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In this article we develop a dispersively more accurate pure advection scheme and apply it to

properly simulate incompressible free surface flow equations. According to Clebsch velocity

decomposition, the incompressible flow equations are decomposed into the equations

accounting respectively for the flow potential, rotation, and dissipation. For the Euler

equation, the midpoint implicit symplectic time integrator is applied to approximate the

temporal derivative term. For the sake of reducing numerical dispersion error, the upwinding

scheme is developed to minimize the difference between the numerical and exact dispersion

relation equations for the time-dependent pure advection equation in wavenumber space.

1. INTRODUCTION

The inviscid Burgers’ equation for modeling the transport of high-speed gas is one
of the celebrated equations belonging to the class ofHamiltonian equations.When simu-
lating this class of practically and scientifically important equations, it is essential to take
its associated Hamiltonian properties into account using the symplectic numerical inte-
grators to preserve the embedded symplecticity. The objective of this article is to develop
a numerically stable and long-term accurate Euler flow solver. We will then apply it to
simulate the incompressible viscous fluid flow investigated at high Reynolds number.

Simulation of the incompressible Navier-Stokes equations at high Reynolds
numbers has been known to have many computational difficulties. One of the
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difficulties is associated with the approximation of the dominant nonlinear convec-
tion terms. Approximation of these spatial derivative terms needs to properly take
their dispersive nature into consideration. How to reduce the difference between
the exact and numerical dispersion relation equations motivates the current develop-
ment of an upwinding scheme in wavenumber space. The other numerical instability
problem encountered in incompressible flow simulation has relevance to approxi-
mation of the pressure gradient term in co-located grids. Suppression of these
numerically generated unphysical even–odd (or checkerboard) oscillations in the
pressure field motivated us to develop the center-type compact difference scheme
to properly approximate the pressure gradient term in nonstaggered grids. The third
numerical difficulty, which has been less addressed, is the time integrator applied to
approximate the temporal derivative terms shown in the equations of motion for an
incompressible fluid flow. As a fluid viscosity approaches zero, the equations of
motion subject to the divergence-free constraint condition for the flow velocity vec-
tor fall into the Hamiltonian class of equations [1]. A legitimate time integrator, as a
result, must be adopted for getting a proper approximation of the time derivative
terms. Otherwise, both of the Hamiltonian and Casimir properties embedded in
the incompressible Euler equations can by no means be well retained [2].

To resolve the above three numerical difficulties while solving the momentum
equations at high Reynolds numbers, we need to enforce the continuity equation in a
separate step. The theory of splitting the equations to be adopted underlies the
Clebsch velocity decomposition [3]. This velocity decomposition bears a similarity
to the distinguished Hodge decomposition of the velocity vectors in the incompress-
ible Navier-Stokes equations.

When performing a numerical calculation on the time-dependent partial
differential equations, one has to properly determine the grid spacing Dx and the time
increment Dt. These users–chosen values have been rigorously determined as usual by
conducting the modified equation analysis for the accuracy reason and performing

NOMENCLATURE

Cr Courant number

D tensor defined in (38)

E error function

Fr Froude number defined in (38)

G amplification factor

H Hamiltonian functional

H� smoothed Heaviside function defined

in (35)

J skew-symmetric transformation

k wavenumber

p pressure defined in Eq. (1)

Re Reynolds number

u velocity vector defined in Eq. (1)

W weighting function

We Weber number defined in (38)

b wave number

Dt increment time

Dx grid spacing

e Casimir functional

h phase angle

he Dirac delta function defined

in (36)

he exact phase angle

j curvature

ki Clebsch variable

m viscosity defined in (38)

mi Clebsch variable

q density defined in (38)

/ field variable

w streamfunction

x angular frequency
~xx vorticity

xexact exact angular frequency

xnum numerical angular frequency
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Von Neumann (or Fourier stability) analysis for the sake of stability enhancement. To
the best of the authors’ knowledge, very few or none of the previous studies have
attempted to develop a rigorous means so that Dt and Dx can be well paired in the entire
flow field to make the advective terms be equally predicted in each local flow field. For
this reason, we are motivated in this study to locally bridge Dt and Dx through the
derived optimized numerical modified wavenumber kDx, which is the function of
xDt, where x denotes the angular frequency. After choosing the values of Dt and Dx,
the discretized equation obtained at a locally varying Courant number can then be used
to get the dispersion relation equation–preserving solution.

The rest of this article is organized as follows. In Section 2, the incompressible
Navier-Stokes equations formulated in the primitive-variable form and the
three-step solution algorithm are presented. Some theoretical aspects of the Euler
equations useful for approximation of the pure advection equation are also outlined.
Numerical methods described in Sections 3 and 4 are developed for the approxi-
mation of the respective temporal and spatial derivative terms. The goal of approxi-
mating these derivative terms is to get better solution accuracy and at the same time
to enhance numerical stability. Section 5 is devoted to the analysis of the proposed
scheme. In Section 6, several benchmark problems are solved to justify the proposed
discretization scheme and the applied splitting solution algorithm. The ability to get
the long-term accurate solution is addressed in the result section. Some concluding
remarks will be drawn in Section 7.

2. GOVERNING EQUATIONS AND SOLUTION ALGORITHM

The primitive-variable Navier-Stokes equations for modeling flow motion of
an incompressible viscous fluid take the following form:

qu
qt

þ ðu � rÞu ¼ �rpþ 1

Re
r2u ð1Þ

r � u ¼ 0 ð2Þ

The above set of elliptic-parabolic differential equations derived for the primitive
variables ðu; pÞ (velocity vector, pressure) will be solved at a high Reynolds number
Re. As fluid viscosity becomes zero, the resulting system of inviscid equations consists
of the continuity Eq. (2) and the following incompressible Euler vector equation:

qu
qt

þ ðu � rÞu ¼ �rp ð3Þ

The velocity vector shown in Eqs. (2)–(3) can be theoretically expressed in
terms of the Clebsch variables ki and mi (i¼ 1, 2), thereby yielding the decomposed
velocity field uðx; tÞ ¼ �r/þ

P2
i¼1 k

irmi [3]. These Clebsch variables are the
Lagrangian invariants which remain unchanged along the fluid trajectory. In other
words, Clebsch variables can be regarded as the markers of vortex lines. The scalar
function /ðx; tÞ shown in the above velocity decomposition equation is determined
by r � u ¼ 0. The velocity vector is therefore the sum of the divergence-free part
and the gradient part of a scalar potential [4]. Based on the theory of Clebsch
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velocity decomposition [5], calculation of Eqs. (1)–(2) can be split to the respective
equations for the two velocity components.

