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In this study two previously proposed regularization models employed for simulating turbulent fluid
flows in large-eddy template are numerically assessed. Both of the Leray-a and NS-a subgrid scale mod-
els are under current investigation. For an accurate assessment of these differential models developed on
the basis of regularizing the nonlinear convective terms, a dispersively very accurate upwinding scheme
is proposed to approximate the regularized convective terms in non-staggered grids. These models are
assessed through the calculation of the lid-driven cavity and backward facing step problems. We con-
clude from this study that application of the NS-a model can get a solution having a better agreement
with the classical Navier–Stokes solution which is computed in a four-time finer grids.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Transport phenomena in nature and many processing industries
are normally characterized to be turbulent. Since flow turbulence
has association with a broad dynamical range of time and length
scales, complex multiscale dynamics can be observed very often
in a wide variety of flows. As a result, to get an accurately predicted
turbulent flow one should model its associated nonlinear interac-
tion physics among the physically different lengths. Take an
incompressible viscous fluid flow as an example, the solutions to
the corresponding set of equations have different ranges of length
that can extend to a scale as small as the Kolmogorov dissipation
scale, which is proportional to the Reynolds number Re in a sense
of Re�

3
4 [1]. At Re ¼ 107, for example, any flow simulation carried

out at this Reynolds number requires a dimensionless mesh size
not larger than 5:62� 10�6 in order to properly resolve most of
the flow details numerically. Such a fine-mesh calculation per-
formed in a three-dimensional domain poses a severe computa-
tional difficulty and motivated, thus, many previous studies
aiming at coping with such a simulation difficulty.

One of the possible ways of overcoming the numerical difficulty
about the multiscale nature of the turbulent flow is to resolve only
the primary flow features. Instead of performing a direct numerical
simulation (DNS) on the incompressible Navier–Stokes equations,
in this study the concept based on the restriction of flow equations
is adopted so that the computational effort can be considerably
reduced. Hence it is feasible to carry out flow simulations, for
which their Reynolds numbers falling into the turbulent range, in
many currently available computing infrastructures.

The equations of motion for an incompressible fluid flow con-
tain the linear spatial derivative term r2u, which is effective
mostly at the smallest scale motion, and the nonlinear term
u � ru. Unlike the dissipative nature exhibited in the linear term
r2u, the convective term transfers the energy of fluid flow from
a scale at which the flow is driven to the smallest one that survives
dissipation [2]. This implies that u � ru can in principle produce an
infinite number of scales of flow motion. As a result, one requires
modeling all the dynamical scales of flow motion for getting a truly
accurate turbulent flow solution.

According to the book of Pope [3], one can get a sufficiently
accurate mean flow if eighty percentage of the total kinetic energy
can be predicted numerically. In this light, most of the energy con-
tained in a flow can be simply represented by its primary flow fea-
ture [4]. Simulation of the viscous flow equations, as a result, needs
not necessarily to take all the dynamical scales up to the Kolmogo-
rov dissipative scale into consideration. In other words, one can
simply apply a dynamically less complex Large Eddy Simulation
(LES) model to simulate the transport of flow turbulence.

On a coarse grid, one needs only to resolve the energy-contain-
ing large scale motion. The unresolved turbulent flow motion and
the molecular diffusion effect can be modeled by adding an explicit
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Table 1
Summary of the Leray-a model equations.

Original form in the paper Current form

(1) @tv � mDv þ ðu � rÞv ¼ �rpþ f ;

r � u ¼ r � v ¼ 0;
v ¼ u� a2Du:
[27]

@U
@t þ U � r

� �
U ¼ �rpþ mr2U þ f ;

r � U ¼ r � U ¼ 0;
ðI � a2r2ÞU ¼ U:

@tv � mDv þ ðu � rÞv ¼ �rpþ f

r � u ¼ r � v ¼ 0;
v ¼ ðI � a2DÞu:
[28]

(2) @
@t v � mDv þ ðu � rÞv þrp ¼ f ;

r � v ¼ 0;

v ¼ u� a2Du:

[10]

@U
@t þ ðU � rÞU ¼ �rpþ mr2U þ f ;

r � U ¼ 0;

