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a b s t r a c t

From the basis of the Gauss divergence theorem applied on a circular control volume thatwas put forward
by Isshiki (2011) in deriving the MPS-based differential operators, a more general Laplacian model is
further deduced from the current work which involves the proposal of an altered kernel function. The
Laplacians of several functions are evaluated and the accuracies of various MPS Laplacian models in
solving the Poisson equation that is subjected to both Dirichlet and Neumann boundary conditions are
assessed. For regular grids, the Laplacian model with smaller N is generally more accurate, owing to the
reduction of leading errors due to those higher-order derivatives appearing in the modified equation.
For irregular grids, an optimal N value does exist in ensuring better global accuracy, in which this optimal
value ofN will increase when cases employing highly irregular grids are computed. Finally, the accuracies
of these MPS Laplacian models are assessed in an incompressible flow problem.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the numerical framework of the Moving Particle Semi-
implicit (MPS) method, the differential terms appearing in the
Navier–Stokes equation are represented by particle interaction
models, i.e. gradient and Laplacian models. The gradient model is
mainly used to discretize the pressure gradient term appeared in
themomentum equations. In order to alleviate the issue due to the
overestimation of inter-particle attractive forces associated with
the particle method, numerous efforts have been paid to develop
a stable and accurate gradient operator: the Minimum pressure
model [1], the CMPS model [2], the Corrective Matrix model [3]
and the most recent Dynamic Stabilization model [4]. On the other
hand, the Laplacian model is mainly employed to evaluate the vis-
cous stresses (from the explicit computation of Laplacian of an
existing velocity field) as well as to discretize the Poisson equa-
tion of pressure, whereby the pressure field is primarily driven by
the density imbalance (appeared as the source term) and the pre-
scribed boundary conditions, which is more commonly known as
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the Boundary Value Problem (BVP). The associated open literatures
detailing on the refinement of the original MPS Laplacian opera-
tor, however, are rather limited. From the authors’ point of view,
in order to enhance the overall robustness of aMPS scheme, the de-
velopment of a more reliable Laplacian operator must not be over-
looked.

The original Laplacian model was proposed by Koshizuka
et al. [5], whereby this model is inspired from the analytical so-
lution of the transient diffusion problem (Gaussian function). By
introducing the diffusion coefficient denoted as λ, this model en-
sures that the increase in variance is equivalent to that of the
analytical solution. Duan and Chen [6] have recently detailed on
how the original Laplacian model is related to that based on the
Gaussian function. On the other hand, Isshiki [7] has adopted
the Gauss divergence theorem (applied to a circular control vol-
ume) and successfully reproduced the original MPS-based gradi-
ent and Laplacian models. The original Laplacian model has been
successfully applied to numerous engineering applications such as
breaking waves [1,8,9], complex thermal-hydraulic flow [10],
steel-making process [11], fluid–structure interaction [12–14],
mixing problem [15,16] and many others. Besides that, the mod-
eling of anisotropic diffusion (multiple fluid viscosity) within the
framework of the original Laplacian model has been considered as
well for multiphase flow simulation [17–20]. Very recently, Souto-
Iglesias et al. [21] have addressed on the inconsistency issue of the
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original Laplacianmodel near the boundary and they have circum-
vented this problem by using a boundary correction scheme.

Although the original Laplacian model has enjoyed reasonable
success in MPS computation, Zhang et al. [22,23] have argued
on the mathematical inconsistency of the diffusion coefficient λ
appearing in the original Laplacian model. They have reported
that numerical difficulties will arise when the Poisson equation is
solved. By dropping the diffusion coefficient term, a new Laplacian
model (denoted as Zhang’s model in this paper) has been derived
by them and it has been successfully applied to a transient heat
conduction problem. As reported by Zhang et al. [23], the accuracy
of their new Laplacian model is indeed better as compared to
that of the original one. Although its popularity is not comparable
to that of the original Laplacian model, this model has been
widely adopted as well in some engineering applications such
as convective heat transfer problem [24], turbomachinery [25],
pressure wave transmission [26], MHD problems [27,28] and solid
mechanics [29,30]. Recently, Sheu et al. [31] and Huang and
Sheu [32,33] have applied their newly developed kernel function
in the Zhang’s model and they have successfully computed a wide
range of incompressible flow problems.

Inspired by the idea from Smoothed Particle Hydrodynamics
(SPH) whereby the gradient is expressed as a function of the
first derivative of a kernel function, Khayyer and Gotoh [34] have
formulated a new Laplacian model (the so-called Higher-order
Laplacian (HL) model) based on the divergence of the SPH gradient
operator. Although this model is not widely employed within
the MPS community due to the fact that it is relatively new as
compared to the other Laplacian models, Khayyer and Gotoh [34]
have demonstrated that the HL model can produce a smoother
pressure field. Recently, Khayyer and Gotoh [35] have extended
their HL model to 3D environment.

In spite of the fact that these Laplacian models have received
distinct degrees of acceptance within the MPS community, the
underlying reason leading to an inclination of a research group to
implement a specific Laplacian model in their MPS solver has not
been fully understood. Particularly, the detailed study addressing
on the accuracies of various Laplacian models in evaluating the
Laplacian term as well as solving the Poisson equation is rather
limited. Besides that, the accuracies of the Laplacianmodels in both
the regular and irregular grid structures have not been carefully
assessed as well in the open literature. In this paper, we attempt
to assess the accuracies of these MPS-based Laplacian models
(derivative of the kernel function is not required) on both the
regular and irregular grid structures. During the course of the
current work, a more general Laplacian model is derived, whereby
the original Laplacian model and the Zhang’s model can indeed
be deduced from this general MPS-based Laplacian model. Also,
by performing the modified equation analysis on this general
Laplacian model, a more accurate Laplacian model particularly in
the context of regular grid structure can indeed be recovered.