Following the above rigorous velocity decomposition [5], Eqs. (1)–(2) will be
solved from the following three-step solution algorithm. To linearize the differential
Eqs. in (3), in the convection step the value of uðx; t ¼ nDtÞ is specified as u. The
following vector equation for u� is then solved in x with the velocity vector
u�jt¼tn ¼ un being prescribed along the boundary C(� @x):

qu�

qt
þ u � ru� ¼ 0 ð4Þ

It is worth noting here that the time integrator for Eq. (4) should be symplectic.
Otherwise, the well-known conserved quantities detailed in the next section cannot
be numerically retained. In the diffusion step, the following parabolic equation with
u��jt¼tn ¼ u�jt¼tnþ1 is solved:

qu��

qt
¼ 1

Re
r2u�� ð5Þ

The velocity vector can then be further updated in the final projection step by taking
the pressure gradient term into account:

qu���

qt
¼ �rpn ð6Þ

where u���jt¼tn ¼ u��jt¼tnþ1 . This updated vector u can be calculated from
unþ1 ¼ u��� � Dtrp0. Readers can refer to [1] for additional details about the
equation derived for the pressure-correction term p0 and the currently employed
projection solution algorithm.

3. SYMPLECTICITY-PRESERVING TEMPORAL SCHEME FOR THE
EULER EQUATIONS

The two-dimensional incompressible differential system containing Eqs. (2)–(3)
can be recast in terms of the vorticity ~xxðx; y; tÞð� r � uÞ ¼ �r2w. Note that the
streamfunction w is used to replace the continuity Eq. (1) by u¼ @w=@y and v¼
�@w=@x. Because of the elimination of divergence-free Eq. (2), the quality of
simulating the inviscid flow equations depends entirely on the following equation
for the scalar vorticity ~xx:

D~xx
Dt

¼ ~xxt þ u � r~xx ¼ 0 ð7Þ

The above equation can be also expressed as ~xxt ¼ �½w; ~xx�, where the operator [f, g]
performed on the scalar functions f and g is defined as fxgy� fygx [6]. Equation (7)
can be also expressed as the symplectic form given by ~xxt ¼ JðdH=d~xxÞ [7]. Note
that dH=d~xx, where dH ¼ Hð~xxþ d~xxÞ �Hð~xxÞ, is denoted as the functional or the
variational derivative of the Hamiltonian functional H. The skew-symmetric
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matrix J is equal to �qð~xx; �Þ � ð~xxx�y � ~xxy�xÞ
� �

. The Hamiltonian functional is
Hð~xxÞ ¼ � 1

2

R
Dw ~xx dx dy[7].

Because of the symplectic nature in the inviscid inviscid Euler equations,
this distinguished geometric structure must be taken into consideration to pre-
serve its inherent invariants [7]. The Euler equations cast in symplectic form have
at least three different invariants [7]. The first integral invariant is associated
with the Hamiltonian functional itself and is represented as dH=dt¼ 0. Another
embedded invariant, which is normally referred to as the momentum (or impulse)
invariant, involves the zero inner product of dH=d~xx and ~xxt, or (dH=dx, ~xxt)¼ 0.
The last invariant involves the so-called Casimir functional ~eeð~xxÞ, which is defined
by Jðd~ee=d~xxÞ ¼ 0. In the hydrodynamic context, the Casimir invariants include,
for example, helicity and entropy. The first and third invariants mentioned
above will be chosen to justify the proper approximation of the pure advection
equation.

It is now clear that the key to solving the Navier-Stokes equations turns out to
be the development of a numerical method to approximate the inviscid Burgers’
equation. Simulation of the nonlinear equation needs to linearize the equation first.
The following linearized equation for the field variable / is considered in a given flow
field u ¼ ðu; vÞ:

/t þ u � r/ ¼ 0 ð8Þ

We will take the one-dimensional equation utþ u ux¼ 0 as an example to illustrate
some of its intriguing mathematical properties. This model equation can be
rewritten in terms of the Poisson bracket fu, H1g as ut¼fu, H1g. The Poisson
bracket for the two arbitrary variables F and G is defined in [2] as fF ;Gg ¼
� 1

3

R
Du

dF
du

q
qx

dG
du � dG

du
q
qx

dF
du

� �
dx. The Poisson bracket fF, H1g turns out to be uux.

The Hamiltonian H1 denotes the kinetic-energy functional given by

H1 ¼
1

2

Z
D

u2 dx ð9Þ

The inviscid Burgers’ equation can be also expressed as ut¼fu, H2g provided
that the Hamiltonian defined below is adopted:

H2 ¼
1

6

Z
D

u3 dx ð10Þ

Under the circumstances, the noncanonical Poisson bracket is now changed to

fF ;Gg ¼ �
R
D

dF
du

q
qx

dG
du dx so as to get fu, H2g¼ u ux. The two invariants will be used

in the results section as the guideline to examine how well the numerical scheme
developed to solve the differential equation utþ uux¼ 0 can retain its embedded con-
servation laws.

Since Eqs. (4) and (5) play the key role of solving the incompressible
Navier-Stokes equations using the proposed three-step solution algorithm in
Section 2, a proper approximation of the temporal and spatial derivative terms will
be developed in this section. The symplecticity-preserving temporal scheme applied
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to solve the pure advection equation will be developed. Other rigorous means will be
also adopted in this study to approximate the spatial derivative terms in Section 4.1
so that the semidiscretized scheme has the optimized numerical dispersion relation
Eq. for (8). A similar idea will be applied to solve the linear two-dimensional pure
advection equation in Section 4.2. In Section 4.3, the sixth-order-accurate compact
difference scheme used to solve the time-dependent diffusion equation will be
presented.

Our current aim of conducting a temporal approximation of the linear model
equation (8) is to preserve its embedded symplectic property. The remaining spatial
derivative terms in the semidiscretized equation is then approximated in such a way
as to get the corresponding discrete equation having the optimized numerical disper-
sion relation equation for the case investigated in a constant velocity flow field
u ¼ ðu; vÞ.

The sixth-order-accurate implicit time-stepping scheme proposed in [8] has
been applied in [1] to preserve the symplectic structure in Eq. (8) iteratively. Since
we aim to develop a scheme having the optimized numerical dispersion relation
equation, only the noniterative symplectic time integrators can be chosen to derive
the explicit semidiscretized equation. To get a symplectic scheme with the best
numerical dispersion relation equation for the model Eq. (8), in this study the
noniterative second-order-accurate temporal scheme given below is applied at an
interior point i:

/nþ1
i � /n

i

Dt
¼ 1

2
ðu � r/nþ1 þ u � r/nÞ ð11Þ

4. TWO-DIMENSIONAL LINEAR ADVECTION SCHEME

After approximating the time derivative term in Section 3, we proceed to
discretize the first-order spatial derivative terms shown in (11). The scheme with
the optimized numerical dispersion relation equation will be developed first in
Section 4.1 for the one-dimensional equation and then in Section 4.2 for the
two-dimensional equation.