ðI � a2r2ÞU ¼ U:
@tui þ ~uj@jui ¼ m@2

j ui � @ipþ fi;
@iui ¼ 0;
ð1� @ja2

j @jÞ~ui ¼ ui:
[29]

(3) @tuþ u � ruþrp� mr2u ¼ f ;
r � u ¼ 0:

[13]
@U
@t þ ðU � rÞU ¼ �rpþ mr2U þ f ;

r � U ¼ 0:
xt þx � rxþrq ¼ mDxþ f ;
r �x ¼ 0: [26]

ut þ u � ruþrq� mDu ¼ f ;
r � u ¼ 0:

[30]
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subgrid scale viscosity damping in coarse grids to modify the dis-
sipative processes [5]. The other major class of approaches is re-
ferred to as the regularization method. Unlike the closures of
eddy viscosity type developed to modify the dissipative processes,
regularization model modifies the spectral distribution of the en-
ergy [6]. When employing the regularization strategy to account
for the subgrid-scale contribution, it is desired to preserve some
physical constraints. Conservation of energy and helicity and pres-
ervation of Kelvin’s circulation are often referred to [5]. In a context
of LES, a spatial filtering of the Navier–Stokes equations can be
made through the length-scale that is larger than the Kolmogorov
dissipation scale. Such an explicit filtering of the equations, while
providing us a good control over the effective dynamical range of
the smoothed flow, has a demand for the so-called sub-filter mod-
els so as to approximate more accurately the dynamical issues of
smaller scales for an evolution of the resolved large scale [4].

Besides the Smagorinsky’s eddy viscosity model [7], another
scale-similarity Bardina’s model [8] developed on the basis of add-
ing a dissipative flux term to the differential system has been pro-
posed before. In the context of sub-filter models, regularization
models have been developed by making a direct modification of
the convective flux terms in the equations. Two regularization
models are chosen in this study to simulate flow turbulence. Our
aim is to numerically assess two regularization models, which dif-
fer from each other by the way of filtering the convected fluxes in
the Navier–Stokes equations. Through the use of their own regular-
ization kernels, one can directly regularize the convective terms to
yield @

@xj
ðv jwiÞ, where v and w are referred to as the convecting

velocity vector and the convected velocity vector, respectively [4].
In this study our previously proposed dispersively very accurate

advection scheme will be applied to simulate the incompressible
fluid flow using two sub-grid models. Our aim is to assess these
regularization models by comparing the predicted results with
the direct Navier–Stokes results computed in a much finer grid sys-
tem. The rest of this article is organized as follows. We start with
the presentation of the Navier–Stokes equations and their regular-
ized equations for the nonlinear convective terms. In Section 3, the
proposed advection scheme that can rigorously optimize the dis-
persion nature in wavenumber space will be briefly described.
The incompressible Navier–Stokes flow solver developed in non-
staggered grids will be adopted to avoid the even–odd decoupling
pressure mode. In Section 5 we describe the model problem and
present the numerical details. The results computed from the
investigated regularized Navier–Stokes equations will then be
compared with the DNS solutions so as to be able to make an
assessment of the two investigated sub-grid turbulence models. Fi-
nally, some conclusions will be drawn in Section 6 based on the
simulated results for the chosen lid-driven cavity and backward
facing step problems.

2. Governing equations

In this numerical study a fluid flow of constant density is con-
sidered. The conservation equations for mass and momenta are ex-
pressed in terms of the primitive variables u (flow velocity vector)
and p (pressure)

r � u ¼ 0; ð1Þ

ut þ u � ru ¼ �rpþ 1
Re
r2u: ð2Þ

The dynamical control parameter for the above elliptic–parabolic
set of partial differential equations is the Reynolds number Re. This
characteristic number is defined by the kinematic fluid viscosity m

and the referenced velocity and length as Re ¼ uref lref

m
.

