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SUMMARY 

With the purpose of providing physical insight into the developing spanwise flow motion and identifying the 
presence of Taylor-Gortler-like vortices, we conducted a flow simulation in a rectangular cavity defined by a 
square cross-section and a spanwise aspect ratio of 3: 1. The governing equations were solved for the transient 
processes by using a finite volume method in conjunction with segregated solution procedures. In the present 
work, attention is placed on the spiralling comer vortices near the two end walls and the longitudinal meandering 
Taylor-Gortler-like vortices. The investigated Reynolds number is taken to be 1500. As a vehicle for the present 
flow simulation, validation against analytic data was canied out first for a configuration similar to the problem of 
interest. This study demonstrates the feasibility of the employed computer code. 
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INTRODUCTION 

Having reached a high degree of sophistication in computing power and computer graphics, together 
with the rapid advancement in numerical methods, the technique of computational mechanics has 
received increasing use within the computational fluid dynamics (CFD) community and is now 
applicable to large-scale flow predictions. Of particular importance is the fact that computer 
simulations are suitable for parametric studies. These attractive characteristics have prompted analysts 
to explore flow developments of physical importance. Fluid flows are by nature three-dimensional, so 
any prediction in a domain of two dimensions is subject to doubt. Partly owing to a lack of turbulence 
modelling, which is still regarded as one of the greatest stumbling blocks for scientific and 
technological development, and partly owing to limitations on CPU and memory for three-dimensional 
turbulent flow simulations, we only consider flow conditions classified as laminar. 

In fluid engineering the presence of vortices has a strong association with the pressure drop and, 
likewise, the heat transfer. For development engineers it is thus critical to gain more physical insight 
into the interactive behaviour among vortices of different sizes and characters. A well-known 
benchmark test configured as a lid-driven cavity is best suited to manifesting this problem and, 
furthermore, the onset of flow unsteadiness and instability. This problem has been extensively studied 
for more than three decades and draws continuous attention for two reasons. First, the configuration is 
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comparatively simple for conducting experiments or analyses. Second, even though the geometry is 
fairly simple, the flow physics exhibited is far from simple. 

Because a flow structure inside a lid-dnven cavity is commonplace in many industrial flows, this 
problem has been the subject of many experimental endeavours.'-* Subsequent to the experimental 
work of Pan and Acrivos,' Taylor-Gortler-like (TGL) vortices were first observed in 1983 by Street 
and ~o-workers.~ Different Reynolds numbers and spanwise a!pect ratios were considered in their 
series of  experiment^.^^ According to their work, in a cavity of spanwise aspect ratio (SAR) 3: 1 : 1, 
eight pairs of TGL vortices were observed at Re = 3000. With increasing Reynolds number, 1 1 pairs of 
TGL vortices were reported at Re = 6000. In the range 6000 < Re < 8000 the cavity is crowded with 
too many TGL vortices so that their interactions excite the unstable flow to such a degree that the flow 
system is more adequately classified as turbulent. While experimental work has been conducted at 
Re = 1000 and 2000, numerical results have seldom been discussed. 

Numerical simulation of this problem dates back to the pioneer work of Burggraf.' Much of the 
previous work has been directed towards analysis in two dimensions. More recently, three-dimensional 
investigations have become possible. Many of these studies have been canied out at Re = 3200 for a 
cavity of either L:B:D = 3: I : 1 In the light of three-dimensional numerical studies, 
shear-driven cavity flow can be referred to as being nearly two-dimensional at very low Reynolds 
numbers. As the Reynolds number is increased, working variables become appreciable in the third 
dimension. Such a distinction is mainly attributable to the presence of two end walls. Of note is that 
TGL vortices were first predicted by Freitas et a1." With increasing Reynolds number the presence of 
large disturbances may suddenly open the door to chaotic fluctuations and give rise to flow turbulence. 
Linear stability studies'* could also provide valuable information about the onset of instability. They 
are, however, hindered by mathematical difficulties in formulating a tractable linear stability eigenvalue 
problem. As a result, we only explore the consequences and causes of the formation of TGL vortices 
through three-dimensional numerical studies. 