4.1. One-Dimensional Scheme with Optimized Numerical
Dispersion Relation Equation

The spatial derivative term @/=@x at an interior node i is approximated as
follows in a mesh of uniform grid spacing Dx:

/x ¼ 1

Dx
ða1/i�2 þ a2/i�1 þ a3/i þ a4/iþ1 þ a5/iþ2Þ ð12Þ

The five introduced weighting coefficients a1 to a5 will be rigorously determined to
yield good overall accuracy. When approximating the time-dependent wave equation
(8), numerical error can affect the predicted wave amplitude and propagation speed.
In any simulation, numerical dissipation error can more or less smear all frequency
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modes of the solution, and the dispersion error can make the numerical phase
velocity frequency-dependent. Besides the reduction of amplitude error, a proper
discretization method should also accommodate a numerical dispersion relation
equation that matches well with the exact dispersion relation equation. To eliminate
the above two error types, the modified equation analysis will be performed together
with the method of minimization of the dispersive error so as to get the best
numerical dispersion relation equation for the investigated pure advection equation.
To get a solution with reduced dispersion errors, one can optimize the numerical
wavenumber [9–11] or minimize the error between the numerical and exact
dispersion relation equations [12–16].

The terms /nþ1
i�1 ; /nþ1

i�2 ; /n
i�1; and /n

i�2 are expanded first in Taylor series with
respect to /n

i at a node i. These expansion terms are then substituted into the
following discrete equation for (11):

/nþ1
i � /n

i

Dt
¼ u

2Dx
½ða1/nþ1

i�2 þ a2/
nþ1
i�1 þ a3/

nþ1
i þ a4/

nþ1
iþ1 þ a5/

nþ1
iþ2 Þ

þ ða1/n
i�2 þ a2/

n
i�1 þ a3/

n
i þ a4/

n
iþ1 þ a5/

n
iþ2Þ� ð13Þ

After a lengthy derivation, the modified equation can be derived as follows:

/t þ u/x ¼
�

u

Dx
½ða1 þ a2 þ a3 þ a4 þ a5Þ�/

�

þ
�
/t þ

u

2Dx
½Dtða1 þ a2 þ a3 þ a4 þ a5Þ/t

þ 2Dxð�2a1 � a2 þ a4 þ 2a5Þ/x�
�

þ
�
Dt
2
/tt þ

u

2Dx

�
Dt2

2
ða1 þ a2 þ a3 þ a4 þ a5Þ/tt

þ DtDxð�2a1 � a2 þ a4 þ 2a5Þ/xt þ Dx2ð4a1 þ a2 þ a4 þ 4a5Þ/xx

��

þ
�
Dt2

6
/ttt þ

u

4Dx

�
Dt3

3
ða1 þ a2 þ a3 þ a4 þ a5Þ/ttt

þ Dt2Dxð�2a1 � a2 þ a4 þ 2a5Þ/xtt þ DtDx2ð4a1 þ a2 þ a4 þ 4a5Þ/xxt

þ Dx3

3
ð�8a1 � a2 þ a4 þ 8a5Þ/xxx

��
ð14Þ

Both of the mixed and time derivative terms shown in the above modified equa-
tion are replaced by terms /xt¼� u /xxþA/xxxþB/xxtþC/ttxþH.O.T., /tt¼ u2

/xx� uA/xxx� uB/xtx� uC/ttxþH.O.T., /xtt¼� u2/xxxþH.O.T., /xxt¼� u/xxx

þH.O.T., and /ttt¼� u3 /xxxþH.O.T., where H.O.T. stands for higher-order
terms. In the above, A ¼ ðuDx=2Þða4 þ 4a5 þ 4a1 þ a2Þ, B ¼ ðuDt=2Þð�2a2 þ a4
þ2a5 � a2Þ, and C ¼ ðuDt2Þ=4Dxða1 þ a2 þ a3 þ a4 þ a5Þ þ ðDt=2Þ. The four leading
discretization error terms shown in the resulting modified equation of second kind
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are then eliminated to get four algebraic equations. The weighting coefficients a1, a2,
a4, and a5 can therefore be expressed in terms of the coefficient a3 shown below:

a1 ¼
1

12
þ Cr2

24
þ 1

6
a3 ð15Þ

a2 ¼ � 2

3
� Cr2

12
� 2

3
a3 ð16Þ

a4 ¼
2

3
þ Cr2

12
� 2

3
a3 ð17Þ

a5 ¼ � 1

12
� Cr2

24
þ 1

6
a3 ð18Þ

where Crð� uDt=DxÞ denotes the Courant number. It is worth nothing here that the
proposed scheme depends locally on the Courant number Cr. For a unique deter-
mination of the five introduced coefficients in the approximated equation of
q/=qx at a nodal point i, one more algebraic equation needs to be derived to get
the proposed Cr-dependent pure advection scheme.

While approximating the propagation equation it is essential to reduce the
cumulative numerical dispersion error. In this study the last required algebraic equa-
tion is derived by minimizing the difference between the exact and numerical disper-
sion relation equations for the linear inviscid equation /tþ u/x¼ 0. Note that the
dispersion relation is used to link the angular frequency x of a wave with the wave-
number k. To derive the corresponding numerical dispersion relation equation, the
plane wave cast in a form of ei(xt�kx) for /tþ u /x¼ 0 is needed to derive the differ-
ence between the exact and numerical dispersion relation equations. This difference
is then minimized to get the final algebraic equation for the closure reason.

Derivation of the last algebraic equation for the linear equation /tþ u/x¼ 0
involves use of the harmonic ansatz /(x, t)¼/0e

i(xt�kx). The differential operator in
(x, t) can be transformed to its corresponding algebraic expression in (x, k), where
x and k denote respectively the angular frequency and wavenumber. Through the
transformation performed between the (x, t) and (x, k) planes, the exact dispersion
relation (or Von Neumann stability relation) equation is derived as x�uk¼ 0. By sub-
stituting the discrete solutions /0e

i[xt�k(x�Dx)], /0 e
i[xt�k(x� 2Dx)], /0e

i[x(tþDt)�k(x�Dx)],
and /0 ei[x(tþDt)�k(x� 2Dx)], which are obtained from the plane-wave solution
/0e

i(xt�kx), into Eq. (13), the numerical dispersion relation equation for the equation
/tþ u/x¼ 0 can be derived as

eixnumDt ¼
1� ðCr=2Þ a1e

2ikDx þ a2e
ikDx þ a3 þ a4e

�ikDx þ a5e
�2ikDx

� �
1þ ðCr=2Þ a1e2ikDx þ a2eikDx þ a3 þ a4e�ikDx þ a5e�2ikDxð Þ ð19Þ

Having derived the above numerical dispersion relation equation, the numerical
angular frequency xnum is no longer linearly proportional to the wavenumber k. This
means that numerical dispersion error has been introduced and can definitely affect
the predicted solution.
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One can reduce the dispersion error directly, by decreasing the difference
between the exact and numerical dispersion relation equations, or indirectly, by
minimizing the difference between the numerical and exact phase velocity or group
velocity. In this study the error function E¼ (xnum�xexact)