2. Derivation of the general MPS Laplacian model

In this Section, the mathematical background of a MPS Lapla-
cian model is presented. Inspired by the recent work by Isshiki [7],
the Gauss divergence theorem is applied on a circular control vol-
ume (say 2D for the discussion purpose) illustrated in Fig. 1:

∇
2ϕdV =


ϕxdAx +


ϕydAy. (1)

For a circular control volume, the differential area vector originated
from the boundary is:
dAx, dAy


= dl


xik
rik

,
yik
rik


. (2)
Fig. 1. Schematic of a circular control volume with radius rik .

Here, xik is xk − xi and yik is yk − yi. rik denotes the distance be-
tween particles i and k. dl is the segmental arc length of the circular
boundary:

dl =
Pik
Nik

, (3)

where Pik and Nik are the perimeter and number of particles resid-
ing at a circular boundarywith radius rik, respectively. Substituting
Eq. (2) into Eq. (1) gives
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Now, Eq. (4) can be discretized as:

Vik

∇

2ϕi

= β


k

ϕk − ϕi

rik

Pik
Nik

. (5)

Here, Vik is the volume of the circular control volume with radius
rik. β is the correction factor (=2.0) to compensate for the error
generated due to the one-sided differencing scheme applied for the
approximation of radial derivative at the boundary. By rearranging
Eq. (5), the following is obtained:

Nik

∇

2ϕi

= β

Pik
Vik


k

ϕk − ϕi

rik
= β

d
rik


k

ϕk − ϕi

rik
. (6)

It can be easily shown that P/V is d/r where d is the number of
dimensions. In the currentwork, both the parameter rNik andweight
wik are introduced on both sides of Eq. (6), thereby leading to:

NikwikrNik

∇

2ϕi

=


k

wikrNik

∇

2ϕi

= 2d


k

(ϕk − ϕi)rN−2
ik wik. (7)

Henceforth, Eq. (7) is applied for different radius ranging from
rik = 0 to rik = R. Here, R is termed the radius of influence in MPS.
Upon summation of Eq. (7) at different radii, a general Laplacian
operator can be recovered:
∇

2ϕi

=

2d
i≠j

w∗(|r⃗j − r⃗i|)


i≠j

(ϕj − ϕi)

|r⃗j − r⃗i|2
w∗(|r⃗j − r⃗i|), (8)

where w∗(|r⃗j − r⃗i|) = |r⃗j − r⃗i|Nw(|r⃗j − r⃗i|) can be interpreted
as a modified kernel function in the general Laplacian model. It is
important to note from Eq. (8) that the original Laplacianmodel [5]
and the Zhang’s model [23] can be recovered by assigning the
values of N = 2 and N = 0, respectively. The kernel function
w(|r⃗j − r⃗i|) reported by Koshizuka et al. [1] is employed in the
current work.
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3. Modified equation analysis

In the regular grid environment, the Laplacian operator

∇

2ϕ


can be discretized by using Eq. (8). Following this, the 2D Laplacian
at lattice point (i, j) can be expressed as:
∇
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Here, s is the grid spacing and R = 2s. By approximating the neigh-
boring terms (e.g. ϕi+1,j, ϕi+1,j+1 etc.) in Eq. (9) relative to the local
termϕi,j with Taylor series, the following equation canbeobtained:
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The above modified equation (or equivalent PDE) can be rear-
ranged as
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It can be observed from Eq. (11) that the following limits hold true
upon applying the l’hopital’s rule:

lim
N→−∞
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N→−∞
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√
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√
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√
2)N

=
1
2
. (13)

Fig. 2 depicts graphically the variation ofAwith respect toN . Seem-
ingly, as N is decreasing, the magnitude of A is diminishing and
Fig. 2. The relation of A and N in the general MPS Laplacian model. R = 2s. Kernel
function of Koshizuka et al. [1] is used.

approaching the lower asymptote (A = 0). In short, the lead-
ing errors due to higher-order cross derivative terms appeared in
Eq. (11) could be effectively eliminated if N ≪ 0. For 1D problem,
smallerN plays a significant role in reducing the leading errors due
to higher-order derivatives. This may explain on the earlier obser-
vation reported by Zhang et al. [23], whereby they have witnessed
the superior accuracy of the Zhang’s model (N = 0) against the
original Laplacianmodel (N = 2) particularly in the case of regular
grid structure.

In the context of irregular grids, it is difficult to attain the
accuracy order of O(sk), where k is a positive number (k = 2 for
regular grids shown in Eq. (11)), due to the following reason:
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where AVx and AVy are termed the artificial velocities in x- and
y-directions, respectively. Consistency can be ensured if Ω

1,0
2 =

Ω
0,1
2 = Ω

1,1
2 = 0 and Ω

2,0
2 = Ω

0,2
2 = 0.5Ω0,0

0 , which is
satisfied in the case of regular grid (square or close-packed lattice).
In the current work, only the square lattice is considered (for 2D)
when the case of regular grid is reported in the current work. The
artificial velocities may become non-zero when irregular grid is
employed, thereby leading to the accuracy order of O(s−1). This
implies that the numerical accuracy of MPS Laplacian operator
cannot be further improved by refining the particle spacing s,
as will be observed later in the current work. Here, Ω

p,q
m is the

geometric operator, defined as:

Ωp,q
m =


i≠j

(xj − xi)p(yj − yi)qw∗
rj − ri

rj − ri
m . (15)

4. Result and discussion

In this Section, the particle interaction model expressed in Eq.
(8) will be used to evaluate the Laplacian of a given function
as well as discretize the Poisson equation subjected to different
boundary conditions. The accuracies of various Laplacian models
deduced from this general model (Eq. (8)) are accessed. Finally,
the accuracies of various Laplacian models in simulating an
incompressible flow problem are reported.
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Fig. 3. Plot of errors with respect to R/s by using (a) N = 0, (b) N = 2 and (c)
N = 3 models on the L1 problem. Regular grid with different particle spacings s is
used.