or 1: 1 : 1 

THEORETICAL FORMULATION 

In this paper we are concerned with a set of three-dimensional Navier-Stokes equations. The 
dimensionless conservation equations capable of describing the motion of an incompressible fluid are 
representable in terms of pressure p and velocity vector, u = (u. c, w): 

hi - = 0, ax, 

-+ - (u  hi a u . ) =  - --+-- ap 1 ahi 
ax, Re &,ax, at ax, m i  

Hereafter the Reynolds number Re = U,B/v is defined on the basis of the cavity width B, the 
kinematic fluid viscosity v and the lid velocity U, = 1. While in the literature many sets of working 
variables are available, the primitive variable formulation employed here has gained wider acceptance 
because of the accessibility of legitimate boundary  condition^.'^ 

The use of a velocity-pressure formulation involves loading primitive unknowns. In both grid 
staggering and ~ o l l o c a t i n g ~ ~ ~ ~  strategies, erroneous node-to-node pressure oscillations can be well 
suppressed. Uncertainty as to what boundary condition should be used is the main reason for 
abandoning collocating grids when dealing with the pressure correction equation. On the control 
surface each primitive variable takes over a node to itself, whereas the pressure is surrounded by its 
adjacent velocity nodes. Thus the employment of staggered grids enables us to conduct a finite volume 
integration over each representative cell. 



SPIRAL MOTION F4 A RECTANGULAR CAVITY 327 

Just as device disturbances obscure calibrated physics, prediction errors may inevitably cause 
simulation quality to deteriorate. Chief among them is non-alignment of grid lines with Cartesian co- 
ordinates. We can get around this difficulty by rewriting the basic equations in a non-orthogonal co- 
ordinate system through one-to-one curvilinear transformation. Although the use of body-fitted co- 
ordinate transformation is widespread, this procedure involves the challenging task of evaluating 
metric tensors. Improper approximation of them might seriously contaminate the solutions. To 
compensate for this imperfect cure, we prefer to conduct analyses at the Cartesian co-ordinates to 
ensure a precise flow investigation. In order to resolve high gradients in the boundary layer, non- 
uniform orthogonal meshes are thus considered. 

In staggered grids the use of a higher-order upwind flux distretization scheme for non-linear terms 
enables us to effectively ameliorate velocity oscillations in high-Reynolds-number circumstances. The 
framework we adopte is that of QUICK,24 which has undergone extensive testing on diverse flow 
problems during the past two decades: 

r 3 

Here we designate Ai as the control surface along the i-direction. Consider the control surface in 
Figure 1 ; the convective value @: of 0 can be approximated by 

0; = f X(6,E - 0) + Curv, (4) 

where 

and 

By nature, a coupled solution algorithm appears to be simple. Despite this substantial superiority in 
algorithmic simplicity, there is considerable computational expense associated with the demand for 
disc space in three-dimensional calculations. This is a consequence of solving for primitive variables 
by making use of the SIMPLE2' segregated approach. 

VALIDATION STUDY 

Prior to predicting the flow physics of interest in the rectangular cavity, it is best to conduct a validation 
study to confirm the analysis tool. For the purposes of validation and evaluation we consider a problem 
amenable to analytic solution.26 In order to be analogous to the investigated lid-driven problem, the test 

Figure 1. Grid lay-out for equations (3H5) corresponding to QUICK discretization scheme 
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Figure 2. Rate-of-convergence test for benchmark problem defined in equations (6) and (7) 

case considered is subject to the Dirichlet type of boundary conditions. On the entire boundary of the 
cubic cavity of length 2, prescribed nodal velocities for the case of Re = 1 are given by 

u = -u[eU sin(ay + dz) + em cos(ar + d y ) ) ~ e - ~ ~ ' ,  (6a) 

w = -u[ea; sin(ax + dy) + eaY cos(az + ci.x))le- d'r.  (6c) 
In the cubic cavity - I < x, y. z < 1 the exact pressure for this problem takes the form 

a2 
p = - - [e2" + 

2 
+ eZu2 + 2 sin(ax + dy) cos(az + dr)eU@+') 

+ 2 sin(ay + dz) cos(ar + dy)eu(z+x) + 2 sin(az + dr) cos(ay + d ~ ) e ~ ( ~ + y ) ~ e - ~ ~ ~ ~ ,  (7) 

where a = n/4 and d = n / 2 .  In order to assess the solution quality, we measure prediction errors at 
t = 0.1 for each primitive variable. On the basis of n nodal points in total we calculate the L2 error 
norms 

~u IIu - UexactI lL, .  (84  

where 

Solutions are sought at constant time increment At = 1/160 and different uniform grids 
h = 2/2,2/3, .  . . ,2/19,2/20. We have plotted the resulting errors logarithmically against the grid 
spacings in Figure 2, from which we can obtain the rate of convergence for the underlying QUICK- 
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Figure 3.  Description of investigated cavity of SAR = 3: I .  Pressure contours and spanwise velocity contours an: also plotted for 
illustration 

type discretization scheme. As seen in Figure 2, close agreement is demonstrated between the 
calculations and the analytic data. This confirmation study supports the conclusion that the present 
finite volume approach can be applied to prediction of the flow physics inside a shear-dnven cavity. 

