et ® B S

A MONOTONE MULTIDIMENSIONAL UPWIND
FINITE ELEMENT METHOD FOR
ADVECTION-DIFFUSION PROBLEMS

Tony W. H. Sheu, S. F. Tsai, and Morten M. T. Wang
Department of Naval Architecture and Ocean Engineering,
National Taiwan University, 73 Chou-Shan Rd., Taipei, Taiwan,
Republic of China

We are interested in developing a multidimensional convective scheme that is capable of
dealing with erroneous oscillations near jumps. The strategy is based on the Petrov-Galerkin
Jormulation, to which the underlying idea of the M matrix is added. The nature of the
exponentially weighted upwind method is best illuminated by its matrix structure. We
interpret the enhanced stability as being due to the aftainable irreducible diagonal
dominance. The accessible monotonicity condition enables us to construct a monotone
stiffness matrix a priori, thereby laying the foundation for arriving at the monotonicity-
preserving property. In order to show the merit of the proposed upwinding technigue in
resolving spurious oscillations generated by unresolved internal and boundary layers, we
considered two classes of convection-diffusion problems. As seen from the computed results,
we can affair an accurate finite-element solution for a problem free of boundary layer and
can capture a high-gradient solution in the sharp layer.

INTRODUCTION

Numerical prediction of transport equations is an area of continuing progress
because of its practical relevance. With the extensive numerical experiments of the
past few decades and the advent of high-speed computers, approximations to
partial differential equations of this sort have reached a high degree of maturity.
Nevertheless, much work is still being done to circumvent notorious difficulties in
association with flux discretizations in multiple dimensions. It is fair to say that
simulation quality is influenced largely by the convective term (first derivative).
Among the properties worthy of being pursued, the attainment of one property
may violate the other. For instance, use of an upwind scheme provides a stabilized
means for solving preblems involving high values of the Peclet number. This,
however, leads to deterioration of simulation quality in that excessive artificial
viscosities overspread the solution profile and thereby contaminate the real physics.
Accordingly, researchers have strong motivation to build a sound basis for resolv-
ing this dilemma.
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NOMENCLATURE
B; (i = 1-4) biased part of weighting u,v velocity components in x and
functions y directions
cpdp e coefficients in Eq. (7) W, (i = 1-4) weighting functions
C; (i = 1-3} coefficients in Eq. (10) Xy Cartesian coordinates along
D physical domain physical plane
h mesh size in the computational r boundary of D
plane (] angle of the flow direction
N; (i = 1-4) shape functions m coefficient of diffusivity
P, Peclet number £n computational coordinates in
T truncation error in the the transformed plane
convection-diffusion equation P working variable

The finite-element method has enjoyed success in solid mechanics and heat
conduction for years. Applied to the field of fluid dynamics in the middle 1960s,
finite elements have a rich mathematical background from which one can prove
convergence. Like the recent developments in the use of body-fitted coordinates
with finite-volume discretization techniques, the finite-element method has an
appealing attraction in handling geometric complexity. Also, differential equations
involving the Neumann-type boundary condition are more amenable to the finite-
element method. These advantages provide a strong impetus for utilization of the
Galerkin-type methodology presented here. The reasons why this methodology
finds preference in simulating flows characterized by high Peclet numbers for the
convection-diffusion equation will be given later.

Classical Galerkin finite-element methods, being the equivalent centered
finite-element methods, have often yielded unphysical oscillatory sclutions in
situations where convective terms significantly dominate diffusive terms. Physical
reasoning suggests that a nonsymmetric treatment of convective terms would be
more appropriate, While this approach is of great aid in stabilizing the calculations,
it simultaneously brings in unwanted cross-stream diffusion. This artifact smears
the solution in areas of high gradients present in the flow field. The cure for such
pathologic oscillations is to modify the weighting functions underlying the stream-
line upwind Petrov-Galerkin (SUPG) framework [1] so as to secure biased func-
tions in favor of the upstream side.

