheme and the flow solver described in Section 3 to
investigate the chemotaxic phenomena in hydrodynamic
environment.
5. Numerical results

5.1. Study of theoretical blow-up condition for the classical KS
equations

Having successfully verified the scheme developed for the KS
equations, this scheme will be applied to study the effect of initial
condition on the possible blow-up solution in the classical Keller-
Segel equations defined in an infinite domain [16]

nt ¼ r2n�r � ðnrcÞ; ð38Þ
ct ¼ r2c þ n� c: ð39Þ

The above two equations are solved subject to the initial conditions
given as noðt ¼ 0; xÞ ¼ 1300e�130ðx2þy2Þ and c0ðt ¼ 0; xÞ ¼
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Fig. 20. The predicted ratios junj
jrnj and jnrcj

jrnj at t ¼ 0:072. The initial maximum velocity is
predicted ratio jnrcj

jrnj ; and (d) the dominant vector in F, which is the chemotaxic force ve
650e�65ðx2þy2Þ. Note that this chosen initial solution for n corre-
sponds to yield

R
X n0dxdy > 8p. Subject to the specified boundary

condition @n
@n ¼ @c

@n ¼ 0, the above set of KS equations is solved in
the truncated square �0:5 6 x; y 6 0:5 rather in a computationally
infeasible infinite domain. Note that the applied zero gradient
boundary condition corresponds to the so-called zero-flux (or trac-
tion-free) boundary condition n � ðrn� vnrcÞ ¼ n � rc ¼ 0, where
n̂ denotes the unit outward normal vector. Our calculations are car-
ried out at Dt ¼ 0:01Dx2 and Dx ¼ Dy ¼ 0:0025.

In Fig. 5, good comparison between the computed and refer-
enced solutions is shown at two different times. The simulated
solution gradient for n is seen to increase with time. Prior to
t ¼ 5:39875 � 10�5, the increasingly sharper solution remains
bounded without exhibiting blow-up phenomenon. At a time
slightly beyond this critical time, the slope of the solution n shown
in Fig. 6 becomes infinitely large. The distinguished blowup phe-
nomenon which is known to occur in KS equations whenR

X n0 dxdy > 8p is numerically demonstrated in this study
[17,18]. Such an increasingly larger gradient calls for an increase
of grid points so as to be able to resolve the solution near the peak
of solution occurring at the centroid of the solution domain. We
found from this study that while solving the KS equations in a
domain without a distinction of sufficiently finer grids, the total
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mass within the physical domain can barely be conserved. The val-
ues of the total mass and the blowup time computed at different
grid spacings for this problem are tabulated in Table 2.

The set of Eqs. (38) and (39) is also solved in the same square
subject to the different set of initial conditions given as
noðt ¼ 0; xÞ ¼ 1000e�100½ðx�0:25Þ2þðy�0:25Þ2 � and c0ðt ¼ 0; xÞ ¼ 0. The
solutions at t ¼ 0:01785s computed under Dx ¼ Dy ¼ 0:01 and
Dt ¼ 10�7s are plotted in Fig. 7 for n at t ¼ 0:0625 and 0:071875
and in Fig. 8 for the total mass

R
X nðx; tÞdxdy.
5.2. Effect of convection on the blow-up solution

In this section, the divergence-free steady-state velocity vector
given by u ¼ �UmaxcosðpxÞsinðpyÞ and v ¼ UmaxsinðpxÞcosðpyÞ is
added to the original Keller Segel equations as the convection term.
The KS equations can be cast to the form given by nt þr � F ¼ 0 so
that each term shown in the total flux vector F given below can be
individually analyzed

F ¼ un� Dnrnþ vnrc: ð40Þ

Our aim is to know the roles of convection, diffusion, and chemo-
taxic terms on the time-evolving solution n. By changing the value
of Umax in the specified velocity vector to yield different degrees of
convective dominance, how the cell density is responded and how
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Fig. 21. The predicted ratios junj
jrnj and jnrcj

jrnj at t ¼ 0:108. The initial maximum velocity is
predicted ratio jnrcj

jrnj ; and (d) the dominant vector in F, which is the chemotaxic force ve
one term can affect the other terms shown in the total flux vector
F will be carefully examined.