2 is minimized in a global
sense as follows within a proper integration interval of the scaled wavenumber:Z mp

0

Wðxnum � xexactÞ2 dðkDxÞ ð20Þ

The reason for introducing the weighting function W into the above equation is to
make Eq. (20) numerically integrable. To avoid the so-called aliasing error, one
needs further to determine the value of m in 0	m	 1.

By applying the limiting condition qE=qa3 ¼ 0, the final algebraic equation
required to close the algebraic equations for a1–a5 is obtained. The equation derived
from the above error minimization can then be used together with the other four
algebraic equations in (15)–(18), which were derived on the basis of the modified
equation analysis of second kind, to uniquely determine all the five introduced para-
meters. The resulting derived coefficients will not be explicitly shown in this article
because they are complex functions of m and Crð� uDt=DxÞ. The dimensionless fre-
quency errors ðxnum � xexactÞ=xexact derived at different Courant numbers are
plotted versus the wavenumber k in Figure 1. Based on our detailed analysis, the
coefficients a1–a5 computed at m ¼ 6

7 p are tabulated in Table 1. The leading discre-
tization errors s4 for the term /xxxx in the derived modified equation are plotted with
respect to Cr in Figure 2 for m ¼ 6

7 p.
It is worth noting here that the values of the five weighting coefficients shown

in (12) are not fixed throughout the domain. These values vary locally according to

Figure 1. Dimensionless errors of the derived numerical angular frequency ðxnum � xexactÞ=xexact plotted

with respect to wavenumber k at Cr¼ 0.2, 0.3, 0.5, 0.7, and 0.9 (color figure available online).
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the flow velocity. Given the user’s prescribed Dt and Dx, the local Courant number
Cr is determined from the value of u. Based on the locally varying values of Cr, the
corresponding weighting coefficients can be obtained by interpolating the weighting
coefficients tabulated in Table 1. Use of the resulting determined locally varying
weighting coefficients enables us to get a solution that can theoretically optimize
the numerical dispersion relation equation at each grid point.

4.2. Two-Dimensional Scheme with Optimized Numerical
Dispersion Relation Equation

In the development of the current two-dimensional pure advection scheme at a
positive velocity condition (or u> 0 and v> 0), the derivative terms ðq/=qxÞji;j and

Table 1. Weighting coefficients a1–a5 derived at different Courant numbers Cr

Crai a1 a2 a3 a4 a5

0.1 0.69231 �3.10174 3.65137 �1.76674 0.52481

0.2 0.61889 �2.80555 3.20333 �1.46555 0.44889

0.3 0.54630 �2.51103 2.75529 �1.16269 0.37213

0.4 0.43572 �2.06287 2.07431 �0.70287 0.25572

0.5 0.37833 �1.82583 1.70750 �0.45083 0.19083

0.6 0.35188 �1.71085 1.52127 �0.31751 0.15521

0.7 0.34388 �1.66801 1.44077 �0.25301 0.13638

0.8 0.34770 �1.67079 1.42618 �0.23079 0.12770

0.9 0.36041 �1.70749 1.45998 �0.23915 0.12625

1.0 0.37396 �1.74585 1.49378 �0.24585 0.12396

Figure 2. Coefficients of the leading discretization error shown in the derived modified equation of second

kind plotted with respect to Courant numbers Cr at m ¼ 6
7p (color figure available online).
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ðq/=qyÞji;j are approximated as follows using the nodal values of /i, j, /i� 1, j, /i, j� 1,
/i� 2, j, /i, j� 2:

q/
qx

				i; j ¼ 1

Dx
ða1/i�2;j þ a2/i�1;j þ a3/i;j þ a4/iþ1;j þ a5/iþ2;jÞ ð21Þ

q/
qy

				i; j ¼ 1

Dy
ða1/i;j�2 þ a2/i;j�1 þ a3/i;j þ a4/i;jþ1 þ a5/i;jþ2Þ ð22Þ

The wave solution ei(xt�kxx�k
y
y) is substituted first into (21)–(22). The resulting

equations are then plugged into the proposed midpoint time-stepping equation
/nþ1
i;j �/n

i;j

Dt þ u
2 ð/

nþ1
x þ /n

xÞ þ v
2 ð/

nþ1
y þ /n

yÞ ¼ 0. The numerical dispersion relation

equation is derived as follows after a lengthy algebraic derivation:

eixnumDt ¼ 1� a1 � a2
1þ a1 þ a2

ð23Þ

In the above, a1 and a2 are expressed as

a1 ¼
Crx
2

ða1e2ikxDx þ a2e
ikxDx þ a3 þ a4e

�ikxDx þ a5e
�2ikxDxÞ ð24Þ

a2 ¼
Cry
2

ða1e2ikyDy þ a2e
ikyDy þ a3 þ a4e

�ikyDy þ a5e
�2ikyDyÞ ð25Þ

For the rest of the flow directions, one can similarly derive their corresponding
numerical dispersion equations with the expressions of a1 and a2 summarized in
Table 2.

Following the same method of minimization of error described in Section 4.1
for the one-dimensional equation, the weighting coefficients and the integration