Another method falling into the category of the streamline upwind method is
that of Rice and Schnipke [2]. Its success in yielding streamline damping is
attributable to the evaluation of the convection term along the local streamline.
Besides this class of methods, numerous concepts have appeared in the literature
for gaining access to higher-order accuracy while retaining numerical stability.
These cures hold easily in one dimension. For a fairly small value of diffusivity, the
problem considered tends to be hyperbolic because the reduced problem (zero
diffusivity) is essentially hyperbolic. In circumstances where time-dependent pure
advection equations are considered, monotonicity-preservation solutions are avail-
able in the one-dimensional context. One quickly learns through practice that
high-resolution sclutions are not easily obtained in multiple dimensions, mostly
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due to the lack of a viable stability criterion to follow. In order to design an
effective multidimensional advective flux scheme, we have felt the need for a
treatise on this issue. Mizukami and Hughes [3] extended the application range of
SUPG to flow problems containing a sharp layer by demanding that the discrete
system underlying the streamline upwind scheme ensure the satisfaction of the
maximum principle [4-6]. It is this maximum principle that makes the monotonic
behavior of the solution variable accessible. Hill and Baskharone [7] took an
alternative route to reach a monotone solution. The idea behind their success in
yielding the so-called monotonicity-preserving property was to approximate the
weighted residuals of convection terms in steamline coordinates. On each element,
the advective flux is preserved along the streamline. Evaluation of these fluxes
requires definition of an upwind point a priori. In light of the work of Ahue and
Telies [4], we can select a legitimate biased weighting so as to yield a monotone
matrix. Oscillations present in the narrow region of high gradients thus can be well
suppressed. Of note is that this methed is intended for modeling discontinuities in
a domain of multiple dimensions.

We begin by describing the target problem, known as the convection-diffu-
sion equation. We explain in detail why the proposed Petrov-Galerkin method
possesses the monotonicity-preserving property. Since both solution accuracy and
stability have great influence on simulation quality, we have also conducted
fundamental studies regarding the stability and accuracy aspects. In order to
validate the proposed flux discretization scheme, we present three closed-form
solutions for the scalar transport equation defined in a square cavity. Attention is
directed to assessing the performance of the scheme.

MULTIDIMENSIONAL FLUX DISCRETIZATION SCHEME

Model Equation and Discretization Method

Over the past few decades, numerical simulation of a transport field variable
in two dimensions has been the subject of many intensive studies in the CFD
community. While numerical analysis of this class of differential equations is
important in itself, its real focus lies in its resemblance to the linearized equations
of motion for incompressible fluid flows, or of the electron and hole continuity
equations in semiconductor device modeling, This topic has been, historically, of
interest to the acrospace and processing industries. They have placed emphasis on
fluids and flow speeds with high Peclet or Reynolds numbers. As a model problem,
we consider the convection-diffusion equation in a homogeneous medium. We
analyze scalar transport equation for simplicity, but never embark on a course that
would preclude system equation generalization. In a simply connected domain D,
we restrict our attention to a simpler case involving a constant diffusion coefficient
and velocities. Simply stated, the solution to the following elliptic system is sought:

ud, + vd, = u(d,, +®,) inD W
®=gonl = 4D
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This problem can be viewed as modeling of a steady-state convection-diffu-
sion equation, in which & represents some transported quantities. Here, (i, v) is
the advection velocity vector, and u is the coefficient of diffusivity. Without loss of
generality, we assume that u,v, and p are positive constants. According to the
prescribed boundary data, g, interior solutions are the result of convection and
diffusion effects. The relative importance is best measured by the maximum Peclet
number,

(P

ex?

nou

ulAx vAy
F,,) = max

where Ax and Ay denote mesh sizes along the x and y directions, respectively. In
this elliptic context, we are interested in flow conditions having dominant first
derivatives.