Subject to the prescribed rotational flowfield and the initial
conditions given as noðt ¼ 0; xÞ ¼ 1000e�100½ðx�0:25Þ2þðy�0:25Þ2 � and
c0ðt ¼ 0; xÞ ¼ 0, the solutions computed at Dt ¼ 0:01Dx2 and
Dx ¼ Dy ¼ 0:01 are plotted in Figs. 9–12 for the case investigated
under Umax ¼ 0 in �0:5 6 x; y 6 0:5. In Fig. 9(c), the center of the
solution profile for n at t ¼ 0:0128 is seen to move in the direction
toward the corner because of the developing chemotaxic force. In
Fig. 11, the chemotaxic force vector vnrc directs toward the rota-
tion center while from Fig. 12 the diffusion force vector Dnrn is
seen to be along the direction away from the rotation center. Both
vectors have larger magnitudes near the rotation center. In view of
Figs. 11(a) and 12(a), the effect of diffusion seems to dominate che-
motaxis under the motionless condition.

To better understand the effect of convection, the values of Umax

are increased from zero to Umax ¼ 1;10, and 100. The correspond-
ing computed ratios of different flux terms are plotted in Figs. 13–
17, respectively. The effects of the increased rotating flow velocity
on the terms shown in the total flux vector F are summarized
below:

1. Cell motion is caused by all the three forces in F. The diffusion
vector initially dominates the other two forces when the value
of Umax is equal to 1.
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2. At Umax ¼ 10, convection force becomes dominant for all times.
Diffusion also plays an important role near the boundary.

3. Chemotaxic force can make cells to aggregate near the zero-flux
boundary for all the investigated values of Umax because of the
accumulation of chemical attractant.

4. At the highest value of Umaxð¼ 100Þ, blowup solution is never
observed in this study. Higher convection prohibits the forma-
tion of high gradient chemical attractant (or rc). As a result,
the solution for the cell density is bounded all the time.

5.3. Numerical study of the coupled NS–KS equations

We will finally solve the KS equations together with the Navier–
Stokes equations in a domain containing an incompressible viscous
fluid [19]. Solutions will be sought subject to the initial divergence-
free velocity field ðu;vÞ ¼ Umaxð�cospx sinpy; sinpx cospyÞ in a
truncated unit square �0:5 6 x; y 6 0:5. The computed time-evolv-
ing contours of n and the ratios of junj

jrnj and jnrcj
jrnj are plotted in

Figs. 18–23, respectively. The blowup solutions generated by
chemotaxic force are all computationally observable. A similar cell
density distribution near or along the boundary is also observed
because of the applied zero-flux boundary condition, thereby caus-
ing attractants to increase. Sometimes, convection plays an impor-
tant role to result in blowup solution, because the inertial force has
the same direction as the chemotaxic force. Two scenarios are
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Fig. 22. The predicted ratios junj
jrnj and jnrcj

jrnj at t ¼ 0:1. The initial maximum velocity is 10. (a)
ratio jnrcj

jrnj ; and (d) the dominant vector in F, which is the convection force vector.
observed in this study. In the beginning phase, cell density is dri-
ven either by convection or diffusion force. Chemotaxic force is
not large enough in this stage, because chemical attractant is spar-
sely distributed in the locally low chemical concentration gradient
flow. In the subsequent phase, chemotaxic phenomenon gradually
becomes important because of the increasingly larger chemical
concentration. Aggregation of the cell density starts at this
moment and it is responsible for the subsequent blowup solution.
In addition to the chemotaxic force, zero-flux boundary condition
plays an essential role leading to the aggregation of the chemical
attractant and cell density near the boundary, thereby finally
resulting in the formation of blowup solution. Some conclusions
are drawn below:

1. For the initial velocities under current investigation, the phe-
nomenon governed by the KS–NS equations is controlled by
flow convection in regions sufficiently apart from the boundary
of physical domain. One can however observe the effect of
chemotaxics, which is resulted from the high gradient chemical
concentration, on the time evolving cell density in regions near
the boundary.

2. While blowup solution is generated due to the formation of
high-gradient chemical concentration in KS equations, this spe-
cial phenomenon barely occurs in hydrodynamic system
regardless of the initial mass of cell.
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Fig. 23. The predicted ratios junj
jrnj and jnrcj

jrnj at t ¼ 0:32. The initial maximum velocity is 10. (a) total flux vector; (b) contours of the predicted ratio junj
jrnj; (c) contours of the

predicted ratio jnrcj
jrnj ; and (d) the dominant vector in F, which is the chemotaxic force vector.
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6. Concluding remarks

The proposed combined compact difference scheme for approx-
imating the Keller-Segel equations in a three-point grid stencil has
been numerically verified for its application to the cases with/
without considering the hydrodynamic equations. Several prob-
lems have been computationally studied in finite domain to revisit
the analytically derived blow-up condition occurring in infinite
domain. The effects of advection, diffusion and chemotaxis forces
on the evolution of cell density are also addressed in this study.
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