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Abstract In this paper an explicit finite-difference time do-
main scheme developed in staggered grids is used to solve
the Maxwell’s equations in Drude medium. Besides the
preservation of discrete zero-divergence condition in elec-
tric and magnetic fields, we also aim to conserve the in-
herent conservation laws in simple medium all the time us-
ing the temporally second-order accurate explicit symplec-
tic partitioned Runge-Kutta scheme. Within the framework
of a semidiscretized method, the first-order spatial deriva-
tive terms in Faraday’s and Ampère’s equations are approxi-
mated to get an accurate numerical dispersion relation equa-
tion. The derived numerical angular frequency is accurately
related to the wavenumber of Maxwell’s equations for the
space centered scheme of fourth-order accuracy. The result-
ing symplectic finite difference scheme developed in the
time domain minimizes the difference between the exact and
numerical group velocities. This newly proposed scheme is
applied to model EM waves in the unmagnetized plasma
crystal which contains a defect layer in photonic crystal. Our
purpose is to numerically study the effects of defect layers
on the propagation insight.
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1 Introduction

Maxwell’s equations in vacuum have a geometric sym-
plectic structure. Numerical simulation of these equations
should discretely preserve their mathematically embedded
Hamiltonians and Casimirs at all times [1]. In the absence of
discrete symplecticity, design of a long-range high-quality
optical device by numerical methods is at risk. Approxi-
mation of the first-order spatial derivative terms is required
to avoid yielding larger numerical dispersion error. Other-
wise, the introduced error of the dispersive type can pro-
duce a poorly predicted propagation speed and, as a result,
may further generate unphysically oscillatory solution. Be-
side the error generated in the approximation of time and
space derivative terms, numerical simulation of Ampère’s
and Faraday’s equations is constrained to satisfy Gauss’s
law in discrete context [2]. These theoretical considerations
have prompted scheme development to be aimed at preserv-
ing dispersion-relation equation, enforcing divergence-free
conditions for electric and magnetic fields, and conserving
symplecticity in non-staggered (or colocated) grids.

Our previously developed scheme [3] will be extended
in this study to solve the Maxwell’s equations for the
frequency-dependent Drude medium. Instead of minimizing
the numerical modified wavenumber derived in [3, 4], the
difference between the numerical and exact group velocities
is minimized in this study for achieving the goal of rigor-
ously relating the time increment to the grid spacing while
solving the transverse magnetic (TM) wave equations. The
need of deriving the numerical dispersion relation equation
by minimizing the dispersive errors of different kinds moti-
vates the use of the explicit partitioned Runge-Kutta (PRK)
non-iterative scheme [4] rather than the implicit Runge-
Kutta symplectic scheme applied earlier in [3]. In addition,
the classical Yee’s staggered grid approach [5] is adopted
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in this study. In [3] and [4], the less explored non-staggered
grid approach was employed for the satisfaction of discrete
Gauss law.

To avoid the unphysical wave reflection from a truncated
boundary, we can either prescribe a proper radiation con-
dition along the truncated boundary or attach a layer of fi-
nite width to a region immediately adjacent to the truncated
boundary. The well known CPML (Convolutional Perfectly
Matched Layer) approach of Roden [6] is employed in this
study to effectively absorb reflected waves.

While performing numerical simulation in time domain,
one can adopt explicit or implicit schemes. The uncondition-
ally stable implicit scheme has the advantage of allowing
use of a larger time step while solving Maxwell’s equations.
On the other hand, use of the implicit type time integrator
requires an expensive matrix calculation, possibly requiring
considerable memory storage. The computational cost can
be large, in particular for a three-dimensional EM wave sim-
ulation. To circumvent these difficulties using an implicit
scheme without the constraints imposed on the Courant
stability condition, the alternating direction implicit (ADI)
technique [7] and the concept of factorization-splitting [8]
can be applied to reduce the matrix size. The consequence
is that calculation of Maxwell’s equations becomes compu-
tationally much less intensive.

In this study we aim to get a dispersively more accurate
solution through the optimization of the numerical group ve-
locity of the EM wave. As a result, an explicit method needs
to be adopted so as to be able to get the explicit expression
for the numerical dispersion relation equation. One can re-
fer to [9] for a comprehensive review of the time-domain
methods applied for solving the Maxwell’s equations.