In the filtering approach, a proper convolution filter L is chosen
to model flow turbulence. In the context of large-eddy simulation,
the velocity vector u is filtered to get its filtered velocity vector
counterpart u through the transformation given by uðx; tÞ ¼
LðuÞð�

R1
�1 Gðx� nÞuðn; tÞdnÞ. Different filters are characterized by

their own kernels and filter widths. In the current large eddy sim-
ulation study, the adopted convolution filter is the inverse of the
well-known Helmholtz filter, which is defined as H ¼ ð1� a2r2Þ.
Hence one can transform the unfiltered velocity vector u to the fil-
tered velocity vector �u through the elliptic Helmholtz operator to
yield u ¼ ð1� a2r2Þ�u. The filtered velocity vector can be therefore
expressed in terms of the unfiltered velocity vector as �u ¼
ð1� a2r2Þ�1u, where ð1� a2r2Þ�1 denotes the smoothing opera-
tor. The users’ specified parameter a shown in the Helmholtz filter
denotes the effective width of the chosen filter. Such a filter corre-
sponds to the length scale at which smoothing becomes essential.

When filtering the NS Eqs. (1) and (2), low-pass spatial filter is
required [9]. Given a convolution filter having its own formal in-
verse, in this paper two regularization strategies for the subgrid
closure are employed and numerically assessed. They are known
as the Leray-a and Lagrangian Averaging Navier–Stokes-a (LANS-
a) regularization approaches. The subgrid models under current
investigation have a sharp contrast to the traditional phenomeno-
logical subgrid modeling, by which the fluid flow is smoothed by
the introduced subgrid model for the turbulent stress components.

2.1. Leray-a model equations

The Leray-a model is the simplest one belonging to the class of
regularization models. This model involves using the inverse-
Helmholtz operator of width a to directly and explicitly replace
the nonlinear advective term u � ru with the linearized term
u � ru. The filtered velocity vector u results from the application
of the Helmholtz filter H ð� ð1� a2r2ÞÞ to the velocity, thus
yielding

u ¼ H�1ðuÞ: ð3Þ
Upon applying the Helmholtz filter to the Navier–Stokes Eqs. (1)
and (2), the Leray-a equations are derived below [10]

ðI � a2r2Þu ¼ u; ð4Þ

ut þ u � ru ¼ �rpþ 1
Re
r2u; ð5Þ
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r � u ¼ 0: ð6Þ
Table 3
The computed L2 error norms and the corresponding spatial rates of convergence
(R.O.C.) for the classical Navier–Stokes equations calculated at Re ¼ 1000 and t ¼ 3.

Variablenno. of
grids

202 402 802 R.O.C.
The resulting nonlinear effect is known to be reduced by an amount
governed by the Helmholtz filtering operation.

The above set of Leray-a equations has relation to the LES equa-
tions derived from a completely different principle. In the LES tem-
plate, the recast equations contain the turbulent stress tensor
ujui � ujui. Note that the subgrid stress tensor in the Clark-a model
equations is the truncated subgrid stress tensor in the Leray-a
model equations [11]. The solution corresponding to the asymmet-
ric Leray-a model possesses the global existence, uniqueness, and
boundedness mathematical properties [9].
Table 2
Summary of the Navier–Stokes-a model equations.

Original form in the paper Current form

(1) @v
@t þ mð�DÞh2 v � u� ðr� vÞ þrp ¼ f ,
r � u ¼ 0;r � v ¼ 0, @U

@t � U � ðr� UÞ
v ¼ uþ ð�a2DÞh1 u, ¼ �rpþ mr2U þ f ,
when h1 ¼ h2 ¼ 1. [25] r � U ¼ r � U ¼ 0,

ðI � a2r2ÞU ¼ U.
@t ~v � mD~v � ~u�r� ~v ¼ �r~pþ f ,
r � ~u ¼ r � ~v ¼ 0,
~v ¼ ðI � a2DÞ~u. [26]

(2) ut � u� ðr� uÞ þ rq� mDu ¼ f , @U
@t � U � ðr� UÞ

r � u ¼ 0, ¼ �rpþ mr2U þ f ,

�a2Duþ u ¼ u, r � U ¼ 0; ðI � a2r2ÞU ¼ U,
q ¼ pþ 1

2 u2. [30] p ¼ pþ 1
2 jUj

2.

(3) v t � v � ðr� vÞ þr~p ¼ mDv þ f , @U
@t � U � ðr� UÞ

r � v ¼ 0. [28] ¼ �rpþ mr2U þ f ,

r � U ¼ 0.

(4) @tuþ ðr� uÞ � uþrp� mr2u ¼ f , @U
@t þ ðr� UÞ � U

r � u ¼ 0, ¼ �rpþ mr2U þ f ,

p ¼ pþ 1
2 u2. [13] r � U ¼ 0; p ¼ pþ 1

2 jUj
2.