COMPUTED RESULTS AND DISCUSSION 

Problem description 

The test problem was that of the lid-driven cavity shown in Figure 3. The investigated cavity was 
defined by L:B:D = 3: 1 : 1, where L stands for the span, B the width and D the height. Within the whole 
rectangular cavity, primitive variables were sought on a non-uniformly discretized domain of grid 
resolution 34 x 91 x 34. For simplicity we designate PQSR and KTMN as the end walls, PKNR the 
downstream side wall, QTMS the upstream side wall, SMNR the lower horizontal wall and QTW the 
lid plane. 

The Reynolds numbers considered were 250, 500, 750, 1000, 1250, 1500 and 2000. Regarding this 
series of calculations, it is worthwhile to explain why we focused our attention on Re = 1500. The 
rationale can be briefly described as follows. Prior to Re = 250 the fluid flow will most likely display a 
two-dimensional character. In the range Re = 500-1000 the flow gradually develops into a small- 
amplitude three-dimensional state and the symmetry of the flow is still well maintained. At Re = 1250 
the flow field starts to show travelling waves that are too mild to excite TGL vortices. Suffice it to say 
that when Re > 1000, transient analysis needs to account for the flow unsteadiness. The quest for the 
critical Reynolds number that gives a hint of the onset of TGL vortices is thus of importance. 
Numerical exercises for Re = 1375 reveal that five sets of vortices taking a mushroom-like form appear 
over the entire span. This mobile and unsteady system is still too regular to be classified as turbulent, in 
the sense that the transport process undergoes periodic variation. The periodicity is estimated to be 72. 
As the Reynolds number continues to increase to Re = 2000, this periodicity-preserving behaviour 
disappears in the rectangular cavity filled with seven pairs of TGL vortices. The symmetric character is 
no longer a definitive outcome. Numerical simulation thus needs to be carried out in the entire cavity 
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under these circumstances. Because we are mainly concerned with the growth of disturbances into 
Taylor-Gortler vortices, the investigated Reynolds number should not be so high as to yield random 
data that will only complicate matters. To give us a clear picture of the formation of TGL vortices, we 
consider a moderate Reynolds number of 1500. 

We performed the transient simulation over the entire evolution and terminated at t = 444. Grid 
nodes were appropriately arranged so that physically plausible solutions were obtained. The disc space 
used for a marching time step was 1.8 Mbytes, while the memory taken was estimated to be 6 Mbytes. 
On an HP 730 each computation took approximately 10 days of CPU time. 

Evolution of spanwise JOW motion 

Owing to the fluid viscosity, the moving lid drags the fluid flow adjacent to the upper plate and gives 
rise to a global flow motion. Exclusive of the interior primary recirculating cell, two less apparent 
secondary eddies, namely the downstream secondary eddy (DSE) and the upstream secondary eddy 
(USE), emerge. 

According to Figure 3, decelerating fluids at the two end walls induce a favourable pressure gradient. 
It is this force that engulfs particles to the symmetric plane. A manifestation of the distinction between 
two- and three-dimensional flows is the presence of spanwise velocity. In these circumstances a three- 
dimensional analysis becomes indispensible. Moreover, the fact that the pressure gradient changes sign 
at planes parallel to the symmetric plane explains why fluid particles approach the two end walls. This 
is conceptually identical with placing a suction pump in the core region so that fluid particles, exclusive 
of the primary vortex, proceed with an outward-running motion. According to Figure 3, such a flow 
structure is clearly manifested by the plotted streamlines at a plane that is fairly close to the left end 
wall. This sheds light on why fluid particles inside two different secondary eddies are entrained to the 
primary core and move towards the symmetric plane. 