4.1. Laplacian evaluation

4.1.1. Regular grid
In this Section, the Laplacian of several functions are explicitly

evaluated by the proposed general MPS Laplacian model. Let us
consider a non-linear field (denoted as the L1 problem): G(x) = x5
for x ∈ [0, 1]. Here, the boundary effects are negated, whereby
the Laplacian (Gxx) is evaluated only at the interior particles (total
number is Nint ), i.e. x ∈ [R, 1 − R]. The averaged error is computed
as:


int

Gxx,comp − Gxx,abs
 /Nint , where Gxx,comp and Gxx,abs are the

computed and the absolute Laplacian values, respectively.
Fig. 3 shows the errors generated fromvarious Laplacianmodels

at different regular grid spacing (s). By adopting a fixed R/s
(or a fixed number of neighbor within R), the numerical model
employing a smaller grid spacing yields a more accurate solution
(consistency is ensured). However, in a particular regular grid
systemwith spacing s, the error level is increasing if the number of
neighborwithin R increases (increasing R/s). It is worth tomention
here that Souto-Iglesias et al. [21] have fixed the value of R while
keeping s → 0 in order to test the consistency of the original
Laplacianmodel. Here,R is prescribed as 0.1, and the corresponding
errors are overlaid (as red dots) in Fig. 3. As seen, the error level is
almost constant as s → 0 forN = 2 (original Laplacianmodel) and
N = 3 models, while the error level of Zhang’s model (N = 0) is
decaying as the grid is refined.

Fig. 4 compares the accuracies of various Laplacian models for
N ∈ [−10, 50] employing grid spacing s = 1/320. As expected, the
Fig. 4. Plot of errors with respect to R/s by using various Laplacian models on the
L1 problem. Regular grid with s = 1/320 is used.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
xx

x

Fig. 5. Predicted Laplacian for the L1 problem on a regular grid with s = 1/20.
R/s = 2.1.

Fig. 6. Plot of errors with respect to R/s on L2 problem for N = 0 and N = 2
models. Regular grid with different particle spacings s is used.

errors are increasingwith respect to the number of neighbors (R/s).
On the other hand, it is interesting to note that the error is reduced
as the Laplacian models with smaller N are used regardless of the
chosen R/s. As shown in Fig. 5, model of N = −50 shows a closer
agreement with the theoretical solution, followed by the Zhang’s
model (N = 0) and the original Laplacian model (N = 2). The
improvement in accuracy of the conventional Laplacian models
when N < 0, albeit it is marginal at small R/s (result of R/s = 2.1
is shown in Fig. 5), can be further augmented if a larger R is used as
reported in Fig. 4.

Next, the Laplacian of a 2D function (L2 problem): G(x, y) =

(x + 1)2(y + 1)2 for x ∈ [−0.5, 0.5]; y ∈ [−0.5, 0.5] is evaluated
at point (0,0), where the theoretical solution is 4.0. The results
obtained from the Zhang’s model and the original Laplacian model
are plotted in Fig. 6. Similar to that observed in the 1D problem,
for a fixed grid spacing s, the error is increasing with respect to
the number of neighbors (R/s). And, the accuracy of the original
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Fig. 7. Variation of errors with respect to R/s by using various Laplacianmodels on
L2 problem. Regular grid with s = 1/40 is used.

Fig. 8. Plot of errors with respect to R/s by using (a) N = 0, (b) N = 2 and
(c) N = 3 models on the L1 problem. Irregular grid with % of randomness =10%
is used.

Laplacian model is somehow inferior as compared to that of the
Zhang’s model. Fig. 7 shows a more comprehensive comparison of
the Laplacian models; it shows a very noticeable improvement in
accuracy while N = −10 model is employed.

4.1.2. Irregular grid
Now, the locations of the particles are slightly modified by

displacing them from the original positions (regular grid position
20

15

10

5

0

0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
xx

x

-5

-10
0.90.1

Fig. 9. Predicted Laplacian by using N = 3 model for the L1 problem. R/s = 2.1.
Irregular grid with % of randomness =10% is used.

of spacing s) with a random noise of maximum amplitude equal to
Ps, where P is the % of randomness. With P = 10%, the L1 problem
is solved again by using various Laplacian models and the results
are shown in Fig. 8. Contrary to those observed on the regular
grid system, for a particular grid spacing s, the averaged error (as
defined in Section 4.1.1) is now constantly decreasing with respect
to the number of neighbors (R/s) as deduced from the N = 0
model. Similarly, the averaged errors generated from the N = 2
and N = 3 models are decaying as R/s increases and experiencing
a rebound (increase in error) beyond a critical R/s value. Also, it
is interesting to note that the effort of reducing the grid spacing
while retaining the same number of neighbor (R/s) is no longer
acceptable in this case, as it shows an increase in error level at low
R/s regime (2.1 < R/s < 4.1 is typically used in MPS) as reported
in Fig. 8 (see Eq. (14) as well). Fig. 9 illustrates the augmentation
in error for N = 3 model while refining the grid spacing in the
L1 problem by retaining the parameter R/s as 2.1. As suggested
in Fig. 8, if one wishes to refine the grid spacing (e.g. to capture
those small scale flow structures), the radius of influence R must
be correspondingly increased (more number of neighbors) in order
to attain a reasonably accurate explicit calculation of the Laplacian
term.

Souto-Iglesias et al. [21] have shown that the prediction of the
original Laplacian model converges to the analytical solution as
s → 0 while keeping R = 0.1, even in the case of irregular grid.
This phenomenon is observed as well for both the N = 2 and
N = 3 models as shown in Fig. 8(b) and (c), where the error is
decreasing as the grid is refined. This important property, however,
is not observed in the Zhang’s model (N = 0) as one can observe a
considerably rapid increase of error level while the grid spacing
is refined for a prescribed value of R. In order to illustrate this
observation, the effect of grid refinement (while keeping R = 0.1)
against the accuracy of the numerical solution is shown in Fig. 10.
As seen, spurious oscillations are generated from theN = 0model,
while the numerical solution obtained from the original N = 2
model is converging to the theoretical solution as the grid spacing
is refined from 1/20 to 1/320.