(5) v t þ v � rv þ ðrvÞT � v þrp ¼ mDv þ f , @U
@t þ ðU � rÞU þ ðrUÞT � U

r � v ¼ 0, ¼ �rpþ mr2U þ f ,

v ¼ ð�a2Dþ IÞ�1v . [28] r � U ¼ 0; ðI � a2r2ÞU ¼ U.

(6) ð @
@t þ u � rÞv þ v jruj þrPtot ¼ ma2Dv þ F,
r � u ¼ 0,
v ¼ u� a2Du,

Ptot ¼ P � 1
2 juj

2 � a2

2 jruj2. [15]
@U
@t þ ðU � rÞU þ ðrUÞT � U

@tv þ u � rv þ v jruj , ¼ �rpþ mr2U þ f ,

þrðp� 1
2 juj

2 � a2

2 jruj2Þ ¼ mDv , r � U ¼ 0,
r � u ¼ 0, ðI � a2r2ÞU ¼ U,
v � u� a2Du. [16] p ¼ p� 1

2 jUj
2 � a2

2 jrUj2.
@v
@t þ v̂ � rv þrv̂T � v þrp ¼ mr2v þ f ,
r � v̂ ¼ 0,

v ¼ ð1� a2r2Þv̂ ,

p ¼ P � 1
2 jv̂ j

2 � a2

2 jrv̂ j2. [17]

(7) @
@t v � mDv þ ðu � rÞv þP3

j¼1v jruj þrp ¼ f , @U
@t þ ðU � rÞU þ

P3
j¼1UjrUj

r � v ¼ 0, ¼ �rpþ mr2U þ f ,

v ¼ u� a2Du. [10] r � U ¼ 0; ðI � a2r2ÞU ¼ U.

(8) @
@t v þ ðu � rÞv þ v jruj ¼ mDv �rqþ f , @U

@t þ ðU � rÞU þ UjrUj

r � u ¼ 0, ¼ �rpþ mr2U þ f ,

v ¼ u� @
@xi
ða2dij

@
@xj

uÞ, r � U ¼ 0; ðI � a2r2ÞU ¼ U,

p ¼ qþ 1
2 u2 � 1

2 a2ð @@y uÞ2. [14] p ¼ p� 1
2 jUj

2 þ a2

2 jrUj2.

(9) @tuþ u � ru� ðruÞT � uþrp0 � mr2u ¼ f , @U
@t þ ðU � rÞU � ðrUÞT � U

r � u ¼ 0, ¼ �rpþ mr2U þ f ,

p0 ¼ pþ u � u� 1
2 u2. [13] r � U ¼ 0 ,

p ¼ pþ U � U � 1
2 jUj

2.
The incompressible nature of the velocity field u does not mean
the existence of the divergenceless filtered velocity u. Only under
certain boundary conditions, periodic boundary condition for
example, the satisfaction of r � u ¼ 0 implies the satisfaction of
r � u ¼ 0 [6]. This means that when r � u – 0, the mechanical en-
ergy E ð� 1

2

R
juj2dXÞ is no longer conserved. It is worthy to note
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y

Fig. 1. Illustration of the boundary conditions for the lid-driven cavity flow
problem and the lines (x ¼ 0:05 and 0:15; y ¼ 0:2;0:1 and 0:03) along which the
computed solutions are compared.

Table 4
The computed L2 error norms and the corresponding spatial rates of convergence
(R.O.C.) for the Leray-a equations calculated at Re ¼ 1000 and t ¼ 3.

Variablenno. of
grids

802 1202 1602 R.O.C.

u 1.043 � 10�3 3.046 � 10�4 1.146 � 10�4 2.828398
v 1.167 � 10�3 3.413 � 10�4 1.284 � 10�4 2.834524
p 3.397 � 10�3 1.287 � 10�3 6.477 � 10�4 2.292221
u 1.037 � 10�3 3.037 � 10�4 1.144 � 10�4 2.819189
v 1.162 � 10�3 3.405 � 10�4 1.282 � 10�4 2.826561

Table 5
The computed L2 error norms and the corresponding spatial (R.O.C.) for the Navier–
Stokes-a equations calculated at Re ¼ 1000 and t ¼ 3.