Table 2. Expressions of a1 and a2 shown in the numerical dispersion relation equation

eixnumDt ¼ ð1� a1 � a2Þ=ð1þ a1 þ a2Þ are summarized for all the four possible velocity directions

a1 and a2

u> 0, v> 0 a1 ¼ Crx
2 ða1e2ikxDx þ a2e

ikxDx þ a3 þ a4e
�ikxDx þ a5e

�2ikxDxÞ

a2 ¼ Cry
2 ða1e2ikyDy þ a2e

ikyDy þ a3 þ a4e
�ikyDy þ a5e

�2ikyDyÞ
u< 0, v> 0 a1 ¼ � Crx

2 ða5e2ikxDx þ a4e
ikxDx þ a3 þ a2e

�ikxDx þ a1e
�2ikxDxÞ

a2 ¼ Cry
2 ða1e2ikyDy þ a2e

ikyDy þ a3 þ a4e
�ikyDy þ a5e

�2ikyDyÞ
u< 0, v< 0 a1 ¼ � Crx

2 ða5e2ikxDx þ a4e
ikxDx þ a3 þ a2e

�ikxDx þ a1e
�2ikxDxÞ

a2 ¼ � Cry
2 ða5e2ikyDy þ a4e

ikyDy þ a3 þ a2e
�ikyDy þ a1e

�2ikyDyÞ
u> 0, v< 0 a1 ¼ Crx

2 ða1e2ikxDx þ a2e
ikxDx þ a3 þ a4e

�ikxDx þ a5e
�2ikxDxÞ

a2 ¼ � Cry
2 ða5e2ikyDy þ a4e

ikyDy þ a3 þ a2e
�ikyDy þ a1e

�2ikyDyÞ
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parameter m are determined from the modified equation of second kind and
the minimization analysis. For completeness, in Table 3 and Table 4 the values
of a3 are tabulated with respect to Crxð� uDx=DtÞ and Cryð� vDy=DtÞ at
m ¼ 6

7 p. Note that this value of m has been numerically shown to yield the smal-
lest aliasing error. Having obtained these Courant number–dependent weighting
coefficients a3, the rest of the four weighting coefficients can then be determined
accordingly.

The five weighting coefficients, which can lead to the optimized numerical
dispersion relation equation, are also plotted versus the flow angle tan�1ðu=vÞ in
Figure 3. Like the one-dimensional scheme, through the interpolation means the
two-dimensional numerical dispersion relation equation–preserving solution can be
obtained according to the local fluid velocities u(x, y), v(x, y), and the user’s chosen
values of Dt, Dx, and Dy.

4.3. Sixth-Order-Accurate Compact Difference Scheme for the
Diffusion Equation

The parabolic equation (5) will be discretized first using the Euler time-stepping
scheme for qu=qt to yield the differential equation r2ujnþ1 � Re

Dt uj
nþ1 ¼ � Re

Dt uj
n. The

approximation error for q2u=qx2 is normally dissipative. For this reason, the follow-
ing centered compact finite-difference scheme for q2u=qx2 at an interior node i, for
example, is applied:

Table 3. Weighting coefficients a3 computed at different Courant numbers Cr, tabulated for

the cases u> 0, v> 0, and u< 0, v< 0

CrynCrx Crx¼ 0.1 Crx¼ 0.2 Crx¼ 0.3 Crx¼ 0.4 Crx¼ 0.5

Cry¼ 0.1 5.44105 2.99033 2.24791 1.83081 1.60671

Cry¼ 0.2 2.99643 2.26889 1.87781 1.65985 1.54866

Cry¼ 0.3 2.26358 1.88675 1.68030 1.57718 1.53822

Cry¼ 0.4 1.85637 1.67707 1.58507 1.55392 1.56545

Cry¼ 0.5 1.63895 1.57132 1.55159 1.57132 1.62451

Cry¼ 0.6 1.53440 1.53150 1.56098 1.62206 1.66661

Cry¼ 0.7 1.49961 1.53904 1.60779 1.68495 1.70871

Cry¼ 0.8 1.51584 1.59099 1.67427 1.69886 1.68107

Cry¼ 0.9 1.58411 1.66716 1.68807 1.66945 1.63733

Cry¼ 1.0 1.65445 1.67191 1.65488 1.62397 1.58853

CrynCrx Crx¼ 0.6 Crx¼ 0.7 Crx¼ 0.8 Crx¼ 0.9 Crx¼ 1.0

Cry¼ 0.1 1.49943 1.46474 1.48068 1.54251 1.64569

Cry¼ 0.2 1.50638 1.51283 1.56179 1.65120 1.70935

Cry¼ 0.3 1.54420 1.58848 1.66436 1.71424 1.70837

Cry¼ 0.4 1.61211 1.68042 1.71676 1.70769 1.67864

Cry¼ 0.5 1.69144 1.71803 1.70422 1.67400 1.63807

Cry¼ 0.6 1.71564 1.69885 1.66727 1.63098 1.54832

Cry¼ 0.7 1.69108 1.65889 1.62232 1.58502 1.54832

Cry¼ 0.8 1.64885 1.61233 1.57518 1.53876 1.50349

Cry¼ 0.9 1.60110 1.56427 1.52822 1.49338 1.45981

Cry¼ 1.0 1.55230 1.51676 1.48243 1.44941 1.41756
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b1
q2u
qx2

				
i�1

þ q2u
qx2

				i þ b3
q2u
qx2

				
iþ1

¼ 1

h2
ðc1ui�1 þ c2ui þ c3uiþ1Þ

� 1

h
a1

qu
qx

				
i�1

þ a2
qu
qx

				
iþa3

qu
qx

				
iþ1

 !
ð26Þ

The weighing coefficients in (26) can be determined solely from the classical
modified equation analysis for the sake of getting better accuracy. Along the line
of this thought, all the coefficients shown above are derived as
a1 ¼ � 9

8 ; a2 ¼ 0; a3 ¼ 9
8 ; b1 ¼ � 1

8 ; c1 ¼ 3; c2 ¼ �6; and c3 ¼ 3. Use of this set of
the derived coefficients yields the sixth-order-accurate modified equation for
q2u=qx2 [17].

5. SOME NUMERICAL INSIGHTS IN THE PROPOSED SCHEME

The numerical angular frequency xnum and the numerical group velocity
dxnum=d k are derived first. They are then plotted with respect to the wavenumber
k in Figure 4 and Figure 5, respectively, at different Courant numbers using the
currently proposed method. For completeness, Fourier (or von Neumann) stability
analysis [18] is also conducted to get the following amplification factor
Gð� /nþ1

i =/n
i Þ, which is the function of b ¼kDx and Cr ¼ uDt=Dx :