The numerical accuracies of various Laplacian models are
compared in Fig. 11 for s = 1/320. As seen, those models which
are reasonably accurate in regular grid structure (N 6 0) no longer
perform well in the irregular grid environment. The accuracies
of these models can be improved, interestingly, by increasing the
value of N to approach to that considered in the original Laplacian
model (N = 2). Furthermore, it can be demonstrated that the
accuracy of the original Laplacian model can be further refined by
adopting the N = 3 model, in which this condition holds true
within the lower range of R/s (i.e. R/s <55 in this case as shown
in Fig. 11(a)). By further increasing the value of N , the accuracy,
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Fig. 10. Predicted Laplacian for the L1 problem by using (a) N = 0; (b) N = 2
models. Irregular grid with % of randomness =10% is used. R = 0.1.

Fig. 11. Plot of errors with respect to R/s on the L1 problem for (a) N 6 3 and (b)
N > 3. s = 1/320. Irregular grid with % of randomness =10% is used.

however, turns out to be worse as shown in Fig. 11(b) for N > 3.
Fig. 12 shows the effectiveness of N = 3 model in suppressing, to
certain extent, thewiggles generated from the conventionalN = 0
and N = 2 models.

In order to examine the effect of % of randomness (P) against the
selection of N , Fig. 13 shows a series of averaged errors generated
50

40
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20
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0
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-20

G
xx

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

N=0
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Theory

Fig. 12. Predicted Laplacian for the L1 problem on irregular grid (10% randomness).
R/s = 4.1. s = 1/80.

Fig. 13. Averaged error (based on 100 random grid samples) for various Laplacian
models applied on the L1 problem. s = 1/80. R/s = 8.1.

fromdifferent Laplacianmodels applied on grids of various P . Here,
the averaged errors (as defined in Section 4.1.1) are computed
from 100 random grid samples and the mean value is recorded.
It is important to note that the discussion above is focusing on the
observations for P = 10%. Seemingly, as observed from Fig. 13,
N = 3 model is the most accurate model amongst all when 1% <
P < 60% is considered. Upon increasing the % of randomness, a
relatively more accurate solution can be attained from the N = 4
model. On the lower range of P (mildly irregular grid), as expected,
the optimal value of N is shifted toward the lower end as P is
approaching the regular grid structure (P = 0). From Fig. 13,
it is straightforward to apprehend the fact that the mean error
generated fromaparticular Laplacianmodel increaseswith respect
to the % of randomness. In the current work, the predictions of
Laplacian of other functions (same domain as used in L1) are
performed as well and the results are tabulated in Table 1. As seen,
for all the functions tested on P = 5% and P = 10%, the N = 3
model outperforms all the other models in terms of accuracy. The
distribution of error (500 random grid samples) while estimating
the Laplacian of an exponential function is shown in Fig. 14. As
seen, the models with N 6 0 are suffering from wider range of
errors (and highermean error) as compared to the others. The error
ranges predicted from the N = 2 and N = 3 models are almost
overlapping, while the mean error of N = 3 model is relatively
smaller than that of the N = 2 model.



2418 K.C. Ng et al. / Computer Physics Communications 185 (2014) 2412–2426
120

100

80

60

40

20

0

Fr
eq

ue
nc

y

0 5 10 15 20 25 30 35 40 45 50
Error

N = -5
N = 0
N = 2
N = 3
N = 5
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Fig. 15. Plot of averaged errors (500 random grid samples) with respect to R/s on
L2 problem. Irregular grid with 10% randomness is used.

Table 1
Averaged errors (based on 500 randomgrid samples) predicted by various Laplacian
models for different functions. s = 1/20; R/s = 2.1. P = 5% (italic value) and
P = 10% are used.

N Function
x x2 x3 sin(x) ex

−5 8.98 9.02 7.94 7.65 15.15
16.64 16.94 14.91 14.36 28.48

0 3.40 3.48 3.07 2.97 5.75
6.84 6.92 6.12 5.81 11.72

2 1.66 1.71 1.47 1.42 2.83
3.21 3.23 2.84 2.79 5.44

3 1.43 1.43 1.28 1.22 2.42
2.64 2.64 2.34 2.28 4.39

5 2.47 2.49 2.22 2.13 4.16
4.55 4.50 4.12 3.85 7.63

Next, the Laplacian on the irregular grid structure in 2D domain
(L2 problem in Section 4.1.1) is evaluated at the origin (x = 0, y =

0). Here, the errors are averaged based on 500 randomgrid samples
(P = 10%). Again, from Fig. 15, it shows that the strategy of refining
the grid spacing while retaining the R/s value is not advisable due
to the generation of higher magnitude of errors. The mean error
levels are generally trending downward as R/s increases, which
is in contrast with that observed in those cases of regular grid. A
rebound in error level can indeed be observed beyond R/s ∼ 15
(s = 1/40) when N = 2 and N = 3 models are used. Fig. 16
compares the accuracies of various Laplacian models. In spite of
the fact that the accuracy of the N = 3 model is only marginally
better than the N = 2 model at R/s = 2.1, the improvement in
accuracy is more noticeable as a larger R/s value is employed. Also,
it is important to note from Fig. 16 that this condition holds true
only when R/s is smaller than a critical value (R/s ∼ 15), upon
which the error starts to rebound.

In general, as shown in Fig. 17, N = 4 model seems to be
attractive when P > 50%. In the middle range of grid irregularity
Fig. 16. Comparison of various Laplacian models on L2 problem for (a) N 6 3 and
(b) N > 3. Irregular grid with 10% randomness is used. s = 1/40.

Fig. 17. Averaged error (based on 100 random grid samples) for various Laplacian
models on L2 problem. s = 1/20. R/s = 8.1.

(5% 6 P 6 20%), however, the optimal N value is lowered to 3.0.
As expected, this optimal N value decreases as the particles are
approaching to their regular lattice positions (P ∼ 0).

4.2. Boundary value problem

4.2.1. Regular grid
A 1D Poisson equation with varying source (BVP1 Problem)

whose exact solution is G(x) = x(x2 − 1)/6 is solved:

∂2G
∂x2

= x, x ∈ [−1, 1]

G(±1) = 0.
(16)
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Fig. 18. Plot of errors with respect to R/s on BVP1 by using (a) N = −1, (b) N = 0
and (c) N = 2 models. Regular grid is used.