Variablenno. of
grids

402 802 1602 R.O.C

u 6.059 � 10�3 1.060 � 10�3 1.160 � 10�4 3.997781
v 6.839 � 10�3 1.188 � 10�3 1.301 � 10�4 3.899497
p 1.585 � 10�2 3.422 � 10�3 6.499 � 10�4 3.623956
u 5.975 � 10�3 1.055 � 10�3 1.157 � 10�4 3.991342
v 6.757 � 10�3 1.182 � 10�3 1.300 � 10�4 3.875471

u 6.509 � 10�2 5.817 � 10�4 6.445 � 10�5 4.313040
v 6.456 � 10�2 5.817 � 10�4 6.445 � 10�5 4.318457
p 6.169 � 10�2 8.291 � 10�3 2.091 � 10�3 2.424542
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Fig. 3. The residual reduction plots for the lid-driven cavity prob

Fig. 2. Comparison of the currently simulated mid-plane velocity profiles uðx;0:5Þ
and vð0:5; yÞ with those of Ghia et al. and Erturk and Corke.
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that Leray-a model can conserve the energy E in L2ðuÞ norm in the
sense that dE

dt has association with the energy dissipation rate
1
2

R
x �xdX, where x � r� u. While energy is conserved, helicity

is not conserved in the Leray-a model equations [6]. For complete-
ness, the Leray-a equations in the literature are tabulated in Table
1.

2.2. NS-a (or LANS-a) model equations

The set of NS equations in (1) and (2) supports the Kelvin theo-
rem. Consequently, a regularization principle possessing the cor-
rect circulation properties is desirable to apply. In the Lagrangian
averaging context, each fluid loop is advected with the smoothed
transport velocity through the regularization by Kelvin filtering
[12]. The resulting equations governing the smoothed solenoidal
flow field r � u ¼ 0 are as follows [13,14]

ut þ u � ruþ ðruÞT � u ¼ �rP þ 1
Re
r2u; ð7Þ

r � u ¼ 0: ð8Þ

In the above, P is expressed as [15–17]

P ¼ p� 1
2
juj2 þ a2

2
jruj2: ð9Þ
(b)

(c)

lem. (a) Navier–Stokes; (b) Leray-a; and (c) Navier–Stokes-a.
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For the case with zero viscosity, Eq. (7) turns out to be the
Euler—Poincare0 equation accommodating the action P defined
above [18]

ut þ u � ruþ ðruÞT � u ¼ �rP: ð10Þ

Since Eq. (10) is classified to be Euler—Poincare0, the Kelvin–Noether
circulation theorem holds true in the sense that dI

dt ¼ 0, where
IðtÞ �

R
u � a2r2udX [18]. Note that Eq. (10) is derived directly by

applying the smoothing operator ð1� a2r2Þ�1 to the transport
velocity in Euler’s equation. The above equation is also called as
the higher dimensional Camassa–Holm equation which is used of-
ten to describe the geodesic motion [12].

As Re – 0, the elliptic–parabolic set of differential Eqs. (7)–(9) is
called as the viscous Camassa–Holm equations [19]. When
smoothing the transport velocity u through the differential opera-
tor ð1� a2r2Þ�1, both of the forward and backward cascades are
suppressed for the wave number having an order greater than O
(1/a) [18]. Under the circumstances, a, which corresponds to the
length scale, shown in the smoothing operator becomes essential.
This smoothing of the velocity vector makes, however, the dynam-
ics of the Euler flow essentially unchanged at smaller wave
numbers.

In comparison with the Leray-a equations, two additional terms
in the LANS-a model guarantee the regularized flow to be consis-
tent with the Kelvin’s circulation theorem [9]. One can also recast
Eqs. (8)–(10) to their equivalent equations in LES template. The tur-
bulent stress tensor is the sum of the Leray-a stress tensor and the
additional turbulent stress term, which is �a2H�1ð@iuk@jukÞ, that
plays the role to preserve the Kelvin’s circulation [9].
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(c)
Fig. 4. Comparison of the predicted velocity profiles at different cutting planes fo
When employing the regularization strategy to model a subgrid
scale flow it is desired to preserve some physical constraints, such
as the energy conservation and the helicity conservation, on the
Navier–Stokes equations. Satisfaction of the Kelvin’s circulation
theorem and the symmetry preservation is also essential to suc-
cessfully model a subgrid scale flow motion. For this reason, more
complex NS-a models were developed. In NS-a model, it conserves
energy Ea ¼ 1