In periodic optical structures, electromagnetic waves
with a specific wavelength cannot propagate in photonic
crystals because of the possible strong scattering effect,
thereby leading to the formation of bandgaps in photonic
crystals. Bandgap is a forbidden energy zone where EM

waves can not be transmitted through the material. Like
the defect state generated in the forbidden band in doped
semiconductors, defect layers can be also added to photonic
crystals to break their spatial periodicity. Under some cir-
cumstances, this can decrease, therefore, producing a strong
scattering effect. This phenomenon in photonic bandgaps is
investigated in this study under different defect conditions.
Four conditions, namely, the dielectric constant of the defect
layer, the location of the defect layer, the number of periods
for the periodic bilayer, and the width of the defect layer
can very often affect the defect mode in plasma photonic
crystals. They will be studied in terms of the transmission
coefficient.

The rest of this paper is organized as follows. In Sect. 2,
Maxwell’s equations applicable to simulation of EM waves
in non-dispersive and dispersive media are presented in free

space as well as in perfectly matched layers. A splitting so-
lution algorithm is applied to the ideal Maxwell equations.
These lossless equations can then be rigorously approxi-
mated not only in space but also in time. In Sect. 4, the
explicit PRK symplectic temporal scheme developed to con-
serve the Hamiltonian for the ideal Maxwell equations is ap-
plied. Employment of this non-iterative explicit scheme en-
ables us to derive the numerical dispersion relation equation.
In Sect. 5 development of the scheme which is featured with
optimized numerical group velocities are detailed. We first
analytically verify the proposed numerical method. This is
followed by discussion of the results predicted in the inves-
tigated Drude medium in Sect. 6. Finally, some concluding
remarks are drawn in Sect. 7.

2 Working equations

The dispersive medium permittivity and permeability in dis-
persive media are, as usual, functions of optical frequency.
In the current numerical study, in the time domain, only the
electric permittivity is assumed to be frequency-dependent
for simplicity. The electric permittivity ε(t) (≡ εrεo) is
equal to (1 + χ)ε0, where εr (≡ 1 + χ) is the relative per-
mittivity, χ(t) the electric susceptibility, t the time, and ε0

the vacuum permittivity.
For a dispersive medium whose magnetic permeability

is frequency independent, the Ampère’s and Faraday’s laws
respectively are represented below in time domain for the
electric field variable E and the magnetic field variable H

∂

∂t

(
ε(x, t) ∗ E(x, t)

) = ∇ × H − J d, (1)

μ
∂H

∂t
= −∇ × E. (2)

In Eq. (2), μ is identical to μ0μr . The optical properties μ0

and μr represent the free-space magnetic permeability and
the relative magnetic permeability respectively. The polar-
ization current J d shown in (1) varies with the dispersive
optical medium under investigation. For simplicity, both of
the volume electric and magnetic current densities are as-
sumed to be zero under the source-free condition. The re-
sulting differential system is solved subject to Gauss’s equa-
tions ∇ · B = ∇ · D = 0 in the context of electromagnetic
equations. The notation “∗” in Eq. (1) denotes the convolu-
tional operator, defined as f (t)∗g(t) = ∫ t

0 f (t − τ)g(τ ) dτ

for arbitrary functions f (t) and g(t).
Three constitutive models, namely, the Debye, Drude and

Lorentz dispersive media have been frequently employed in
electromagnetic wave simulation. The susceptibility func-
tions χ(ω) for these media vary with time t and frequency ω.
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The vector equation used for modeling the polarization cur-
rent is given below for the currently investigated Drude dis-
persive medium

γp

∂J d

∂t
+ ∂2J d

∂t2
= ε0ω

2
p

∂E

∂t
. (3)

In the above, ωp (≡ 2πfp) is the Drude pole frequency of
the medium. The inverse of the pole relaxation time is de-
noted as γp (≡ 20 GHz). The susceptibility and the rel-

ative electric permittivity are given as χ(ω) = − ω2
p

ω2−jωγp
,

χ(t) = ω2
p

γp
(1 − e−γpt )u(t) and εr(ω) = ε∞ − ω2

p

ω2−jωγp
.

When simulating electromagnetic wave propagation, the
analysis domain must be truncated. Truncation of the phys-
ical domain can unfortunately lead to reflection of waves
from the truncated boundary if not carefully treated. If a
wave re-enters the domain of interest, the numerically gen-
erated wave will interact with incident waves. To reduce the
unphysical reflection from truncated boundaries, one can
prescribe a proper set of differential equations along the
truncated boundary or attach a finite width layer to absorb
reflected waves. A convolutional perfectly matched layer is
attached to the truncated boundary in this study.

The TM-mode Maxwell equations in the convolutional
perfectly matched layer (CPML) are recast as follows in the
time domain [6]

∂Ez

∂t
= 1

ε0εr

(
1

kx

∂Hy

∂x
− 1

ky

∂Hx

∂y
− J d,z + ψEz,x − ψEz,y

)
,

∂Hx

∂t
= − 1

μ0μr

(
1

ky

∂Ez

∂y
+ ψHx,y

)
,

∂Hy

∂t
= 1

μ0μr

(
1

kx

∂Ez

∂x
+ ψHy,x

)
.