Table 4. Weighting coefficients a3 computed at different Courant numbers Cr, tabulated for

the cases u> 0, v< 0, and u< 0, v> 0

CrynCrx Crx¼ 0.1 Crx¼ 0.2 Crx¼ 0.3 Crx¼ 0.4 Crx¼ 0.5

Cry¼ 0.1 5.69838 4.29855 2.88573 2.21231 1.87091

Cry¼ 0.2 4.30395 4.21349 2.91066 2.34872 2.04423

Cry¼ 0.3 2.90162 3.00799 2.93559 2.52462 2.25417

Cry¼ 0.4 2.23938 2.36922 2.53643 2.55821 2.46715

Cry¼ 0.5 1.90521 2.07046 2.27307 2.47643 2.59123

Cry¼ 0.6 1.74118 1.93444 2.17130 2.48032 2.76847

Cry¼ 0.7 1.71046 1.89928 2.21035 2.55138 2.73854

Cry¼ 0.8 1.67975 1.95990 2.25224 2.42555 2.55757

Cry¼ 0.9 1.73708 2.00228 2.15726 2.27670 2.38273

Cry¼ 1.0 1.79442 1.93602 2.06227 2.13982 2.22888

CrynCrx Crx¼ 0.6 Crx¼ 0.7 Crx¼ 0.8 Crx¼ 0.9 Crx¼ 1.0

Cry¼ 0.1 1.70376 1.56146 1.63921 1.70340 1.80612

Cry¼ 0.2 1.92546 1.86669 1.91375 2.01469 2.00153

Cry¼ 0.3 2.14717 2.17191 2.26738 2.21578 2.12726

Cry¼ 0.4 2.45452 2.55966 2.46989 2.34323 2.22508

Cry¼ 0.5 2.76188 2.76054 2.60094 2.44064 2.30943

Cry¼ 0.6 3.01748 2.91217 2.71411 2.53747 2.38734

Cry¼ 0.7 2.89699 2.96474 2.81803 2.62813 2.46378

Cry¼ 0.8 2.68027 2.79883 2.82821 2.70428 2.53941

Cry¼ 0.9 2.48484 2.58937 2.68319 2.69643 2.59489

Cry¼ 1.0 2.31640 2.46703 2.53817 2.57276 2.57753
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Figure 3. The five derived weighting coefficients are plotted with respect to flow angle tan�1ðu=vÞ ranging
between 0
and 360
: (a) a1; (b) a2; (c) a3; (d) a4; (e) a5 (color figure available online).
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G ¼ 1� ðCr=2Þða1e�2bi þ a2e
�bi þ a3 þ a4e

bi þ a5e
2biÞ

1þ ðCr=2Þða1e�2bi þ a2e�bi þ a3 þ a4ebi þ a5e2biÞ
ð27Þ

The derived amplification factor is plotted in Figure 6a at different values of the
Courant number. Since the absolute values of G are all smaller than 1, the proposed
scheme is unconditionally stable.

The amplification factor can be also rewritten in the following equivalent expo-
nential form as G ¼ jGjeih, where hð� tan�1½ImðGÞ=ReðGÞ�Þ is the phase angle. Given
the exact phase angle he, which is equal to�b Cr, the following relative phase shift
can be used in the following comparison study:

h
he

¼ tan�1½ImðGÞ=ReðGÞ�
�b Cr

ð28Þ

In Figure 6b, the relative phase shift h=he is plotted at different values of the Courant
number.

Figure 4. Comparison of the numerical angular frequencies x, which are plotted with respect to wavenum-

ber k, at four different values of Crð� uDt=DxÞ: (a) 0.3; (b) 0.5; (c) 0.7; (d) 0.9 (color figure available online).
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6. NUMERICAL RESULTS

The pure advection equation is solved in Section 6.1 to verify the developed
symplectic advection scheme. This scheme will be also numerically shown to have
a good numerical dispersion relation equation for the pure advection equation.
The proposed symplecticity and dispersion relation equation–preserving scheme is
then applied to solve incompressible inviscid flow equations in Section 6.2. Two
unsteady Navier-Stokes problems in Section 6.3 are also investigated. Finally, a
coupled system of the hydrodynamic and level-set equations for modeling the bubble
rising and droplet falling problems are investigated in Section 6.4.

6.1. One-Dimensional Pure Advection Problems

The one-dimensional linear equation /tþ/x¼ 0 is solved subject to the
following initial condition [12]:

Figure 5. Comparison of the derived numerical group velocities dx=dk, which are plotted with respect to

wavenumber k, at four different values of Crð� uDt=DxÞ: (a) 0.3; (b) 0.5; (c) 0.7; (d) 0.9 (color figure

available online).
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uðx; 0Þ ¼

1
6 ½Gðx; ~bb; z� dÞ þ 4Gðx; ~bb; z� dÞ þ Gðx; ~bb; zþ dÞ� �0:8 	 x 	 �0:6
1 �0:4 	 x 	 �0:2
1� 10jðx� 0:1Þj 0 	 x 	 0:2
1
6 ½Fðx; a; a� dÞ þ 4Fðx; a; a� dÞ þ Fðx; a; aþ dÞ� 0:4 	 x 	 0:6
0 otherwise

8>>>><
>>>>:

ð29Þ

Figure 6. (a) Amplification factors G of the proposed scheme plotted with respect to b at four different

values of Crð� uDt=DxÞ. (b) Relative ratios h=he plotted with respect to b at four different values of

Crð� uDt=DxÞ (color figure available online).
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In the above, Gða; ~bb; zÞ ¼ e�
~bbðx�zÞ2 and F(x, a, a)¼max[1� a2(x� a)2, a], where

z¼�0.7, ~bb ¼ ðlog 2=36d2Þ, a¼ 0.5, a¼ 10, and d¼ 0.005. In this verification study,
the periodic boundary condition is imposed. The time step is chosen to be Dt¼ 0.9Dx
in all computations. Figure 7 shows the exact waveform and the waveform obtained
by the present scheme at t¼ 2 without adding a flux or a slope limiter to resolve
oscillations near the points of discontinuity. Since the proposed scheme is not classi-
fied as a monotone scheme, the predicted kinks near the root of the square wave are
computationally inevitable.

6.2. Two-Dimensional Pure Advection Problems

6.2.1. Slotted (Zalesak’s) disk problem. Zalesak’s problem [19] is a
well-known benchmark problem for verifying the developed advection scheme. A
slotted disk with a radius of 15.0 and a slot width of 5.0 is initially located at
(50.0, 75.0) in a square of length 100. The prescribed velocity field is given by
u ¼ pð50� yÞ=314and v ¼ pðx� 50Þ=314. The results predicted at Dt¼ 2.0Dx in
the domain of 200� 200 mesh points are plotted in Figure 8a. We also plot in
Fig. 8b the solution profile /(x, 75) at t¼ 200p to show good agreement between
the exact (or initial) and computed solutions.