As seen from Fig. 18, the numerical error is reducing as the grid is
refinedwhile fixing the samenumber of neighbors (R/s). Generally,
as expected, the error is increasing with respect to the number of
neighbors employed in R for a particular grid system of spacing s.
Fig. 19 compares the predicted and the theoretical solutions for
various R/s. Seemingly, for N = 2 model, inaccuracy occurs at
the boundary, and the prediction deviates considerably from the
theoretical solution as R/s increases. This phenomenon is observed
aswell in the case ofN = −1model, although it is onlymarginal as
shown in Fig. 19(b). It is worth to mention here that the derivation
of the current general Laplacianmodel is based on the full compact
support of a local particle i (see Fig. 1). Therefore, numerical errors
near the Dirichlet boundary (such as free-surface) are expected if
no special numerical treatment such as that proposed by Souto-
Iglesias et al. [21] is implemented.

The errors while fixing R = 0.1 are overlaid on Fig. 18 as well
at different grid spacing, proving the lack of consistency of the
N = 2 model (Fig. 18(c)) as previously reported by Souto-Iglesias
et al. [21]. As observed from Fig. 18, errors are kept to a minimum
level at R/s = 2 (fixing R = 0.1), i.e. in the order of ∼−15, due to
the recovery of the 2nd-order central differencing scheme. There
is a sudden rise in error as R/s is increased to 4.0 while retaining
the radius of influence R = 0.1. For N = −1 and N = 0 models,
the error levels are generally descending as more neighbors (R/s)
are employed (see Fig. 18(a) and (b)). The augmentation of error
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Fig. 19. Predicted solution G by using (a) N = 2 and (b) N = −1 models on BVP1
at various R/s. Regular grid with s = 1/80 is used.
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Fig. 20. Predicted solution G on a regular grid by using (a) N = 2 and (b) N = −1
models on BVP1. R = 0.1.

as observed in N = 2 model (Fig. 18(c)) is in fact due to the
discontinuity occurred at the boundary as the grid is refined (see
Fig. 20(a)) for the case of N = 2, while it is not truly significant
for the case of N = −1 (Fig. 20(b)). The general comparison of
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Fig. 21. Comparison of various Laplacian models for BVP1 at the regular grid
spacing s = 1/1280.

Fig. 22. Comparison of various Laplacian models for BVP2 at the regular grid
spacing s = 1/20.

accuracies for various Laplacian models is reported in Fig. 21 for
the case of fine grid spacing s = 1/1280. Again, it demonstrates the
effectiveness of those models with smaller N for the entire range
of R/s, mainly due to the smaller leading error concluded from the
modified equation analysis.

Next, the Laplacianmodels are applied on a 2DPoisson equation
where the exact solution is G(x, y) = sin(πx) cos


π
2 y


(BVP2):

∂2G
∂x2

+
∂2G
∂y2

= −
5
4
π2 sin(πx) cos

π

2
y


; x ∈ [−1, 1];

y ∈ [−1, 1]
G(±1, y) = G(x, ±1) = 0.

(17)

As deduced from Fig. 22, again, for the entire range of R/s, a better
accuracy can be attained when the Laplacian model of smaller N
is considered. The solutions at various locations in the 2D domain
are plotted in Fig. 23, showing that the solutions obtained from the
Laplacian model with smaller N exhibit better agreement with the
theoretical ones.

4.2.2. Irregular grid
Fig. 24 shows the numerical errors generated from various

Laplacian models upon solving the BVP1 on irregular grid spacing
with P = 10%. In general, at low R/s, the original Laplacian model
(N = 2) performs considerablywell as compared to the othermod-
els. Due to the inconsistency at the boundaries, those models with
higher value of N (N > 2) exhibit increasing level of error as the
number of neighbors (R/s) increases. Upon surpassing a critical R/s
value, it is interesting to note that those models with N = 0 and
N = −1, in which their accuracies are expected to be inferior in ir-
regular grid environment, are now exhibiting increasing accuracy
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Fig. 23. Predicted solution of BVP2 on a regular grid at (a) y = 0 and (b) x = −0.5.
s = 0.1. R/s = 3.1.

Fig. 24. Comparison of various Laplacian models for BVP1 using (a) s = 1/20 and
(b) s = 1/1280. Irregular grid of 10% randomness is used.

than the original Laplacian model. This critical R/s value, in gen-
eral, increases as a finer particle system is employed as shown in
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Fig. 25. Predicted solution G for BVP1 by using (a) R/s = 2.1; (b) R/s = 3.1 and (c)
R/s = 4.1. s = 1/20. Irregular grid with 10% randomness is used.

Fig. 24(b). In order to examine this phenomenon, Fig. 25 shows the
solutions obtained from various Laplacian models at different R/s.
At R/s = 2.1, the predictions from N = 2 and N = 3 models are
quite close to the theoretical ones as compared to those of N 6 0
shown in Fig. 25(a). Upon increasing R/s to 3.1 (Fig. 25(b)), one is
able to observe an abrupt change in the solution profile near the
boundaries for N = 2 and N = 3 models, while those models with
N 6 0 still somehow preserve the smoothness of solution near the
boundaries. Due to the elliptic nature of the Poisson equation, this
will inevitably degrade the accuracies of the solutions generated
from those N > 2models in the interior region. By further increas-
ing R/s to 4.1 (Fig. 25(c)), as expected, the accuracies of N > 2
models near the boundaries are severely affected, and those solu-
tions of N 6 0 models are now in better agreement with the theo-
retical data. Nevertheless, their accuracies are still not comparable
with that of the original Laplacian model when a small R/s value,
i.e. R/s = 2.1, is employed.

Next, the Poisson equation subjected to mixed Dirichlet and
Neumann boundary conditions (BVP3) whose exact solution is
Fig. 26. Comparison of Laplacian models on BVP3 for (a) s = 1/20 and (b)
s = 1/1280. Irregular grid of 10% randomness is used.