(4)

In the above, ki (i = x, y) denotes the wavenumber along
the i direction. The notation ψw,v is defined as ζw(t) ∗
∂Hv(t)/∂w, where ζw(t)∗∂Hv(t)/∂w or ζw(t)∗∂Ev(t)/∂w

(w = x, y; v = x, y) denotes the convolutional term. To
reduce the computational time for the calculation of ab-

sorption terms ψn
Ez,x

, ψn
Ez,y

, ψ
n+ 1

2
Hx,y

and ψ
n+ 1

2
Hy,x

, one can ap-

proximate them as ψn
Ez,x

= bx · ψn−1
Ez,x

+ cx · ∂Hn
y

∂x
, ψn

Ez,y
=

by · ψn−1
Ez,y

+ cy · ∂Hn
x

∂y
, ψ

n+ 1
2

Hx,y
= by · ψ

n− 1
2

Hx,y
+ cy · ∂E

n+ 1
2

z

∂y
,

ψ
n+ 1

2
Hy,x

= bx · ψ
n− 1

2
Hy,x

+ cx · ∂E
n+ 1

2
z

∂x
. Both of the coefficients

bw and cw take the exponential forms given below

bw = e
(−( σw

ε0kw
+ aw

ε0
)�t);

cw = σw

σwkw + k2
waw

(
e
(−( σw

ε0kw
+ aw

ε0
)�t) − 1

);w = x, y.

(5)

The subscript w denotes x or y and σw = σmax(
d−w

d
)m,

aw = amax(
d−w

d
)ma , kw = 1 + (kmax − 1) · ( d−w

d
)m.

3 Solution algorithm

The equations shown in (4) consist of the ideal Maxwell
equations, polarization current term J d , and absorption term
in the convolutional perfectly matched layer. The quality of
simulating EM wave propagation in a dispersive medium
characterized by the constitutive equation for the relative
electric permittivity εr depends therefore on the scheme ap-
plied to solve Maxwell’s equations in free space. The em-
ployed constitutive equation is also essential for simulation
quality for the polarization current. In addition, the function
of the convolutional terms in the CPML equations is to ab-
sorb possibly reflected waves from the truncated boundary.
The entire set of equations in (4) is therefore decomposed
into the ideal Maxwell’s equations, the constitutive equation
for the Drude medium, the polarization current of the opti-
cal medium, and the prescribed wave absorption coefficient
in CPML. We need therefore to solve them separately using
their respective suitable numerical methods.

Beside the numerical methods employed to calculate the
absorption terms ψHx,y , ψHy,x , ψEz,x , and ψEz,y and the po-
larization current, the numerical quality of solving the wave
equations in Drude medium depends highly on the scheme
applied to approximate the following Maxwell’s equations
in vacuum

∂Ez

∂t
= 1

ε0εr

(
1

kx

∂Hy

∂x
− 1

ky

∂Hx

∂y

)
,

∂Hx

∂t
= − 1

μ0μr

(
1

ky

∂Ez

∂y

)
,

∂Hy

∂t
= 1

μ0μr

(
1

kx

∂Ez

∂x

)
.

(6)

The necessity of applying a proper temporal discretization
scheme is described first in Sect. 4 to preserve symplecitic
structure in the above Hamiltonian differential system. One
needs also to optimize the dispersion relation equation de-
scribed in Sect. 5 to approximate the first-order spatial
derivative terms. In the current EM wave simulation, our
goal is to rigorously determine the users’ prescribed values
of �t and �x. Given the set of independent variables �t and
�x, we aim to get the corresponding weighting coefficients
a1, a2 and a3 in (13) so that the numerical dispersion rela-
tion equations for the Ampère’s and Faraday’s equations can
be obtained at all spatial locations of the physical domain.
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4 Explicit partitioned Runge-Kutta temporal
discretization

In a homogeneous, lossless and sourceless medium, Fara-
day’s and Ampère’s equations constitute a Hamiltonian dif-
ferential system because of the existence of two canoni-
cal functions given by ∂E

∂t
= δH

∂H
and ∂H

∂t
= − δH

∂E
. For the

Maxwell equations investigated in a simple medium, the fol-
lowing Hamiltonian functional Hh exists in the domain Ω

[10]

Hh(H,E) = 1

2

∫

Ω

(
1

ε
H · ∇ × H + 1

μ
E · ∇ × E

)
dΩ. (7)

Equations in (6) also conserve the two invariants (or energy
densities I and II) given below