6.2.2. Mixing of cold and warm fronts. To show that our proposed
numerical method has the ability of resolving interior sharp profiles, a problem
containing cold and warm fronts is considered in a square domain �4	 x, y	 4.
Initially, the temperature is given by /ðx; y; t ¼ 0Þ ¼ � tan hðy=2Þ: Subsequent to
t¼ 0, the temperature is changed with time by the given rotating velocity field that

Figure 7. Comparison of the predicted and exact solutions at t¼ 2 (color figure available online).
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is centered at the origin ð�Ty=r;Tx=rÞ. Here, T � sec2ðrÞ tanhðrÞ
max½sec2ðrÞ tanhðrÞ�


 �
denotes the ratio

of the tangential velocity at the location that is distant from (0, 0) with the length of
r. Due to this rotating velocity field, a marked change of the temperature can be seen

Figure 8. (a) Contours of /¼ 0 plotted at four different times. (b) Predicted and exact solutions for

/(x, 75) at t¼ 200p (color figure available online).
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across the interface between the warm and cold fluids. In Figure 9, one can see that
the rotating flow distorts the initially sharp temperature profile. As a result, a spiral
temperature profile gradually appears. For the sake of comparison, we also plot the

exact solution /ðx; y; tÞexact ¼ � tanh y
2 cosðxtÞ � x

2 sinðxtÞ
� �

[20], where x ¼ T=r

denotes the rotation frequency. The agreement between the simulated and exact
solutions shown later in Figure 12 is excellent.

6.2.3. Twisting–untwisting problem. Given the following initial data,

/ðx; t ¼ 0Þ ¼ 1 if 0 	 x 	 1 and 0:4 	 y 	 0:6
0 otherwise

�
ð30Þ

the solution / will be computed from the pure advection equation in the velocity
field u¼ cos [p(x� 0.5)]sin [p(y� 0.5)] and v¼�sin [p(x� 0.5)]cos [p(y� 0.5)] in

Figure 9. Predicted results plotted at four different times: (a) t¼ 0; (b) t¼ 3.0; (c) t¼ 4.5; (d) t¼ 6.0 (color

figure available online).
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[21]. At t ¼ p=4, the solution profile becomes exactly the same as the initial shape.
For the calculations performed at Dt ¼ p=4Dx, the solution shown in Figure 10 is
computed in the mesh of 200� 200 nodal points. The phase of the solution is seen
to be excellently predicted, without showing any oscillation.

6.3. Incompressible Flow Problems

6.3.1. Taylor vortex problem. The problem regarding the transport of
decaying Taylor vortices is frequently used as the benchmark test for the verification
of numerical schemes developed to solve the unsteady fluid flow [22]. The initially
periodic vortex flow is convected and decayed exponentially with time due to the
nonzero fluid viscosity in the flow. The exact solution of this problem is varied with
the Reynolds number Re as follows:

Figure 10. Predicted results plotted at four different times: (a) t ¼ p
8; (b) t ¼ p

4; (c) t ¼ 3p
8 ; (d) t ¼ p

2 (color

figure available online).
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uðx; y; tÞ ¼ � cosðxÞ sinðyÞ exp �2t
Re

� �
;

vðx; y; tÞ ¼ cosðyÞ sinðxÞ exp �2t
Re

� �
;

pðx; y; tÞ ¼ �0:25½cosð2xÞ þ cosð2yÞ� exp �4t
Re

� �
8<
: ð31Þ

Figure 11. Comparison of predicted and exact mid-plane velocity profiles u(p, y) and v(x, p) at two differ-

ent times: (a) u(p, y); (b) v(x, p) (color figure available online).
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The results computed in a mesh of 64� 64 uniform grids and at Dt ¼ 0:9p=32
will be presented at Re¼ 100. Figures 11a and b show a good comparison between
the computed and exact u- and v-velocity components at different times along the y-
and x-axis lines passing through the centroid of the physical domain.

6.3.2. Doubly periodic shear-layer problem. Subject to the initial condi-
tions uðx; y 	 0:5; t ¼ 0Þ ¼ tanh½qðy� 0:25Þ�; uðx; y > 0:5; t ¼ 0Þ ¼ tanh½qð0:75� yÞ�;
vðx; y; t ¼ 0Þ ¼ �mm sinð2pxÞ, and p(x, y, t¼ 0)¼ 0, the doubly periodic pair of shear
layers will be computed in a unit domain [0, 1]� [0, 1]. In the above, q denotes
the shear-layer thickness (a larger value of q corresponds to a thinner shear layer),
and m denotes the amplitude of the initial perturbation [23].

In this computation, m ¼ 0:05, q¼ 30, and Re¼ 10,000. In Figure 12, the
results are plotted with respect to time in 256� 256 grids. Figure 13 compares

Figure 12. Computed vorticity iso-contours plotted at the four chosen times. The vorticity contour lines

are drawn for every 2 dimensionless units. (a) t¼ 0. (b) t¼ 0.5. (c) t¼ 0.75. (d) t¼ 1.0 (color figure available

online).
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the results at t¼ 1 using the present dispersion relation equation–preserving
scheme and its non-compact difference scheme given in [24]. Again, the
present scheme is shown to give a better result than the non-compact difference
scheme.

As for the inviscid case, the vorticity iso-contours are obtained at Dt¼ 0.01Dx
in a mesh of 256� 256 nodal points. At t¼ 0, 0.5, 0.75, and 1.0, the predicted vor-
ticity results are plotted in Figure 14 to exhibit the sharp change of the solution
profiles.

In this study we also aim to show that the currently proposed scheme can yield
the result that conserves kinetic energy E ¼ 1

2

R
X u � udX

� �
. The kinetic energy plotted

versus time t in Figure 15 remains almost unchanged for the inviscid Euler flow. As

Figure 13. Comparison of results predicted from the compact difference scheme [24] and the present

scheme at t¼ 1: (a) present; (b) [24] (color figure available online).
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for the viscous case, the kinetic energy is no longer conserved and is rather decayed
with time, for example, at Re¼ 10,000.

6.4. Two-Phase Flow Problems

In this study the level-set equation given below is applied together with the
hydrodynamic equations for an incompressible fluid flow to simulate the
time-varying interface (or free surface) [25]:

/t þ u � r/ ¼ 0 ð32Þ

Figure 14. Computed vorticity iso-contours plotted at the four chosen times. The vorticity contour lines

are drawn for every 2 dimensionless units: (a) t¼ 0. (b) t¼ 0.5. (c) t¼ 0.75. (d) t¼ 1.0 (color figure available

online).
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In the above, u denotes the flow velocity. Along the interface, the value of / is equal
to zero. The level-set function / is initially prescribed to have the following set of the
signed distance values:

Figure 15. Predicted ratios E � EðtÞ=Eðt ¼ 0Þ½ �, where E denotes the kinetic energy, plotted with respect to

dimensionless time (color figure available online).

Figure 16. Schematic of the initial condition for the bubble rising problem (color figure available online).
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/ ¼
�d for x 2 Xgas

0 for x 2 Cfree surface
d for x 2 Xliquid

8<
: ð33Þ

In the above, d denotes the absolute distance normal to the interface.
Within each time step Dt, the level-set value / will be computed first from Eq.