G(x) = x2 is considered:

∂2G
∂x2

= 2, x ∈ [0, 1]

G′(0) = 0
G(1) = 1.

(18)

This problem is very similar to the Poisson equation of pressure in
MPS, whereby the Dirichlet condition prevails at the free surface
and the Neumann condition (zero pressure gradient) is applied
at the wall boundary. Here, the Neumann boundary condition for
BVP3 problem is implemented by introducing the ghost particles
on the left boundary having the same value (determined implicitly)
as that of G(x = 0), and the number of ghost particles is dependent
on the value of R employed. Fig. 26 compares the accuracies of
various models on an irregular grid system of 10% randomness.
Again, the superiority in accuracy of the N = 2 model at low R/s
as compared to those N = 0 and N = −1 models is no longer
sustainable as the number of neighbors increases. Similar behavior
can be observed in the 2D problem (BVP2) as reported in Fig. 27.

The solutions for the BVP3 problem are plotted in Fig. 28
at various R/s. Again, the solution obtained from the N = 2
model shows the closest agreement with the theoretical solution
when R/s = 2.1 is employed. As R/s is increased to 4.1, some
discrepancies start to occur at the right boundary where Dirichlet
boundary condition prevails, which is furthermagnifiedwhenN >
2. Owing to this reason, the N = 0 and N = −1 models, which are
less susceptible to profile disruption near the Dirichlet boundary,
tend to bemore accurate than the original Laplacianmodel (N = 2)
when higher R/s is considered.

Fig. 29 shows that the optimal Laplacian model in solving a BVP
may deviate if the % of randomness varies. Generally, as the % of
randomness increases, the optimal value of N will be augmented
as well. Here, the errors are averaged over 100 random grid sam-
ples for 2D problem (BVP2) and 500 random samples for 1D prob-
lems (BVP1 and BVP3). As expected, as the irregularity decreases
(P → 0), the accuracies of those N < 0 models will become more
prominent.
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Table 2
Grid convergence analysis on G′′(x) = x2 + 2 for (a) regular grid and (b) irregular grid (P = 20%). For (b), errors are averaged over 100 samples. x ∈ [0, 1]. G′(0) = 0,
G(1) = 1. For meshless scheme, R/s = 2.0.

P Grid size N = 0 N = 2 FVP FDM1 FDM2 FVM (Cell centered)
Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

(a)

0%

0.1 4.95E−02 – 4.95E−02 – 4.95E−02 – 4.95E−02 5.42E−04 – 3.19E−03 –
0.05 2.49E−02 0.99222 2.49E−02 0.99222 2.49E−02 0.99222 2.49E−02 0.99222 1.37E−04 1.98162 7.98E−04 1.99924
0.025 1.25E−02 0.99605 1.25E−02 0.99605 1.25E−02 0.99605 1.25E−02 0.99605 3.45E−05 1.99090 2.00E−04 1.99981
0.0125 6.24E−03 0.99801 6.24E−03 0.99801 6.24E−03 0.99801 6.24E−03 0.99801 8.65E−06 1.99547 4.99E−05 1.99995
0.00625 3.12E−03 0.99900 3.12E−03 0.99900 3.12E−03 0.99900 3.12E−03 0.99900 2.17E−06 1.99774 1.25E−05 1.99999
0.003125 1.56E−03 0.99946 1.56E−03 0.99933 1.56E−03 0.99950 1.56E−03 0.99950 5.42E−07 1.99887 3.12E−06 2.00000

p Grid size N = 0 N = 2 N = 3 N = 4 FVP FVM (Cell centered)
Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

(b)

20%

0.1 2.38E−01 – 1.02E−01 – 1.10E−01 – 1.54E−01 – 9.02E−02 – 3.27E−03 –
0.05 2.25E−01 0.07753 7.59E−02 0.42443 6.06E−02 0.86288 9.02E−02 0.77228 6.76E−02 0.41713 8.25E−04 1.98897
0.025 2.23E−01 0.01123 5.82E−02 0.38378 4.59E−02 0.40204 6.59E−02 0.45209 6.22E−02 0.11957 2.06E−04 2.00291
0.0125 2.16E−01 0.04795 5.08E−02 0.19456 3.76E−02 0.28483 5.48E−02 0.26678 5.86E−02 0.08639 5.15E−05 1.99872
0.00625 2.12E−01 0.02733 4.74E−02 0.10077 3.10E−02 0.27838 4.89E−02 0.16441 5.62E−02 0.06107 1.29E−05 2.00045
0.003125 2.10E−01 0.01373 4.53E−02 0.06524 2.70E−02 0.20011 4.36E−02 0.16398 5.47E−02 0.03882 3.22E−06 1.99978
Fig. 27. Comparison of Laplacianmodels on BVP2 for (a) s = 1/5 and (b) s = 1/10.
Irregular grid of 10% randomness is used.

4.2.3. Spatial convergence
From the solution of boundary value problems, it is interesting

to note that the error is decreasing as the grid is refined
even in cases employing random grid structure. This important
numerical property, however, is not observedwhile evaluating the
Laplacian of a field variable as noticed in Section 4.1.2. Due to the
elliptic behavior of the BVP, we speculate that the solutions are
strongly confined by the boundary conditions, which is helpful in
suppressing the discretization errors of Laplacian terms.

The rates of spatial convergence for the 2D problem subjected
to Dirichlet boundary condition (BVP2) are plotted in Fig. 30. Here,
the rates of spatial convergence are computed based on the grid
spacing s = 1/5k, where k = 1, 2, 4, 8. For cases employing
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Fig. 28. Predicted solution G for BVP3 by using (a) R/s = 2.1 and (b) R/s = 4.1.
s = 1/20. Irregular grid with 10% randomness is used.

irregular grids, the L1-error norms are averaged over 10 random
grid samples. As expected, for a particular Laplacianmodel, the rate
of spatial convergence decreases as the % of randomness increases.
Seemingly, as the irregular grids are employed, the rate of spatial
convergence has a local maximum value at N∗ (marked in red
shown in Fig. 30) within the range considered: −1 < N < 5. In
general, N∗ is shifted to the upper end as a highly irregular grid
is employed. Similar observations are found for BVP1 and BVP3
(results not shown here).