Spanwise velocities deserve extensive consideration because they play an essential role in forming a 
spiral flow structure. Along with the primary circulation, the flow pattern is doomed to be spiral in the 
presence of appreciable spanwise velocity. In illustration of the presence of helixes, we have plotted 
massless particle tracers that were initially released at three representative locations in Figure 4. To 
begin with, we considered a fluid particle at (0-5, 1.9, 0.03). As seen from the perspective view in 
Figure 4(a), a particle designated by ‘a’ migrates towards the upstream wall and then deflects as a result 
of being affected by the combined spanwise and primary flow motions. A large-radius loop. of a 
spanwise sprialling particle track is revealed near the end wall PRSQ. In the course of this journey, 
particle ‘a’ takes 25% of the entire time to advance to location ‘b’ and is then quickly drawn into the 
primary circulation in a much smaller loop. This inward spanwise motion takes about 10% of the 
whole journey to move to location ‘c’, which is fairly close to the symmetric plane. In the ensuing 
sequence the spiralling particle ‘a’ continues to move towards the symmetric plane at an increasingly 
slower pace but in a larger loop. It takes approximately 60% of the entire time before marker ‘a’ is 
drawn out of the primary core and engulfed into the DSE. This is comparatively fast, as only 5% of the 
time is needed for a particle to travel from ‘d’ to ‘e’. Noticeable in this figure is the monotonic 
spriralling motion. Fluid flows in the vicinity of the DSE and USE are also described in Figure 4(b). 
After being released from (0.95, 1.65, 0.05) and (0.188, 1.567, 0.0708), particles move towards the 
end walls and their spanwise translation eventually stops, followed by a sudden lift to the core of the 
cavity. Afterwards they proceed again to the symmetry plane in a spiralling fashion. Figure 4(b) 
reveals that fluid particles released from the USE go forward with a smaller radius of helix in the core 
and can be characterized as possessing a monotonic motion. For completeness we considered the 
particle track that is affected by the TGL vortices. In an attempt to illuminate such flow characteristics, 
we considered the same particle ‘a’ as considered in Figure 4(a). Within a narrow span, as seen in 
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Figure 4. Illustration of spiralling particles: (a) monotonic particle track (at t = 25), released from (0.5, 1.9, 0.03), which has not 
been affected by TGL vortices; (b) particle track at (t = 25), released from (0.1 88, 1.567,0.0708), inside USE and particle track, 
released from (0.95, 1.65, 0.05), inside DSE (c) back-and-forth particle tracks at ( t=85 )  which have been affected by TGL 

vortices: (d) plots (c) viewed from x-z plane; (e) plot (c) viewed from y-z plane 

Figures 4(cj4(e), back-and-forth spanwise motions are visible from different views. Comparatively 
speaking, particle ‘a’ meanders in a more irregular manner when it comes across the free shear vortex, 
as shown in Figure 11 (t = 85). This explains why the rod-like isosurface of v = 0 is attached to the 
side walls in Figure 5(h). 

The main purpose of depicting the flow structure in Figure 5 is to illustrate the variation of the flow 
in the spanwise direction. The impact on the global flow is manifested by the presence of the isosurface 
of v = 0. Later on we will discuss the distinct characters of the isosurface of 21 = 0 starting from t = 15 
and ending at t = 85. Further evidence regarding the gradual development of the spanwise motion can 
be revealed from different viewpoints. In the very first stage of the lid motion the pressure established 
takes on a radial form at planes spanned by both longitudinal and transverse co-ordinates. As seen in 
Figure 6(a), the location at which the lid plane interesects with the downstream vertical plane serves as 
a singularity point fiom which a radial type of pressure distribution propagates to the core of the cavity. 
In the very early part of flow development the presence of the vertical end walls, along which a slowly 
developing boundary layer becomes visible, affects the curved primary core flow. As a result, fluid 
particles adjust themselves by setting up an elongated radial type of pressure distribution, as seen in 
Figure 6(b), to allow and support the fluid particle moving spirally towards the symmetry plane. At a 
later time, t = 10, the ring-shaped pressure contour present in the inner domain shifts towards the end 
wall, so that this pressure becomes more flattened even in the vicinity of the symmetry plane. As time 
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Figure 5. C'ontoursurfaceof7.= 0 insldehalf-cavity: ( a ) r =  IS; (b)r:=25: ( c ) t = S S ;  (d)1-65. ( c ) 1 = 7 0 .  ( f ) 1 = ? 5 :  ( g ) r = 8 0 ;  
(h) t = 85 
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I 0  x axis 
(a) 

t=25 
(b) 

t=15 

Figure 6. Computed pressure contom scaled by lo4: (a) at y = 1.5 plane and t = 25; @) at x =  0.525 plane where r = 10, 15.20, 
25 have been. considered 
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Y 
0.0 x axis 1 .a 

+----- velocity 0.2 

Figure 7. (continued) 
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advances to t = 20, these parallel pressure contours vary in the transverse direction. This leads to an 
accompanying spiral particle motion in regions adjacent to the lid plane and the bottom wall. More 
apparent is the radial distribution of pressure contours near the bottom wall. At this stage it can be 
concluded that the presence of the spanwise variation is not solely attributable to end wall effects. 
Instead, it is the complex combination of the spanwise pressure gradient, radial pressure gradient, 
centrifugal force and no-slip boundary velocity that leads to the formation of spanwise velocities. 