W1(t) =
∫

Ω

(εE · E + μH · H)dΩ, (8)

W2(t) =
∫

Ω

(
ε

∣∣∣∣
∂E

∂t

∣∣∣∣

2

+ μ

∣∣∣∣
∂H

∂t

∣∣∣∣

2 )
dΩ. (9)

If one intends to preserve symplectic structure and con-
serve total energy in the frequency-independent Maxwell’s
equations, the symplectic scheme of implicit or explicit type
should be adopted. In addition to the preservation of sym-
plectic structure along the time direction, we also aim to de-
velop a dispersively more accurate spatial scheme. Our strat-
egy is to derive a scheme with the numerical dispersion rela-
tion equation for Maxwell’s equations that is equal to its ex-
act dispersion relation equation. The numerical angular fre-
quency shall therefore be derived in terms of the wavenum-
bers. However, it is difficult to achieve the goal by applying
any symplectic-type Runge-Kutta scheme since the resulting
formulation involves a coupled set of solution steps to de-
rive the numerical dispersion relation equation. The follow-
ing explicit symplectic PRK scheme is therefore employed
to minimize the difference between the exact and numerical
group velocities for the investigated separable Hamiltonian
system of TM-mode Maxwell equations

H ∗ = Hn − dt

2μ
∇ × En, (10)

En+1 = En + dt

ε
∇ × H ∗, (11)

Hn+1 = H ∗ − dt

2μ
∇ × En+1. (12)

5 Derivation of the group velocity preserving scheme

The first-order Ampère’s and Faraday’s equations are first
transformed to their respective equivalent second-order

equations ∂2E

∂t2 = 1
εμ

∇2E and ∂2H

∂t2 = 1
εμ

∇2H . Because of

these two equations, we shall correctly approximate the
semidiscretized Faraday’s equation H ∗ = Hn − dt

2μ
∇ × En

using the centered space scheme for the term ∂Ez

∂x
. At the

interior point i in a grid system of constant grid spacing �x,
the derivative term ∂Ez

∂x
is approximated by the following

equation

∂Ez

∂x

∣∣∣∣
i

= 1

�x

[
a1(Ez|i−5/2 − Ez|i+5/2)

+ a2(Ez|i−3/2 − Ez|i+3/2)

+ a3(Ez|i−1/2 − Ez|i+1/2)
]
. (13)

Following the substitution of the above centered approxi-
mation equation for ∂Ez

∂x
|n into Eq. (10) and then the re-

sulting magnetic field solution H ∗ into Eq. (11), the dis-
cretized Ampère’s equation is derived as follows by virtue
of the equations Hn = H 0 − dt

2μ
∇ × En and ∇ × H 0 =

ε
�t

(En − En−1)

Ez|n+1
i = 2Ez|ni − Ez|n−1

i

+ c2�t2

�x2

[
a2

1Ez|ni−10/2 + 2a1a2Ez|ni−8/2

+ (
2a1a3 + a2

2

)
Ez|ni−6/2

+ 2a3(−a1 + a2)Ez|ni−4/2

+ (−2a1a2 − 2a2a3 + a2
3

)
Ez|ni−2/2

+ (−2a2
1 − 2a2

2 − 2a2
3

)
Ez|ni

+ (−2a1a2 − 2a2a3 + a2
3

)
Ez|ni+2/2

+ 2a3(−a1 + a2)Ez|ni+4/2

+ (
2a1a3 + a2

2

)
Ez|ni+6/2 + 2a1a2Ez|ni+8/2

+ a2
1Ez|ni+10/2

]
. (14)

In the above, H 0 denotes the calculated value of H at
t = (n + 1

2 )�t . The algebraic equation for Faraday’s equa-
tion can be similarly derived below using the equations
Hn = H 0 − �t

2μ
∇ × En, En = En−1 + �t

ε
∇ × H 0 and

H 0 = Hn−1 − �t
2μ

∇ × En−1

Hy |n+1
i = 2Hy |ni − Hy |n−1

i

+ c2�t2

�x2

[
a2

1Hy |ni−10/2 + 2a1a2Hy |ni−8/2

+ (
2a1a3 + a2

2

)
Hy |ni−6/2

+ 2a3(−a1 + a2)Hy |ni−4/2

+ (−2a1a2 − 2a2a3 + a2
3

)
Hy |ni−2/2

+ (−2a2
1 − 2a2

2 − 2a2
3

)
Hy |ni
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+ (−2a1a2 − 2a2a3 + a2
3

)
Hy |ni+2/2

+ 2a3(−a1 + a2)Hy |ni+4/2

+ (
2a1a3 + a2

2

)
Hy |ni+6/2 + 2a1a2Hy |ni+8/2

+ a2
1Hy |ni+10/2

]
. (15)

The parameters a1, a2 and a3 shown above are to be prop-
erly determined to close the algebraic system of the discrete
Maxwell’s equations.