Table 2(a) compares the rates of spatial convergence of various
numerical schemes for BVP3 problem (mixed Neumann and
Dirichlet boundary conditions with a non-linear source term:
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Fig. 29. Averaged errors for various Laplacianmodels employing grid of different %
of randomness. (a) BVP1; s = 1/20; 500 irregular grid samples, (b) BVP2; s = 1/5;
100 irregular grid samples and (c) BVP3; s = 1/20; 500 irregular grid samples.
R/s = 2.1.

x2 + 2 in this case) on regular grid. A first-order approximation
is used to approximate the Neumann condition at x = 0 for
Finite Difference Method (FDM1). The rate of spatial convergence
of FDM1 can be enhanced by using a 2nd-order approximation
at the Neumann boundary (FDM2) or the cell-centered Finite
Volume Method (FVM). Due to the nature of the implementation
of Neumann boundary condition at x = 0 in the current meshless
procedure, it can be easily understood that the accuracies of the
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Fig. 30. Rates of spatial convergence of BVP2 at different % of randomness P . For
irregular grids, the L1-norm errors are averaged over 10 irregular grid samples.
R/s = 2.0.

meshless procedures considered in the current work such as MPS
and Finite Volume Particle (FVP) [36] are only O(s).

As reported from Table 2(b), a reduction of rate of spatial
convergence of a meshless scheme can be observed when grid
irregularity is introduced. This shortcoming is quite noticeable
when the N = 0 model is considered. The FVP scheme can be
used to improve the rate of spatial convergence of N = 0 model;
despite of this, the effectiveness of FVP scheme may not on par
with those of the original MPS Laplacian (N = 2) and N = 3
models. Seemingly, the second-order spatial convergence of FVM is
not significantly affected in the irregular grid environment. Table 3
reports the grid convergence analysis for the BVP considered in
Table 2, whereby the Dirichlet boundary condition prevails at x =

0 (G(0) = −1/12) in this case. For R/s = 2.0, the meshless
methods (e.g. MPS and FVP) are equivalent to the second-order
Central Differencing Scheme, in which their accuracies are now
O(s2) on regular grid. Again, the accuracy of N = 0 model can be
improved by the Laplacian models such as N = 2 and N = 3 when
irregular grid is employed.

4.3. Flow problem

Finally, the lid-driven flow in a square cavity of widthW (ulid =

1.0 m/s; W = 1.0 m; ρ = 1.0 kg/m3; Re = 100) is solved
by employing a recently developed particle method whereby the
pressure term is treated as a field variable and stored in an Eulerian
mesh [37]. The Laplacian operator as proposed in the current
work is used to evaluate the flow diffusion term at the scattered
particles, in which their motions are computed in a Lagrangian
manner. The pressure gradient on each fluid particle (not amaterial
point, merely acting as an observation point) is evaluated by using
a simple shape function and no artificial treatments are employed
to avoid particle clustering as commonly employed in a particle-
based solver. Fig. 31 shows the instantaneous pressure field and
particles’ speed at different time instants. The simulation is carried
out until t = 50 s to ensure that a nearly stationary solution is
achieved. Fig. 32 shows the time evolution of velocities at different
points. Seemingly, the solutions obtained from N = 2 and N = 3
models are less wiggling than those of N = 0 model.

Fig. 33(a) compares the horizontal velocity (u-velocity) profiles
predicted at the vertical mid-section of the cavity on 40 × 40
backgroundmesh. The N = 0model seems to have over-predicted
the horizontal velocities near the bottomwall, while the numerical
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Fig. 31. Instantaneous pressure field on a background pressure mesh 40 × 40
[Pa] (left) and particles’ speed [m/s2] (right) in the lid-driven flow problem at (a)
t = 47 s; (b) t = 48 s; (c) t = 49 s and (d) t = 50 s. N = 2.

solutions from the other two models (N = 2 and N = 3) are
quite close to the fine grid steady-state solution of Erturk and
ve
lo

ci
ty

 [
m

/s
]

t (s)

Fig. 32. Time evolution of velocities at various locations for a lid-driven flow
problem. Mesh 40 × 40.

Dursun [38] in the vicinity of the bottomwall. However, all models
tend to under-predict the horizontal velocities at the core region,
and it seems from Fig. 33(b) that the use of finer mesh resolution
(80 × 80) does not provide a significant improvement in this
regard.

Concerning on the spatial variation of vertical velocity (v-
velocity) along the horizontal mid-section of the cavity as shown
in Fig. 33(c) on 40 × 40 mesh, the N = 0 model is able to pro-
vide a better representation on the overshoot seen in the left com-
partment of the cavity. However, the spatial extent of the positive
vertical velocity has been slightly over-predicted by the N = 0
model. Furthermore, the undershoot value predicted by the N = 0
model at x ∼ 0.85 m has remarkably surpassed the reference so-
lution as well. Amongst the Laplacian models studied, the solution
of the N = 2 model seems to agree quite well with the reference
solution. And, it is worth to mention here that the resulting solu-
tion becomesmore smeared asN is increased to 3. Upon increasing
the mesh resolution to 80 × 80 as reported in Fig. 33(d), there is
a noticeable improvement of the N = 0 solution, particularly in
resolving the overshoot and undershoot of the velocity profile. The
solutions ofN = 2 andN = 3models are quite similar, except that
the value of the undershoot predicted by the N = 3 model comes
closer to that of the N = 0 model.