The finite-element method has been used extensively to solve fluid flow
problems. The Galerkin-based, collocation, and least-squares methods are well-
known weighted residuals variants [8]. Among them, a formulation may be re-
garded as advantageous from the prediction accuracy viewpoint rather than from
the standpoint of stability or monotonicity. In situations where convective terms
are overwhelmingly dominant over diffusive terms, analysis of this class of flows
necessitates the use of upwinding procedures. To this end, we proceed along the
line of the method of weighted residuals by demanding that the residual R =
u®, +v®, - (P, + ) be orthogonal to the weighting function. The solution
sought, then, can be seen as a search for the weak solution to Eq. (1). By
substituting finite-clement approximation for the working variable &, we are led to
an element-based matrix equation:

N, oN,

i

[LCW,-(uW+U ay]dA

where A4° is the element area. Upon assemblage of all elements, the global
coefficient matrix is formed. What remains is determination of the weighting
function, which is of pivotal importance and is a rather obscure issue, before the
weak solution can be computed from a direct solution solver.

oW, oN,

[ o, oW, o,

Ac 0X  dx dy dy

¢j+ i dA‘bj=0 Q)

Construction of Test Space

As progress has been made in the area of flux discretization for the advec-
tion-diffusion equation, continued research attention has been directed toward
pursuing conservativeness, convective stability, and boundedness properties. Usu-
ally, upwind finite-element models accommodate the first two desirable properties.
Whether or not an upwind scheme can render the boundedness property is closely
related to the sign and absolute values of the components in the resulting
finite-element coefficient matrix. Diagonal dominance serves as a sufficient condi-
tion to assure bounded solutions. If this condition holds, nonphysical overshoots or
undershoots are avoided. In light of this, we resort to using the Petrov-Galerkin
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formulation. The question of which weighting functions to adopt so as to yield a
monotone solution remains open. We elaborately construct a coefficient matrix
which is of some importance, for it amounts to determining whether the finite-ele-
ment solution to the scalar transport equation is sensitive to sharp solution
gradients. Being motivated by the work of Ahue and Telies [4], we will construct a
new class of test functions. The underlying idea evolves from the use of weighting
functions falling into the exponential setting. As is well known, thus far, one is
prone to make the matrix equation to satisfy the monotonic condition a priori,
thereby leading to an M matrix, when adopting a biased model.

It has been well known that employment of total variation diminishing (TVD)
conditions enables us to have a high-resolution solution for the one-dimensional
hyperbolic equation, Inspired by this fact, we wish to find out whether there exists
a general rule to follow so that a monotonic solution is also amenable to an elliptic
problem defined in a multidimensional domain. Before turning to construction of
such a test space, it is convenient to present useful theorems [4-6]. Also, some
relevant definitions are summarized as follows for the sake of description [4-6]).

Definition 1: A real n X n matrix A = (a;;) is said to be irreducible diagonally

dominant if |a,| > £",_ la;] for at least one i.
JH+i

Theorem 1: If A = (a,.j) is a real, irreducible, diagonally dominant n X n matrix
with a;; < O for i #jand a; > Ofor1 <i <n,then A™' > 0.

Definition 2: A real n X n matrix A = (a;;) with a;; < 0 for all i # j is an M matrix
if A is nonsingular and A~' > 0.

Definition 3: A real n X n matrix A is defined as monotone if Ad = 0 holds for
any vector ¢, it implies ¢ > 0.

Theorem 2: If the off-diagonal entries of A are nonnegative, we are led to a
monotone A if and only if A is an M matrix.

As the core of the present analysis, these definitions and theorems provide a
stabilized means for forming a well-conditioned matrix equation. Inclusion of the
idea of an M matrix is intended to cope with oscillations about jumps. In the
finite-element method using the weighted-residuals formulation, we use bilinear
quadrilateral element shape functions:

NCE,m) =20 + £6)A + 1m) (3)

The test space is constructed by modifying the shape functions through the use of a
biased exponential polynomial:

W, =N, + B, (4)

where
uh, vh,
B (£,m) = {exp —g(s‘— 55)] CXP[—E(W - 7.'1‘)] - 1}Ni(§,'fr) 3

In Eq. (2), h, and h, denote grid sizes.
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Figure 1 illustrates the piecewise weighting function in regions containing the
node (i, j), which are surrounded by four bilinear elements. This figure clearly
illuminates why the discrete system has been enhanced by the exponential function
defined in Egs. (4)-(5). Here, we consider only the scalar problem in two dimen-
sions. For extension of this idea to three dimensions or to a system of equations,
one can follow the same procedure.