To get a good overall simulation accuracy, our strategy
of determining a1, a2 and a3 is to reduce both of the am-
plitude and phase errors generated in the approximation of
Ampère’s and Faraday’s equations. The modified equation
analysis of second kind is performed first on Eq. (14) or (15)
by expanding the terms φi±5/2, φi±3/2 and φi±1/2, where φ

is E or H , in Taylor series with respect to φi . We elimi-
nate the first two leading discretization errors shown in the
derived modified equation. This elimination of error terms
enables us to get the following two algebraic equations

25a2
1 + 9a2

2 + a2
3 + 30a1a2 + 10a1a3

+ 6a2a3 + 5a1 + 3a2 + a3 = 0, (16)

1250a2
1 + 162a2

2 + 2a2
3 + 20a1a2a3

(
102

a3
+ 13

a2
+ 3

a1

)

+ 125a1 + 27a2 + a3 + 2Cr2(5a1 + 3a2 + a3) = 0.

(17)

In Eq. (17), Cr(≡ c�t
�x

) denotes the Courant number (or CFL

number), where c = (εμ)
1
2 .

One drawback of applying a finite difference method to
solve differential equations in the time domain is the associ-
ation with the accumulated errors stemming from numerical
instability, dispersion, while performing anisotropy [11]. In
the derivation of the third equation, we perform a Von Neu-
mann stability analysis for ensuring scheme stability, while
performing minimization analysis of numerical group ve-
locity error for reducing dispersion and anisotropy errors.
In the following, the dispersion analysis will be carried out
first. This is done by performing a Fourier stability analy-
sis to determine the free parameters that can render a con-
ditionally stable explicit symplectic scheme. The proposed
scheme, having almost zero anisotropy error, will be numer-
ically demonstrated to be applicable to EM wave prediction.

When simulating a wave equation, it is essential to re-
duce the predicted error in wave speed since it is a function
of frequency and propagation angle. Provided that a very
small numerical phase or group velocity error is generated,
this error may be continuously accumulated and the long-
term simulation quality will seriously deteriorate. To get a
higher dispersion accuracy, the numerical angular frequency

for the differential system of Ampère’s and Faraday’s equa-
tions should correctly relate to the wavenumber. The last re-
quired algebraic equation is therefore derived by minimizing
the difference between the numerical and exact group ve-
locities. Minimization of dispersive errors starts from trans-
forming the equation in space-time domain (x, t) to its cor-
responding frequency-wavenumber space (ω, kx). By sub-
stituting the plane-wave solutions Ez|ni = E0

z e
I (ωn�t−kx i�x)

and Hy |ni = H 0
y eI (ωn�t−kx i�x) into the differential equa-

tion (14) or (15), the numerical dispersion relation equation
relating the angular frequency ω with the wavenumber kx

ωnum�t = cos−1
[
c2�t2

2�x2

(
2a2

1 cos(5kx�x)

+ 4a1a2 cos(4kx�x)

+ 2
(
2a1a3 + a2

2

)
cos(3kx�x)

+ 4a3(−a1 + a2) cos(2kx�x)

− 2
(−2a1a2 − 2a2a3 + a2

3

)
cos(kx�x)

− (−2a2
1 − 2a2

2 − a2
3

)) + 1

]
. (18)

For reducing numerical error of the dispersive type
as much as possible, the difference between the exact
group velocity ∂ωexact

∂kx
and the numerical group velocity

∂ωnum
∂kx

is minimized in this study. Note that the disper-

sion relation equation ω2
exact = c2k2

x relates the angular fre-
quency ωexact exactly with the wavenumber kx in the one-
dimensional Maxwell’s equations. The error function de-
fined by [ ∂ωnum

∂kx
− ∂ωexact

∂kx
]2 is minimized within the integral

range −mπ ≤ γ ≤ mπ given below

E =
∫ mπ

−mπ

[
∂ωnum

∂kx

− ∂ωexact

∂kx

]2

W(γ )dγ. (19)

In the above, γ (= hkx ) denotes the scaled wavenumber. In-
clusion of the weighting function W(γ ), which is currently
chosen to be the denominator of [·]2, is to make it possi-
ble to analytically integrate Eq. (19). By enforcing ∂E

∂a3
= 0,

we can get a third algebraic equation. This equation derived
through the minimization procedure at m = 1

2 , which en-
ables us to get the most accurate result, is used together
with the remaining two algebraic equations derived previ-
ously by the modified equation analysis of second kind. The
resulting introduced coefficients in (13) are a1 = −0.00805,
a2 = 0.07443 and a3 = −1.18302.