As mentioned earlier, fluid flows in a rectangular box can be characterized as possessing eddies of 
distinct sizes. Because the physics of flow in this cavity is anything but simple, it is instructive to plot 
the prediction results in a three-dimensional context from which complex recirculating flows at 
different times can be clearly visualized. To anive at this objective, we have plotted different 
perspective views at planes y = 2.5 and x = 0.6. The right part of Figure 7 reveals that the flow pattern 
develops gradually prior to t = 30. Exclusive of a small perturbation in regions adjacent to the bottom 
wall, the change in the flow structure is, as a whole, indistinguishable between t = 30 and 60. At a 
spatial location which is fairly close to the bottom wall, say z = 0.04, the velocity distributions of u, v 
and w at the x=O.6 plane vary along the spanwise direction. As seen in Figure 7, wavy velocities 
become clearly visible at time t = 60. Plausible reasons leading to the wavy profiles of u and v by 
different possible destabilizing means will be discussed later on. 

We now turn to the flow visualization from the perspective view at the y=2 .5  plane. Besides 
streamlines, as seen in Figure 7, we have also depicted contour lines of v = 0, the local extreme value 
of v and the velocity distributions of u and w at x = 0.5 and z = 0.5. These plots enable us to gain 
physical insight into the spanwise flow motion. Presumably hindered by an increasingly developed 
boundary layer along the vertical end wall, together with the presence of stronger comer vortices, the 
local maximum velocity inside the u = 0 tube drops dramatically in the early flow development from 
t = 10 to 20. Accordingly, the domain having the negative spanwise velocity is enlarged so that mass 
conservation is retained. 

Prior to t = 60 the 2; = 0 contour has good alignment with the streamline. This explains why flow 
particles proceed in a monotonically spiralling manner. Beyond t = 70, streamlines go against the 
contour surface of v = 0. This discrepancy is pronounced, particulary at the upstream side, owing to 
the observed wavy contour of v = 0 herein. In view of the degree of alignment between the v = 0 
contours and the streamlines, we may conclude that the flow structure at the downstream side is more 
stable than that at the upstream side for the present investigated Reynolds number. 

Formation of TGL vortices 

To begin with, we first review some commonly encountered instabilities which tell us more about 
longitudinal vortices in the lid-dnven cavity. As early as the 1920s, longitudinal vortices inside the 
boundary layer of a heated horizontal wall were known to scientists. Later, in 1940, a similar flow 
structure was observed in the attached boundary layer over a concave wall.*’ Gortler attributed this 
type of instability to the laminar flow against small disturbances in the form of longitudinal vortices. In 
fact, the buoyancy force in the thermally stratified layer plays a role that is analogous to the centrifbbal 
force that gives rise to physical instabilities in the concavely curved laminar boundary layer. In between 
two concentric cylinders the presence of the so-called Taylor vortex instability demonstrates the 
consequences of the centrifugal effect. Besides this destabilizing mechanism, appreciable curved 
streamlines in the viscous flow system can also support Tollmien-Schlichting travelling waves. Indeed, 
many industrial flows allow for the coexistence of Taylor-Gortler vortices and Tollmien-Schlichting 
waves in addition to Rayleigh instabilities.28 Very often, interactions among these instabilities can lead 
to premature transition to turbulence and aid the transfer processes. 
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t=65 
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t=75 

t=55 

t=6O 

t=BO 

t=85 

Figure 9. Pressure contours computed (scaled by lo4) at x=O.525 plane (25 Q I Q 8 5 )  

In order to give a detailed description of the evolution of TGL vortices, we have recorded the time 
history of velocity vectors at the x = 0.6 plane in Figure 7 and the x = 0.525 plane in Figure 8. From 
these figures we believe that as early as t = 15 the flow is little disturbed even though the comer vortex 
is clearly visible. Over the half-span the boundary layer along the bottom wall is not under the 
influence of increasing pressure emanating from the comer region. Noticeable is the formation of a 
small-scale circulation zone located halfway between the symmetry plane and the end wall. As time 
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3.0 y axis 2.7 2.45 y axis 2.0 