2

R
u � udX in the H1

aðuÞ norm [6]. The change of Ea has
close association with the NS-a energy dissipation rate Xa ¼
1
2

R
x �xdX. In the regularization models summarized in Table 2,

a different representation of P given below can be seen in [14]

P ¼ p� 1
2
juj2 þ a2

2
jruj2: ð11Þ
3. Numerical method

3.1. Compact scheme for the spatial derivative terms

To describe the numerical scheme for approximating the spatial
derivative terms, the transport equation given below for / is con-
sidered at a constant diffusion coefficient k

a
@/
@x
þ b

@/
@y
� kð@

2/
@x2 þ

@2/
@y2 Þ ¼ f : ð12Þ

In the above, two coefficients a and b are denoted as the constant
velocities along the respective x- and y-direction, and f is a source
term. The first-order and second-order spatial derivative terms
V
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Navier-Stokes-α

(b)
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(d)
r the lid-driven cavity problem. (a) and (b) x ¼ 0:05 and (c) and (d) x ¼ 0:15.



18 T.W.H. Sheu et al. / Computers & Fluids 74 (2013) 13–31
shown in Eq. (12) will be both approximated in a domain with the
uniform grid size Dx ¼ Dy ¼ h.

The first-order derivative term @/
@x and the second-order deriva-

tive term @2/
@x2 in Eq. (12) are approximated in a coupled fashion.

In the combined compact finite difference context, the adopted
strategy falls into the following three-point framework
X
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Fig. 5. Comparison of the predicted velocity profiles at different cutting planes for the lid
a1
@/
@x
ji�1 þ

@/
@x
ji ¼

1
h
ðc1/i�1 þ c2/i þ c3/iþ1Þ

� h b1
@2/
@x2 ji�1 þ b2

@2/
@x2 ji þ b3

@2/
@x2 jiþ1

 !
; ð13Þ
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b1
@2/
@x2 ji�1þ

@2/
@x2 jiþb3

@2/
@x2 jiþ1 ¼

1

h2 ðc1/i�1þ c2/iþ c3/iþ1Þ

�1
h

a1
@/
@x
ji�1þa2

@/
@x
jiþ a3

@/
@x
jiþ1

� �
:

ð14Þ

The other two terms @/
@y and @2/

@y2 can be similarly expressed along the

y-direction. Note that the compact representations of the terms @/
@x ji

and @2/
@x2 ji are not independent of each other. They will be rather cou-

pled through the terms @/
@x ji�1;

@/
@x ji;

@/
@x jiþ1;

@2/
@x2 ji�1;

@2/
@x2 ji; @

2/
@x2 jiþ1;/i�1;/i

and /iþ1. For ease of description of the numerical method, only
the case involving a positive convective coefficient is dealt with.
For the negative convective coefficient case, its derivation will be
the same.

3.1.1. Compact scheme for the second-order derivative term
The second-order derivative terms are normally approximated

by the central schemes. As a result, the weighting coefficients
shown in Eq. (14) can be determined solely by the modified equa-
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Fig. 6. Comparison of the predicted velocity profiles for the Leray-a model at different va

Table 6
Comparison of the computed divergence errors for the lid-driven cavity problem
using the two investigated models.

Models r � u r � u

Navier–Stokes 6.918 � 10�6

Leray-a 3.549 � 10�6 2.888839
Navier–Stokes-a 3.344468 � 10�6 0.495072
tion analysis for getting a better spatial accuracy. Derivation of the

coefficients a1; a2; a3; b1; b3; c1; c2, and c3 in (13) and (14) is as
follows. We start by applying the Taylor series expansions for

/i�1;
@/
@x ji�1 and @2/

@x2 ji�1 with respect to /i;
@/
@x ji and @2/

@x2 ji and, then,
eliminate the leading error terms derived in the modified equa-
tions. Elimination of leading error terms of different differential or-
ders shown in the modified equation enables us to get eight
algebraic equations for Eq. (14). By solving these algebraic equa-
tions, the coefficients in Eq. (14) can be derived as a1 ¼ � 9