Through the minimization of the dispersive error in
wavenumber space and the modified equation analysis for
∂Hx

∂x
, the proposed centered difference scheme accommod-

ing the property of yielding the best numerical group ve-
locity is shown to have the spatial accuracy of fourth order

since ∂Hx

∂x
= ∂Hx

∂x
|exact − 0.015115 h4 ∂5Hx

∂x5 + O(h6) + · · · .
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To get more insight into the dispersive nature of the pro-
posed scheme, the difference between the exact and numer-
ical angular frequencies has been plotted versus wavenum-
ber in [12] at different values of Cr and m. For the proposed
scheme, very accurate numerical angular frequency can be
obtained for the wavenumber smaller than 1.5. The derived
numerical dispersion relation plotted in [12] also shows a
better agreement between the exact and numerical group ve-
locity when compared with Yee’s scheme.

Derivation of the stability condition for the above pro-
posed explicit scheme starts from scaling the field variables

by E =
√

μ
ε
E∗ or H =

√
ε
μ
H ∗. The set of equations in (6)

can then be rewritten as follows for V = H ∗ + IE∗, where
I is (−1)1/2, in normalized space

1

ν

∂V

∂t
= I∇ × V . (20)

It is noted that ν = √
εμ and Eq. (20) is valid at μ = ε = 1.

The superscript “∗” is omitted now for the sake of simplicity.
Following the work of Taflove and Brodwin [13], the sta-

bility condition will be derived by considering the eigen-
value problem containing the following two equivalent
equations

∂V

∂t
= λV , (21)

Iν∇ × V = λV . (22)

Equation (21) is approximated by V n+ 1
2 − V n− 1

2 = λ�tV n

using the proposed symplectic time stepping scheme given

in Sect. 4. The amplification factor G(= V
n+ 1

2

V n ) can be

derived from G2 − (λ�t)G − 1 = 0, thereby leading to

G1,2 = λ�t
2 ± (1 + ( λ�t

2 )2)
1
2 . The conditionally stable ex-

plicit scheme proposed in this study is found by demanding
Re(λ) = 0

∣∣Im(λ)
∣∣ ≤ 2

�t
. (23)

Substitution of ∂V

∂t
= λV into Eq. (22) yields 1

ν

∂V

∂t
=

I∇ × V or Iν(
∂Vz

∂y
) = λVx , Iν(− ∂Vz

∂x
) = λVy and Iν(

∂Vy

∂x
−

∂Vx

∂y
) = λVz. These equations can be recast into the matrix

form FV = 0, where

F =

⎛

⎜⎜
⎝

−λ 0 2ν
Fy

�y

0 −λ −2ν Fx

�x

−2ν
Fy

�y
2ν Fx

�x
−λ

⎞

⎟⎟
⎠ . (24)

In the above, Fx = a1 sin( 5
2kx�x) + a2 sin( 3

2kx�x) +
a3 sin( 1

2kx�x) and Fy = a1 sin( 5
2ky�y)+ a2 sin( 3

2ky�y)+
a3 sin( 1

2ky�y). One can get the unique solution V from the

Fig. 1 The amplification factor magnitude |G| is plotted with respect
to the modified (or scaled) wavenumber β (≡ kx�x) at different val-
ues of Cr (≡ c�t

�x
) using the Yee’s scheme [5] and the proposed numer-

ical group velocity-optimized scheme. (a) Yee’s scheme; (b) proposed
scheme

matrix equation FV = 0 provided that the determinant of
the matrix F is equal to zero. Calculation of the eigenval-

ues from det(F ) = 0 leads to λ2 = −4ν2(
F 2

x

�x2 + F 2
y

�y2 ). The

values of λ for all the possible wavenumbers kx and ky exist
under

∣∣Im(λ)
∣∣ ≤ 2ν

(
max(F 2

x )

�x2
+ max(F 2

y )

�y2

) 1
2

. (25)

Subject to the constraint equations (23) and (25), the
stability equation required to get the convergent solution

is given by �t ≤ 1
ν
(

max(F 2
x )

�x2 + max(F 2
y )

�y2 )− 1
2 . By substitut-

ing the derived coefficients a1, a2 and a3 into the derived
equation for stability sake, one can get the stability condi-
tions for the one-dimensional Maxwell’s equations, which
is �t ≤ 0.78693�x

ν
, and for the two-dimensional Maxwell’s

equations, which is �t ≤ 0.57095h
ν

. We can clearly see
from Fig. 1 that the Courant number should be smaller than
0.78 to get a stable solution while using the proposed ex-
plicit scheme. In comparison with the stability condition
of Yee’s scheme, which is 0 < Cr < 1, one needs to use a
smaller time step. Our group velocity optimized scheme has,
however, a much higher order of accuracy and better phase
characteristics as plotted in Fig. 2.