Fundamental Study of Accuracy

To gain insight into the behavior of the convection-diffusion scheme, we have
conducted a fundamental study of the employed exponential upwind method as
applied to a steady advection-diffusion model problem. Of numerical properties,
the stability and accuracy deserve detailed discussion. In an attempt to obtain
knowledge of discretization errors, we derive the modified partial differential
equation of Warming and Hyett [9]. The task of deriving the accompanying
discretization error T, shown as follows, demands quite tedious manipulations:

u-Vo — uyAd =T (6)
where

T =c @, + 0,0, + ;0 + d\®,,, + d,®,,, + d;d,,, + d®

XXX XXy xyy

ted... ted,,, +el, +ed, +ed .+ @)

The use of exponential polynomials precludes concise representation of the
coefficients in Eq. (7) because algebraic manipulations are considerable. We thus
have plotted only the leading coefficients logarithmically against the grid sizes.

Figure 2 reveals that the rates of convergence for ®,,,, and ®,, . are O(h*), while

those for &,,, ¥, ®,,,, Dy, Poyys Privr Uy, and @, are in the vicinity of
Weighting tunction
Y
X

: (1l R/ N ST
g1 R
it U RN
5\
TN R
N
W

{i,j-1) {i+1,j-1)

Figure 1. lllustration of the weighting function, defined in Egs. (2)-(4), in a block
of four bilinear elements having a common corner node (i, j).
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Figure 2. The computed rates of coefficients appearing in Eq. (7): (a) &,,, @,,, Dy,; () D, Py,
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O(h?). As to the leading error terms, the rates of convergence for ®,, and @, are
exactly two.

With the local error estimates achieved, we will explore in depth the overall
order of accuracy for the scheme proposed. To this end, we take the following
model problem into consideration:

(x+ D70, +(y+ D7D, - V20 =0 ®)
In a.square domain of unit length, the analytic solution takes the following form:

d=(+H+ G+ )
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By substituting the analytic solution ® into Eq. (7), we can have the estimate of the
global error of T, measured in the L,-norms sense:

err(P) = ® — P,
[P,

where
_ o 172
1® - @, = [E (q’u - q’u] ]
7

B, - ( E 5,?!.] 172

¥

In this article, we also present a rate of convergence test for the sake of
completeness. The intention here is to gain insight into the behavior of error
reduction as the mesh size decreases. A continuous and uniform grading of meshes
is thus required along each dimension. Solutions to the problem under considera-
tion were computed from several uniform grids starting from 5 X 5. By doubling
the number of nodal points in each dimension, we benchmark the scheme perfor-
mance in terms of the rate of convergence defined below:

log(err, /err,)

rate =
log(N,/N;)

Table 1 reveals errors err, and err,, which were obtained from the grid system
having (N, + 1)* and (N, + 1)* points, respectively. With these values, we can
estimate the resulting rate of convergence.

As far as the transport equation in multiple dimensions is concerned, it is of
importance to know how discretization errors vary, either along or normal to the
flow direction @ = tan~'(v/u). To accomplish this task, we further transform the
truncation error term T from the physical coordinates (x, y) into the streamline

Table 1. Rate of convergence for the test problem defined in Eqs. (7)~(8) based
on the proposed discretized advection-diffusion scheme

Element L, norm Convergence rate
S5X5 3.2614 x 1073
4 3.36
10 X 10 3.1738 x 10°
P 319
20 x 20 3.4681 x 10~
3.29

40 X 40 35297 x 107¢
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Figure 3. The computed coefficients of C; (i = 1 ~ 3) in Eq. (10} against the grid size h and the flow

angle 8: (a) C,; (&) Cy; (¢) C,.
coordinate s and its normal » through one-to-one mapping. Applying the chain

e T o

10

Ci(h,0)®,, + Cy(h, 8)D,, + Cy(h, 0)D,, + -

T:

where h is the uniform grid size.