(32), which is normally employed to advect the level-set function /. The computed
value of / is then employed as the initial solution to solve the following
re-initialization equation so that the level-set value can be always kept as the distance
function:

/s þ sgnð/0Þðjr/j � 1Þ ¼ kdð/Þjr/j ð34Þ

Figure 17. Predicted time-evolving free surfaces of the rising bubble at Re¼ 200: (a) t¼ 0.5; (b) t¼ 1.5; (c)

t¼ 2.5; (d) t¼ 3.5 (color figure available online).
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In the above, sgnð/0Þ ¼ 2 H�ð/0Þ � 1
2

� �
and the smoothed Heaviside function H� is

H�ð/Þ ¼
0 if / < �e
1
2 1þ /

e þ 1
p sin p/

e


 �h i
if j/j 	 e

1 if / > e

8<
: ð35Þ

The Dirac delta function d(/) shown in (34) is approximated by

dð/Þ ¼
0 if j/j > e
1
2e 1þ cos p/

e


 �h i
if j/j 	 e

(
ð36Þ

In this study, the value of e is chosen as 2Dx in the following two free-surface prob-
lems. To conserve the area enclosed by the interface, k shown in Eq. (34) is
prescribed as follows [26]:

Figure 18. Predicted time-evolving free surfaces of the rising bubble at Re¼ 200 and We¼ 10: (a) t¼ 0.5;

(b) t¼ 1.5; (c) t¼ 2.5; (d) t¼ 3.5 (color figure available online).
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k ¼ �
R
Xi;j

dð/Þ½�sgnð/0Þðjr/j � 1Þ�dXR
Xi;j

d2ð/Þjr/jdX
ð37Þ

For the two immiscible fluids under investigation, liquid fluid and gas are both
assumed to be incompressible. The resulting equations of motion for these fluids can
be represented by the following dimensionless continuity equation r � u ¼ 0 and the
incompressible Navier-Stokes equations

ut þ ðu � rÞu ¼ 1

qð/Þ �rpþ 1

Re
r � ½2mð/ÞD� � 1

We
dð/Þjð/Þr/

� �
þ 1

Fr2
�eeg ð38Þ

Equation (38) involves the Reynolds number Re ¼ qrurlr=mrð Þ, Froude number
Fr ¼ ur=

ffiffiffiffiffiffi
glr

p� �
, and Weber number We ¼ qru

2
r lr=r

� �
. In the above, r is denoted as

the surface tension coefficient and ur, lr, qr, mr are the referenced values chosen for
the normalization of the respective velocity, length, density, and viscosity. The tensor
D ¼ 1

2 ðruþruTÞ
� �

shown above denotes the rate of deformation. The curvature of
the surface can be theoretically expressed in terms of the level-set function as
jð/Þ ¼ r � r/=jr/j.

In each phase, fluid properties may change sharply across the interface. To
avoid numerical instability near the interface, the fluid density given by
q(/)¼ qLþ (qL� qG) H�(/) and the viscosity given by m(/)¼ mLþ (mL� mG) H�(/)
are both assumed to vary smoothly across the interface through the use of smoothed
Heaviside function H�(/). The subscripts G and L represent the gas and liquid
phases, respectively.

Figure 19. Bubble area ratio ARratio plotted with respect to time for the cases with=without surface tension

effect (color figure available online).
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6.4.1. Bubble rising in a partially filled container. The rising buoyant
bubbles are studied in the two-dimensional domain [27]. We first consider the case
in a rectangular domain [0, 3.0]� [0, 3.5]. Below the free surface, there is a single cir-
cular bubble (see Figure 16). The center of the bubble is located at (1.5, 1.5) and its
radius is R¼ 0.5. Computation is carried out in the mesh of 180� 210 grid points.
The density and viscosity ratios are ql=qg ¼ 2 and ml=mg ¼ 2. The Reynolds number
used in the calculation is 200 without taking surface tension into account [27]. In
Figure 17, one can see that the investigated bubble gets more deformed as it

Figure 20. Predicted time-evolving free surfaces of the falling droplet at Re¼ 7,787 and We¼ 550: (a)

t¼ 0.0; (b) t¼ 1.0; (c) t¼ 1.33; (d) t¼ 2.0 (color figure available online).
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approaches the surface as time evolves. It is noted that the presently predicted
interfaces agree fairly with those predicted in [27].

The time sequence of the rising bubble considered at Re¼ 200 and We¼ 10
is shown in Figure 18. Like the earlier test case, the bubble accelerates from its
initial position because of the buoyancy force. No significant difference between
the two cases is observed before t¼ 1.5. At a time greater than 1.5, for the cases
with=without surface tension the difference becomes apparent, since the effect of
surface tension becomes increasingly important. For the sake of completeness,
the area ratio ARratio ¼ ARðtÞ=ARðt ¼ 0Þ, where ARðtÞ ¼

R
/�0 dX [28], is also

plotted versus time in Figure 19. It can be seen again that the bubble area is well
conserved.

6.4.2. Droplet falling problem. Subject to the gravity field (which is 9.81m=
s2), a falling liquid droplet is simulated under the effect of surface tension, which is
0.0073N=m. For this falling droplet problem, the gas viscosity, liquid viscosity, gas
density, and liquid density are 1.79� 10�5 kg=m=s, 1.137� 10�3 kg=m=s, 1.226 kg=
m3, and 1.0� 103 kg=m3, respectively. A 2 cm� 3 cm domain is discretized to yield
a uniform mesh of 120� 180 grids.

Initially, the bubble center is located at (1 cm, 1 cm) and its radius is 1
3 cm.

No-slip boundary condition is applied along the boundary of the rectangular con-
tainer. In Figure 20, the predicted free surface is plotted with respect to time for
the case taking the surface tension into account. The area ratio ARratio of the inves-
tigated falling droplet is plotted with respect to time in Figure 21. The ability of
employing the symplecticity-preserving scheme to conserve the area is numerically
confirmed again.

Figure 21. Falling droplet area ratio ARratio plotted with respect to time (color figure available

online).
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7. CONCLUDING REMARKS

In the light of the Clebsch velocity decomposition theory, the incompressible
Navier-Stokes equation is decomposed into the incompressible Euler equation and
the time-dependent diffusion equation. The Hamiltonian and Casimir properties
embedded in the Euler equation are shown to be retained discretely using the
proposed three-step fractional splitting solution algorithm. After a long simulation
time, the computed solution still conserves the Hamiltonian and Casimir invariants
quite well, implying that the predicted incompressible flow solution is physically
correct. In the pure advection solution step, which involves the incompressible
Euler equations, two conservation laws are discretely retained by employing the
second-order-accurate implicit symplectic Runge-Kutta time integrator. Several
benchmark problems have been investigated with great success, and the integrity
of applying the newly proposed method is demonstrated.
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