The explicit symplectic PRK scheme developed in stag-
gered grids is verified by solving the TM-mode Maxwell’s
equations in free space at μ = 1 and ε = 1. In this study
the TM-mode equation amenable to the analytical solution
Ez(x, t) = sin(x − t) and Hy(x, t) = − sin(x − t) is solved
subject to the initial solenoidal solutions Ez(x,0) = sin(x)

and Hy(x,0) = − sin(x) in −2 ≤ x ≤ 2. According to the
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Fig. 2 The predicted relative phase error φ
φe

is plotted with respect to
the modified (or scaled) wavenumber β (≡ kx�x) at different values
of Cr (≡ c�t

�x
) using the Yee’s scheme [5] and the proposed numer-

ical group velocity-optimized scheme. The phase angle φ is equal to
tan−1(

Gi

Gr
), where Gr and Gi represent respectively the real and imagi-

nary parts of the amplification factor G. (a) Yee’s scheme; (b) proposed
scheme

Table 1 The predicted error norms for Ez and the CPU seconds
needed to get the results at t = 50 (s). The results are obtained at
Cr = 0.2 and m = 1

2

Cr L2-error norm CPU time (s)

0.1 2.7206E-04 9.36E-02

0.2 2.3043E-04 6.24E-02

0.3 8.4952E-04 4.68E-02

0.5 4.7218E-04 3.12E-02

0.7 9.0107E-04 3.12E-02

0.8 Infinity

0.9 Infinity

computed error norms tabulated in the Table 1, the proposed
scheme with the optimized numerical group velocity in free
space for the TM-mode Maxwell’s equations is verified. The
Hamiltonian defined in (7) and the energy densities I and II
in (8–9) plotted with respect to time in Fig. 3 do not change
with time. The proposed explicit partitioned Runge-Kutta
symplectic scheme is verified to retain the symplectic nature
in Maxwell’s equations.

Fig. 3 Comparison of the computed and exact values of W1 (or the en-
ergy density I), shown in (8), and W2 (or the energy density II), shown
in (9), with respect to time

6 Numerical results

Like the motion of electrons in semiconductors, photonic
crystals, which are periodic optical nanostructures, can af-
fect also the motion of photons and therefore the propaga-
tion of EM waves. In the following, we consider the one-
dimensional problem studied previously in [14–16] to learn
some of the distinguished features of photonic crystal struc-
tures. The problem under investigation has a periodic array
containing the alternating thin plasma and dielectric mate-
rial, or plasma photonic crystals.

The plasma photonic crystal shown in Fig. 4 is com-
posed of alternating thin plasma of width b, dielectric ma-
terial of width a, and a single defect layer of width c∗. The
optical constants used in this study are the same as those
used in [14, 15]. In the calculation we consider ε1 = 7 for
the non-defect dielectric and ε2 = 4.5 for the defect dielec-
tric. The plasma under current investigation is featured with
ωp = 10π × 109 rad/s and γ = 2 × 109 rad/s. The location
of the defect layer is denoted as M and the number of peri-
ods of periodic bilayer is N . All the results are computed at
N = 6, M = 7, a = b = c∗ = 1 cm.

The wave in the frequency range of 0–15 GHz propagates
from left to right in an unmagnetized plasma photonic crys-
tal of length 13 cm. For preventing any erroneous wave re-
flection back to the domain under investigation, ten-layered
CPMLs of length 1 mm are attached to both ends of the
physical domain. The results obtained at �t = 2 ps are used
to reveal the effects of N , M , c∗ and ε2 on the transmission
coefficient (TC)

TC(dB) = 20 log10

[
FFT(total field)

FFT(incident field)

]
. (26)
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Fig. 4 Schematic of the problem studied in [14] for doped defect layer
in the unmagnetic plasma photonic crystal

Fig. 5 Comparison of the predicted transmission coefficients (TC) de-
fined in (26) with respect to the incident wave frequencies at different
values of the relative permittivity εr

The dielectric constant of the defect layer has an effect
on the wave transmission along the plasma photonic crystal.
For this reason, such an effect is studied first by changing
the values of ε2, which are 2.3, 4.5, 7 and 8.2.