- velocity 0.1 n 

2.45 y axis 2.0 

Figure 10. Illustration of comcr/TGL vortices at x = 0.525 plane: (a) at I = 25 which is free of TGL vortices; @) at f = 85 where 
TGL vortices have beem established. Contours of pressure have been scald by lo4 and the broken line stands for u = 0. '+' 
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goes by, the territory of spiral particles moving towards the symmetry plane of the cavity is enlarged, as 
illustrated by the broken line of the contour of ZI = 0 in Figure 8. At t = 70 the contour line of = 0 
penetrates into the end wall running spiral region. The slowly developing flow patterns cut across the 
isoline of ZI = 0 and result in a larger and clearer circulation cell. Thus a higher rate of mixing among 
fluid particles can be expected in the core as well as near the bottom wall of the cavity. The isosurface 
of v = 0 is continuously modified by the pressure propagation stemming radially from the centre of the 
corner vortex as well as from the intersection point between the symmetry plane and the bottom wall, 
as seen in Figure 9. In the course of flow development the opposing radial pressure modifies the 

- velocity 0.2 

. . .  - - . -  

t= 138 

Figure 11.  Evolution of TGL vortices at x = 0.525 plane (85 ,< t < 282). At t = 85 the first pair of TGL vortices forms (marked 
by ‘A‘); at t =  110 the second pair forms (marked by ‘B’); at t =  138 the third pair forms at the y =  1.5 plane (marked by ‘C’) 
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isosurface of Y = 0 and disrupts the flow pattern appreciably by means of a sliding-down vortex 
forming at t =  75. The spatial location at which the waviness becomes visible in Figure 9 is exactly 
where the reflection of the pressure profile occurs. As seen in Figure 8, the contour surface of Y = 0 
beings to emerge from the bottom surface at a location where two radial pressures of equal strength 
meet, as seen in Figure 9. This serves to indicate that the flow is prone to separation. AAerwards the 
separated flow extends in size and grows in strength. 

This unsteady flow motion evolves continuously. At time r = 85, vortices of the counter-rotating 
type form firstly at y =  2.25 in Figure 8. At the spanwise location y = 1.85, developing TGL vortices 
accompany the well-developed pair of TGL vortices. Also, near the lid plane a less apparent pair of 

- velocity 0.2 

t=246 

t=282 

Figure I 1 .  (continued) 
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TGL vortices also forms at the same spanwise location. In fact, exclusive of the two end walls, TGL 
vortices can be observed along the solid surfaces of the cavity. By virtue of the exhibited global 
velocity distributions at time t = 85, we interpret this oscillatory feature in Figure 7 as resulting from 
the flow instability. We further designate vortical instability of this sort as Taylor-Gortler vortices, 
mainly because they bear a strong resemblance to those observed in a concave boundary layer. These 
instabilities arise because of the centrifigal effects. Along the span, three wave-like velocity 
distributions, as shown in Figure 7, reveal that the crest of the w-profile coincides with the trough of u. 
This extreme location is exactly where the inflection point of the spanwise velocity 2; is located. 
Noticeable is the cortex which seems to be almost immune to these Gortler instabilities. 

On all accounts the onset of TGL vortices will considerably disrupt the general circulation and thus 
modify the pressure-driven secondary flow. Clearly visible from this figure is that the pressure field 
becomes protuberant between counter-rotating vortices, as shown in Figure 10. In the presence of 
counter-rotating vortices the spanwise spiral particle motion can no longer be classified solely as 
monotonic. Within the spanwise length of 0.12 in the range 2.5 < y ,< 2.25 in Figure 1 O(b), back-and- 
forth particle tracks, shown in Figure 4(c), come across the free shear part of a pair of TGL vortices. 
Apart from the TGL vortices present at y = 1.5, for each pair of TGL vortices we classify the left 
vortex as being a wall-shear-induced vortex and the one at the right side as a free shear vortex in Figure 
lo@). Between f = 65 and 85 the protuberance in the v = 0 tube, as shown in Figure 5 ,  is indicative of 
the possible onset of TGL vortices. The question of whether TGL vortices are to be well developed 
depends on whether two vortices encountered can continuously retain energy from the primary core. 
The locations where the contour surface of v = 0 apparently protrudes are the centres of the left and 
right vortices of TGL vortices, as shown in Figure 10. Here the onset of flow instability is attributable 
to the centrihgal/radial pressure imbalance force and the spanwise disturbance. Near the first pair of 
TGL vortices the spanwise pressure gradient, distorted radial pressure gradient and welldefined comer 
vortex jointly result in a new separation bubble, as shwon in Figure 8, from the bottom wall at time 
t = 80. Later, at a time, say t = 85, the size of this newly separated flow enlarges. This, together with the 
newly developed vortex at the isosurface of = 0, paves the way for the formation of another pair of 
TGL vortices. 