The efforts to express the coefficients appearing in Eq. (10) in a functional
form are also considerable. It is, as a consequence, appropriate to plot them

graphically against @ and h. Figure 3a reveals that the values of C,

are always

positive, regardless of the flow angle encountered. This implies that an artificial

viscosity of physical plausibility has been added implicitly along the streamline. In

contrast to C,, the computed artificial viscosity along the direction normal to the

streamline is negative, as shown in Figure 3b. According to Figure 3, we realize
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that the numerical stability has been enhanced mainly along the flow direction by
implicit addition of the damping term. Flows involving flow angles, namely 45° and
135°, are highly smeared. It is worthwhile to note that when flow analysis is
performed in a one-dimensional-like context (8 = 0°,90°), the truncation error
remains only along the streamline direction. Also of note is that if C, is locally
equal to zero, experience gained from previous numerical exercises indicates that
the employed numerical model is by no means unconditionally stable in the
presence of a positive value of C, and a negative value of C,. We believe that
prediction errors of this sort might be the key to causing the proposed flux
discretization scheme to be conditionally monotonic. This prompts us to explore in
depth the following stability analysis.

Fundamental Study of Monotonicity

As the flow convection largely dominates diffusion, there is potential loss of
ellipticity. Under these circumstances, the solution profile taking the form of a
sharp boundary layer may be set up in the interior domain. Very often, classical
upwind finite-element methods fail to provide smooth solutions in regions of sharp
gradients. In this regard, the selection of a test space that is applicable to the
present framework is necessary. We thus represent the discrete finite-element
equation in a form analogous to that expressed in the finite-difference setting,
namely,” }_,a;®; = 0. The derivation of a; = a/(p,,, P.,, k), while algebraically
tedious, helps us to decide to what extent the values of (va P,,) still render the
irreducible diagonally dominant matrix defined above. For clear demonstration of
the so-acquired stable region, we have calculated the coefficients of a; against P,,
and P,,. The shaded area shown in Figure 4 is referred to as the monotonic
domain in the sense that finite-element solutions of Eq. (1) are nonoscillatory if
the mesh sizes and velocities under consideration correspond to the Peclet number
falling into this region. Under these circumstances, a set of nine coefficients
follows the definition of the M matrix. While we can gain access to a monotonic
solution through the approximation underlying the concept of the M matrix, this
stability criterion may be too restrictive for us to ameliorate the computational
accuracy. No consideration will be given here to optimizing this compensating
factor. Of note is that when the analysis is reduced to one dimension, the
discretization equation proposed here turns out to be identical to that of the
localized adjoint method [10]. With the accessible consistency property discussed in
the previous section, the convergence solution meets our expectations as long as
the problem considered and the mesh discretized cause the values of P, and P,,
to fall into the realm of a stable region.

CHARACTERISTIC REFINEMENT OF THE
EXPONENTIAL UPWIND SCHEME

While monotonic finite-element solutions of Eq. (1) are possible provided
that Peclet numbers fall into the monotonic region as discussed in the preceding
section, the restriction of using Peclet numbers smaller than 3.2 precludes the
extension of the proposed model to a wider range of applications. In order to



MULTIDIMENSIONAL FE FOR ADVECTION-DIFFUSION 335

4.0

20 40

P

2x

Figure 4. Iflustration of the monotonic region underly-
ing the proposed upwind scheme.

remove this constraint, we bring in the concept of the method of characteristics
because the higher the Peclet-numbers are, the more the differential system tends
to be singularly perturbed. For a given interior spatial point, physical reasoning
tells us that we do not need to take each stiffness matrix involving this point into
consideration in the assemblage procedures. Instead of taking four elements into
account, we consider only the element upsteam of this point in mimicking the
characteristic behavior. To demonstrate the feasibility of this characteristic exten-
sion, we will present finite-element results for benchmark test problems presented
in the results section.