5. Conclusion

Stemming from the mathematical work by Isshiki [7] in
detailing the theoretical background of MPS-based differential
operators, a general MPS-based Laplacian model has been put
forward in the current work. It has been found that the original
Laplacian model and the Zhang’s model can indeed be deduced
from the general model reported in the current work. Modified
equation analysis has further revealed that there exists a class of
Laplacian models (N < 0) which are more accurate than the
conventional MPS Laplacian models in regular grid environment.
Following are the major findings from the current work:

1. For the explicit computation of Laplacian term on regular
interior grids, better accuracy can be achieved by further
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Fig. 33. Comparison of velocity profiles at the mid-sections of the cavity. (a) u-
velocity on 40× 40mesh; (b) u-velocity on 80× 80mesh; (c) v-velocity on 40× 40
mesh; (d) v-velocity on 80 × 80mesh.

refining the grid spacing s while retaining the number of
neighbors in a particular radius of influence R. Deterioration in
accuracy will occur, however, as R is further increased while
fixing the grid spacing. In general, better accuracy can be
achieved when a Laplacian model with smaller N is employed.
This has led to the reasoning onwhy the Zhang’smodel (N = 0)
is more preferable than the original Laplacian model (N = 2) in
the case of regular grids.

2. For the explicit computation of Laplacian term on irregular
interior grids, the strategy of refining the grid spacing while
retaining the number of neighbors in a particular radius of in-
fluence R is no longer applicable due to the numerical errors
generated from the artificial velocity terms. If the case of fine
grid spacing is desirable, the corresponding parameter control-
ling the number of neighbors (i.e. R/s) must be increased for at-
taining a reasonable accurate solution. As the % of randomness
increases, the optimal N value in promoting solution accuracy
increases. In an irregular grid environment, the original Lapla-
cianmodel (N = 2) is generally more accurate than the Zhang’s
model (N = 0) in evaluating the Laplacian term,whichmay jus-
tify on its wider application inMPS for simulating flow particles
undergoing randommotions.

3. Concerning on solving the Boundary Value Problem (BVP) in
regular grid structure, again, amore accurate solution can be at-
tained via the Laplacian model with smaller N . However, cases
employing large number of neighbors are not recommended,
as solution accuracy can be degraded as R increases due to the
mathematical inconsistency at the Dirichlet boundary (result-
ing in solution discontinuity). This may be attributed to the
nature of the current general Laplacian model, whereby it is
derived based on the full compact support of a local particle i
(see Fig. 1).

4. The mathematical inconsistency at the Dirichlet boundary can
be found as well in the case of solving the BVP in irregular grid
structure. At lowR/s (=2.1), however, the solutions providedby
the original Laplacianmodel (N = 2) are still acceptable for grid
irregularity of 10% and appear to be more accurate than those
of N 6 0 and N > 3 models. Again, this study has revealed that
as the % of randomness increases, the optimal N value in ensur-
ing higher global accuracy and spatial rate of convergence will
increase correspondingly.

5. The optimal value of N is dependent on the degree of grid ir-
regularity, which is prescribed beforehand in the pure diffusion
problems considered in the current work. In a practical flow
problem, the degree of grid irregularity may vary from one lo-
cation to another, signifying that the optimal value of N may
differ within the flow domain. This has been witnessed from
our flow results presented in the current work, whereby it is
difficult to deduce a model (with a sole parameter N) which
is globally accurate throughout the flow domain. In the con-
text of irregular grid, it seems that the original Laplacian model
is sufficient for simulating fluid flow. From our point of view,
the artificial velocity terms AVx and AVy appeared in Eq. (14),
which are written as a function of particle topology, serve as a
more meaningful way to describe grid irregularity. We specu-
late that these terms can be eliminated to enhance the accu-
racy of a Laplacian model. This will be reported in our future
work.
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Table 3
Grid convergence analysis on G′′(x) = x2 + 2 for (a) regular grid and (b) irregular grid (P = 20%). For (b), errors are averaged over 100 samples. x ∈ [0, 1]. G(0) = −1/12,
G(1) = 1. For meshless scheme, R/s = 2.0.

P Grid size N = 0 N = 2 FVP FDM FVM (Cell centered)
Error Rate Error Rate Error Rate Error Rate Error Rate

(a)

0%

0.1 1.25E−04 – 1.25E−04 – 1.25E−04 – 1.25E−04 – 2.98E−03 –
0.05 3.30E−05 1.92200 3.30E−05 1.92200 3.30E−05 1.92200 3.30E−05 1.92200 7.46E−04 1.99918
0.025 8.46E−06 1.96253 8.46E−06 1.96253 8.46E−06 1.96253 8.46E−06 1.96253 1.87E−04 1.99980
0.0125 2.14E−06 1.98162 2.14E−06 1.98162 2.14E−06 1.98162 2.14E−06 1.98162 4.67E−05 1.99995
0.00625 5.39E−07 1.99090 5.39E−07 1.99090 5.39E−07 1.99090 5.39E−07 1.99090 1.17E−05 1.99999
0.003125 1.35E−07 1.99547 1.35E−07 1.99547 1.35E−07 1.99546 1.35E−07 1.99547 2.92E−06 2.00000

P Grid size N = 0 N = 2 N = 3 N = 4 FVP FVM (Cell centered)
Error Rate Error Rate Error Rate Error Rate Error Rate Error Rate

(b)

20%

0.1 5.27E−02 – 2.17E−02 – 2.29E−02 – 3.16E−02 – 2.82E−02 – 3.05E−03 –
0.05 5.36E−02 – 1.48E−02 0.54918 1.29E−02 0.82478 2.38E−02 0.41000 1.95E−02 0.52802 7.66E−04 1.99335
0.025 5.32E−02 0.00974 1.29E−02 0.19932 1.00E−02 0.36532 1.91E−02 0.31531 1.54E−02 0.34466 1.92E−04 1.99861
0.0125 5.31E−02 0.00336 1.15E−02 0.16282 8.23E−03 0.28539 1.45E−02 0.39943 1.44E−02 0.09850 4.79E−05 2.00093
0.00625 5.26E−02 0.01195 1.13E−02 0.02846 7.70E−03 0.09673 1.25E−02 0.20976 1.42E−02 0.01336 1.20E−05 1.99807
0.003125 5.40E−02 – 1.12E−02 0.00704 6.94E−03 0.14837 1.15E−02 0.12823 1.39E−02 0.03092 3.00E−06 2.00081
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