In an attempt to illuminate the growth of TGL vortices, we also plotted the remaining transport 
sequences in Figure 11 for some selected times, from which some conclusions can be drawn. First, 
along the span, TGL vortices are not stationary but, rather, mobile. The two vortices which constitute a 
pair of unsymmetric TGL vortices vary little in size but slightly more in appearance. As compared with 
the centre of the free shear vortex in Figure 10, the centre of the wall-shear-induced rotation is located 
closer to the bottom wall. Second, the development of TGL vortices is not solely attributable to the 
damping mechanism. Third, the transport of TGL vortices manifests the complex dynamics present in 
the shear-driven cavity. Sustained by the spanwise pressure gradient, the small-scale trailing TGL 
vortices continue to be intensified. At t = 1 10 the second pair of well-developed TGL vortices forms at 
approximately y = 2.05(0.95), whereas the first pair of TGL vortices has moved to y = 2.45(0.55). 
Until t = 138, one pair of symmetric TGL vortices emanates fromy = 1.5. At this moment the first pair 
of TGL vortices has been largely immersed in the comer vortices, while the second pair of well- 
developed TGL vortices has proceeded closer to the end wall at y = 2.25(0.75). In between the two 
sets of well-developed TGL vortices a pair of TGL vortices is developing. The sole pair of symmetric 
TGL vortices is referable to the wall shear vortices and will persist at y = 1.5 in their ensuing 
development. At time f = 138 the investigated mobile system reaches a periodic steady state. After 
than, TGL vortices emerge only at y = 1 -73( 1.27). In the subsequent periodic flow development from 
t = 2 10 to 282, three welldeveloped TGL vortices having a wavelength of 0.75 are equally distributed. 
At f =246, five sets of TGL vortices are predicted which are also uniforly distributed with a shorter 
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Figure 12. Influences of TGL vortices on primary flow plotted at y-planes: (a) at y = 2.95,2.25 planes (t = 25 where no TGL is 
found); (b) at y = 2.25 plane (within a period of TGL motion between t = 210 and 282) 
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wavelength of 0.5. In support of the existence of flow periodicity, estimated to be 72, we plot velocity 
vectors at t = 210, 246 and 282 in Figure 11. 

It is worthwhile to point out the formation of TGL vortices does affect the primary flow structure. In 
order to show this, within a time period we have plotted solutions at the y = 2.25 plane. For each time 
increment At = 12, starting from 210 and terminating at 270, computed solutions are given in Figure 
12(b). At t=210 the primary flow structure is mostly affected by TGL vortices in that secondary 
eddies are disrupted as TGL vortices travel through. Like fluid particles near the end wall at the 
y = 2.95 plane in Figure I2(a), fluid particles inside these eddies at t = 25 are directly engulfed into the 
primary core of the flow. Afterwards, streamlines of a closed form appear again inside the DSE and 
USE. The primary flow pattern is less affected by TGL vortices at t = 246, mainly because y = 2.25 is 
where the middle of two well-developed TGL vortices is located. In these circumstances there exists a 
separation surface between the primary and the secondary eddy. Also, by comparing solutions 
computed at the plane y = 2.25 in Figure 12(a), we can shed light on the influence of TGL vortices on 
the primary flow. As compared with the solutions at t=25  which have nothing to do with TGL 
vortices, the solution profiles at t=246 are maintained quite well at the downstream side. In the 
vicinity of the bottom and upstream sides the changes in velocity distributions are larger, especially at 
the upstream side. This implies that the upstream side is more sensitive to the TGL vortices. 