NUMERICAL STUDY

To make clear whether or not the proposed Petrov-Galerkin finite-element
maodel has the monotonicity property, we will consider a smooth advection-
diffusion problem that is amenable to analytic solution. For completeness, prob-
lems with a boundary layer and internal layer are considered in a domain of two
dimensions,

Problem without a Boundary Layer

The first example we will deal with is that of a smoothly varying transport
problem, as defined in Figure 5. Within the physical boundary, along which
prescribed boundary data are given, the velocity field is assumed to be constant,
that is, w = (1,10.5). This problem has been used by Arampatzis and
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L P=P, exp(Pe,/2) sin(rz)

u
v=10.5
&=0 =
u=1
X
d=0 L
Figure S. Illustration of the test problem without a bound-

ary layer.

Assimacopoulos [11] to benchmark the discretization scheme. Given these veloci-
ties and boundary data, the analytic solution to Eq. (1) takes the following form:

¢
0 .
b= e’TeTeP,x/z sm('rrx)(e’” - e’-y)

where

1 1 (42 + P2)
TPy SV (Po+48)  B=—7(—

In a 15 X 15 uniformly discretized domain, the computed relative error,
measured in terms of the so-called L, norm, is 2.434 X 1073, We have plotted the
computed error at x = 0.5 against y in Figure 6 for the purpose of comparison
with the QUICK solution given in [11]. Both prediction solutions deviate largely
from exact solutions in the vicinity of x = 1, where the solution has higher
gradients, as shown in Figure 7. As y decreases, progressively smaller errors result.
As indicated by this figure, overwhelming superiority to the third-order QUICK
scheme is demonstrated.

Problem with a Boundary Layer

Encouraged by the close agreement between the calculation and the analytic
data, we can make an attempt to deal with a stringent problem that is character-
ized as possessing a sharp boundary layer. A good approach to demonstrating the
integrity of the underlying method to resolve a sharp profile is to solve a problem
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amenable to the analytic solution. The test problem attempted here is subject to
the boundary values specified in Figure 8. The analytic solution to this problem
takes the following form:

{1 — expl(x — D/} {1 — expl(y — D(v/p)]}
[1 — exp(—u/p)] [1 - exp(—v/p)]

D(x,y) =

Numerical solutions were sought on several regular grids. Given the com-
puted solutions plotted in Figure 9 and the computed values of L,-norm error
tabulated in Table 2, the present finite-element formulation was confirmed as
being able to tackle a problem involving a rapid change of solution inside the flow.

Skew Advection-Diffusion Problem

An even harder problem, which is distinguishable from other test problems in
the presence an internal layer, will be considered. This test is that of the skewed
flow transport problem, which is regarded as a worst-case scenario for any
upwinding method [12]. In the square cavity of unit length, the cavity is divided into
two subdomains by a tile line, which passes through the left lower corner at (0, 0),
having a slope of m = tan~'(v/u). Throughout the whole domain, the magnitude
of the velocity of interest is maintained as g = Vu® + v = 1. Subject to the

0.06 ——————— ]

oos| ]

——— PRESENT
—o— QUICK [11]

Error 169Jm,
o o
8 g
, ————

e

o

0
T

0.01}+

0.00 O—iegrid ot

Figure 6. Computed solution profile at x = 0.5 for the test problem
without a boundary layer.
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Figure 7. Computed contour plots of ¢ for the problem without a

boundary layer.

1 d=0

__1—exp((y-1)2)
*= 1-exp(- %)

¢

_ l-expi(z—1)4)
T l-exp(-4)

Figure 8. Illustration of the test problem with a boundary layer.
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U_J,LLL

()

Figure 9. Contour plots of @ for the test problem with a boundary layer: (a) u = v =1; (»)
u=v=10;(c) u = v = 100.