One can find from the current simulated results in Fig. 5
that the forbidden band width varies slightly. Also, the peri-
odic wave behavior remains almost unchanged in compari-
son with the computed result without taking the defect layer
into consideration. The peak transmission is changed dra-
matically. At the constant values of ε1 = ε2 = 7, no defect
mode has been observed from the simulated results. Unlike
the case free of a defect layer, the simulated defect mode
moves toward the direction of a higher frequency when the
value of ε2 (= 2.3 or 4.5) becomes smaller than ε1 = 7.
On the contrary, when the value of ε2 (= 8.2) is larger than
ε1 (= 7) the defect mode is seen to move towards the direc-
tion of lower frequency. As the value of ε2 keeps increasing,
the transmission coefficient approaches zero with the birth
of a defect mode sitting on the left side of the forbidden

Fig. 6 The contoured values of the relative permittivity εr are plotted
with respect to the frequencies of incident wave

Fig. 7 Comparison of the simulated transmission coefficients (TC)
with respect to the incident wave frequencies at different values of M

band. All simulated results plotted in Fig. 5 agree with those
predicted earlier in [14].

For a better understanding of the effect of ε2

(1 < ε2 ≤ 10) on the wave propagation in plasma photonic
crystal, we plot the value of relative permittivity in Fig. 6
with respect to frequency. The simulated defect modes are
almost periodically distributed regardless of the value of ε2.
The effects of the defect layer location and the number of pe-
riods of the periodic bilayer on the wave propagation along
the plasma photonic crystal are also investigated. We inves-
tigate first the effect of defect layer locations by adding a
defect layer respectively at M = 3,5,7,9 and 11. In Fig. 7,
all the defect modes are seen to occur in the same fre-
quency range regardless of the defect layer location. Similar
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Fig. 8 Comparison of the simulated transmission coefficients (TC)
with respect to the incident wave frequencies at different values of N

to the predicted result in [14], the peak transmission coef-
ficient increases as the defect layer is located at a point lo-
cated closer to the center of the photonic crystal. The doped
defect layer is therefore known to have a greater impact
(or destruction) on the photonic crystal when its location
is closer to the crystal center. The predicted peak around
12.5 GHz is larger than the magnitude of 11.25 GHz pre-
dicted in [14].

Discussion of the results is followed by changing the val-
ues of N (= 2,4,6,8,12) to investigate the effect of the
number of periods in the plasma photonic crystal. At the
smallest value of N = 2, both of the forbidden band and the
defect mode are not clearly observed. As N is larger than 4,
forbidden bands become clearly observed in the predicted
results shown in Fig. 8. With increasing values of N , the
number of peaks in the transmission coefficient increases to
two. The range of the defect mode frequency remains how-
ever almost unchanged regardless of the values of N . The
physical reason for these predicted results is due mainly to
the interaction between the EM waves and the reflection
waves resulting from the defect layer. As the value of N in-
creases, the peak transmission coefficient decreases accord-
ingly because of the dissipative nature and the larger plasma
absorption coefficient.

The defect layer width is also taken into account by
changing the values of c∗ (which are 8, 10, 11, 13 and
38 mm). According to Fig. 9, one can observe from the pre-
dicted results that the frequency range of the defect mode
shifts towards the direction of a higher frequency as the de-
fect layer width becomes smaller. On the contrary, the in-
creased defect layer width results in a shift of the defect
mode directing towards a lower frequency. As the width be-
comes large enough, no wave is permitted to pass through

Fig. 9 Comparison of the simulated transmission coefficients (TC)
with respect to the incident wave frequencies at different values of a
single defect layer of width c∗ shown in Fig. 4

Fig. 10 Comparison of the simulated transmission coefficients (TC)
with respect to the incident wave frequencies at two different values of
c∗ shown in Fig. 4

the photonic crystal. Under the circumstances, a newly born
defect mode becomes visible and takes its position on the
left side of the forbidden band. As the width of the defect
layer keeps increasing to 38 mm, one newly born defect
mode appears, as shown in Fig. 10. Such an increase of the
defect mode is due possibly to the enhanced interaction be-
tween the propagation wave along the positive direction and
the wave reflected from the defect layer. A decreasing defect
mode frequency and an increasing interferenced wavelength
therefore result.
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7 Concluding remarks

A finite difference scheme is rigorously developed to simu-
late Maxwell’s equations in the frequency-dependent Drude
medium. Our aim is to preserve the symplectic property in
the ideal Maxwell equations. Also, we aim to optimize the
numerical group velocity in free space. The results obtained
from the proposed explicit symplectic PRK method in Drude
medium agree excellently with the analytical result. The ef-
fect of the defect mode in unmagnetized plasma photonic
crystals is then investigated using the proposed symplectic-
ity and group-velocity preserving scheme.
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