Trigger mechanism of TGL vortices 

Our concern here is to make an attempt to delineate what engenders the TGL instabilities. To begin 
with, we would like to distinguish corner vertices from TGL vortices because they resemble one 
another in appearance but not in character. As a fluid particle is forced to turn about a comer, the 
centrifugal force acting on this particle is balanced by an increasingly larger radial pressure. This yields 
a stable condition. Being destabilized by the concave streamlines, fluid flows are doomed to instability. 
This implies that the laminar instability should take possession of another distinct but influential 
component. Among other things, flow disturbances resulting from two vertical end walls give rise to 
the formation of TGL vortices. With these, pressure contours of a radial form emanate from a spatial 
location where the symmetry plane intersects the bottom wall. This perturbation propagates towards 
the end walls and consequently sets up a spanwise boundary layer on the bottom wall. In regions near 
the bottom wall, fluid particles moving spirally towards the two end walls encounter resistance at the 
stagnant comer. This sets up a flow environment as illustrated in Figure 10. The original pressure 
distribution that is mainly determined by the primary flow characteristics has been disrupted. The 
contours of pressure are thus modified over the span. According to the wavy pressure in Figure 10, the 
pressure in regions near the two ends has been increased, while it is decreased in between. This implies 
that a particle which is radially displaced by a centrifugal force fails to return to its original location 
because it encounters an insufficient pressure gradient force. Opposite to this behaviour, there remains 
a net centifugal/radial pressure imbalance force in favour of the pressure gradient force at both ends. 
This brings about a counter-rotating flow motion, the axis of which is that of the longitudinal direction. 
Subsequent to this flow instability, unsymmetic counter-rotating vortices evolve periodically, because 
the locally intensified upward velocity vector bends to the end wall. This is due mostly to the pressure 
imbalance along the spanwise direction. The periodicity is estimated to be 7-8. 

CONCLUSIONS 

As a vehicle for providing physical insight into the rectangular shear-driven cavity in a non-uniform 
grid ssytem, we have used a QUICK-type scheme to discretize non-linear advective terms. The 
resulting coupled algebraic equations have been solved by employing a SIMPLE iterative algorithm. 
The underlying analysis code has been confirmed by conducting a non-trivial analytic test problem 
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together with a spatial rate-of-convergence analysis. In the light of the rectified finite volume flow 
simulation, the following conclusions regarding the shear-driven cavity flow can be drawn. 

1. Inside the rectangular cavity the vortical system is best depicted by spanwise sprialling flow 
motions. In the region of the primary core flow, particles spiral towards the symmetry plane and 
gradually return to the end wall region via the boundary layer. In illustration of the flow motion 
inside the primary vortex and secondary eddies, we plotted particle tracks. 

2.  Flow motion in a geometrically simple cavity is far from physically simple. The flow generated 
by a lid proceeds with a transient development. The flow structure established in the cavity is 
maintained by complex interactions among the large-scale primary recirculating flow, radial and 
spanwise pressure-dnven force, secondary flow, centrifugal force, no-slip physical reality and the 
mobile TGL vortices observed in later transport sequences. In general the flow structure at the 
upstream side is less organized and less stable than the flow at the downstream side. Subsequent 
to the formation of the first set of TGL vortices at y = 2.25, which are most clearly seen at the 
x = 0.525 plane, the pressure-driven spanwise flow structure is affected by the unsymmetric 
counter-rotating vortices moving periodically towards the end wall. 

3. Exploration of the mechanism leading to the flow instability has been the subject of the present 
numerical investigation. The developed TGL vortices proceed in a non-linear fashion. This is 
evident from the appearance of counter-rotating vortices. We interpret this class of laminar 
instability as being Taylor-Gortler instability, because this instability in the investigated viscous 
system is associated with concave streamlines. A sole centrifugal force, exerted radially between 
streamlines in possession of appreciable curvatures, fails to engender instability. Whether or not a 
flow system, stably maintained by the centrifugal force and the radial pressure gradient, yields 
instabilities depends on whether the existing spanwise perturbation is strong enough to break up 
such a balance. Here the spanwise pressure gradient resulting from the symmetry plane serves as 
the spanwise perturbation which may be amplified in the investigated viscous system containing 
concave streamlines. Of the predicted TGL vortices, the flow asymmetry is athibutable to the 
wall-shear- and free-shear-induced mechanisms. As to the investigated Reynolds number 
Re = 1500, the flow system can be characterized as symmetric. Within a half-cavity the first pair 
of unsymmetric TGL vortices forms aty = 2.25, followed by the second pair aty = 2.05. Finally, 
a comparatively stationary pair of TGL vortices emerges at the symmetry plane. 
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