Table 2. Computed L, norms at different flow conditions for the problem with a boundary layer

Element u=v=1 wu=v=10 u=uv=100
10 X 10 1,175 x 10~° 1.217 % 10-° 2.902 X 10~
20 % 20 9.600 x 10710 1.060 x 10~° 2.781 x 10~ 8

40 X 40 6.833 x 10710 7.551 % 10~ 1° 4.958 x 10~
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T=1

Ta1

T=0

10 Figure 10. Illustration of the skew advec-
Ta0 " ¥ tion-diffusion problem.

boundary condition for the working variable given in Figure 10, a shear layer of
high gradient or near discontinuity is expected when crossing the dividing line.
The objective of this case is to assess the merit and the deficiency of the
proposed upwinding technique. We consider a uniform flow parallel to the dividing
line in a 20 X 20 uniformly discretized mesh. Different diffusivities are considered
that correspond to different degrees of advection dominance. With the diffusivity
set to 1.67 X 1072, the cell Peclet number approaches 3, which falls into the
monotonic regime. Finite-element solutions shown in Figure 11 are free of oscilla-
tions in regions close to as well as away from the dividing line. Monotonic and

Figure 11. Computed solution of ¢ for the case of u = 1.67 X 102,
which corresponds to Peclet numbers falling into the monotonic
region.
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Figure 12. Computed solution of @ in a 150 X 150 uniformly
discretized domain, The fest considered is that of p =2 X 1073,
which corresponds to Peclet numbers falling into the monotonic
region.
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Figure 13. Computed solution of & for the case of u =2 X 10~3: (a) characteristic version of the
proposed finite-element model; (b) characteristic-free finite-element model.
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Figure 14. Finite-element solutions of @ and their distributions at x = 4, £, £,
in the case of u =2 X 1073 (a) characteristic version implemented at 20 X 20;
(b) characteristic-free version implemented at 20 X 20; (¢) characteristic-free
version implemented at 150 X 150.
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smooth behavior clearly demonstrates that nonphysical spatial oscillations are not
exhibited under certain conditions. With increasing Peclet numbers or decreasing
diffusivities, poor performance in the case of u = 2 X 1073 makes such a method
hardly applicable to problems involving steep gradients of the convected field
variable ®. To suppress these wiggles, one can of course keep reducing the mesh
size until the corresponding Peclet number falls into the category of the monotonic
region in Figure 12. There is considerable computational expense associated with
the frontal solver. This is a consequence of having to adopt other alternatives.
Here, we adopt the characteristic functionality to make the discrete system
monotonic. In the presence of characteristic enhancement, the monotonic solution
for the case plotted in Figure 12 can also be obtained in a domain having much
fewer nodal points. Figure 13 clearly illustrates the importance of incorporating the
characteristic information into the proposed upwind finite-element method. With
the diffusivity set equal to 1075, the diffusion effects are virtually eliminated. A
solution underlying the characteristic upwind model is smoothly exhibited in Figure
14. Furthermore, by setting the diffusivity coefficient equal to 107%, the cell
Reynolds number approaches infinity. The case considered is known as the
conventional skew advection problem. While these computed solutions in situa-
tions where convection significantly dominates diffusion are smoothly predicted,
the quality of the analysis suffers from excessive numerical diffusion. In summary,
the smeared solution shown in Figure 14 is more or less representative of the
outcome of any method that is restricted by the M-matrix constraint condition.

CONCLUSION

In this article we have calculated finite-element solutions for the convection-
diffusion equation defined in a two-dimensional domain. To stabilize this differen-
tial system in regions of high gradients, an oscillation suppressant is incorporated
into the Petrov-Galerkin framework. Thanks to the underlying M matrix, which has
been implemented as a crucial stabilizing ingredient in Petrov-Galerkin weighted-
residuals methods, we can judiciously determine the amount and type of artificial
diffusion a priori which is necessary to resolve overshoots or undershoots, We have
endeavored to conduct basic studies with the focus on numerical accuracy and
stability. By virtue of the modified equation analysis, considerable insight into the
behavior of the consistency property has been obtained. An attribute of the
proposed streamline method is its stabilization along the flow direction. It is
worthwhile to note that the employed monotonicity property is applicable to
multiple dimensions. This finite-element model has been verified by solving prob-
lems with analytic solutions of different characters. The success of the proposed
upwind finite-element model provides a strong impetus for utilization of the
method in the simulation of problems in fluid mechanics.
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