8 ; a2 ¼
0; a3 ¼ 9

8 ; b1 ¼ � 1
8 ; b3 ¼ � 1

8 ; c1 ¼ 3; c2 ¼ �6; c3 ¼ 3. The resulting

derived modified equation for @2/
@x2 is @2/

@x2 ¼ @2/
@x2 jexact þ h6

20;160
@8/
@x8 þ

h8

604;800
@10/
@x10 þ Oðh12Þ þ � � � using the presently derived set of coeffi-

cients. This implies that the proposed scheme for @2/
@x2 has the spatial

accuracy order of sixth.

3.1.2. Wavenumber optimized compact scheme for the first-order
derivative term

The coefficients a1; b1 � b3; c1 � c3 in Eq. (13) are partly deter-
mined by applying the Taylor series expansions on the terms

/i�1;
@/
@x ji�1 and @2/

@x2 ji�1 with respect to /i;
@/
@x ji and @2/

@x2 ji. By eliminat-
ing the leading six error terms derived in the modified equation, a
set of algebraic equations for Eq. (13) can be derived. One algebraic
equation is needed to uniquely determine all the seven introduced
coefficients shown in Eq. (13).

For an accurate prediction of the first-order derivative term
from Eq. (13), it is desired to retain the dispersive nature embed-
ded in @/

@x since dispersion relation serves as a bridge between
the angular frequency and the wavenumber of the first-order
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lues of a for the lid-driven cavity problem. (a) and (b) x ¼ 0:05; (c) and (d) x ¼ 0:15.
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Fig. 7. Comparison of the predicted velocity profiles for the Leray-a model at different values of a for the lid-driven cavity problem. (a) and (b) y ¼ 0:2; (c) and (d) y ¼ 0:1 (e)
and (f) y ¼ 0:03.
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dispersive term [20]. In other words, the solution can be accurately
predicted provided that the exact dispersion relation is well pre-
served. To preserve dispersion relation, Fourier transform and its
inverse for / given below are applied

~/ðaÞ ¼ 1
2p

Z þ1

�1
/ðxÞ expð�iaxÞ dx; ð15Þ

/ðxÞ ¼
Z þ1

�1
~/ðaÞ expð iaxÞ da: ð16Þ
The notation i shown above denotes
ffiffiffiffiffiffiffi
�1
p

. By performing the Fou-
rier transform on each term shown in Eqs. (13) and (14), the expres-
sions of the actual wavenumber a for these two equations can be
derived from

iahða1 expð�iahÞ þ 1Þ ’ c1 expð�iahÞ þ c2 þ c3 expðiahÞ

� ðiahÞ2ðb1 expð�iahÞ þ b2 þ b3

� expðiahÞÞ; ð17Þ



Fig. 8. The computed contours for the lid-driven cavity problem. (a) RNS for u; (b) RNS for v; (c) RLeray-a for u; (d) RLeray-a for v; (e) RNS-a for u; and (f) RNS-a for v.
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ðiahÞ2ð�1
8

expð�iahÞ þ 1� 1
8

expðiahÞÞ

’ 3ðexpð�iahÞ � 2þ expðiahÞÞ � 8
9

iahð� expð�iahÞ

þ expðiahÞÞ: ð18Þ

We are aimed to derive the effective wavenumbers a0 and a00

having the same expressions as those shown on the right-hand
sides of Eqs. (17) and (18) [20]. Therefore, it is rational for us to ex-
press a0 and a00 as follows

ia0hða1 expð�iahÞ þ 1Þ ¼ c1 expð�iahÞ þ c2 þ c3 expðiahÞ

� ðia00hÞ2ðb1 expð�iahÞ þ b2 þ b3

� expðiahÞÞ; ð19Þ
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Fig. 10. The contours computed from the Navier–Stokes equations

Fig. 9. Illustration of the boundary conditions for the backward-facing step
problem.
8
9

ia0hð� expð�iahÞ þ expðiahÞÞ

¼ 3 expð�iahÞ � 6þ 3 expðiahÞ � ðia00hÞ2ð�1
8

expð�iahÞ

þ 1� 1
8

expðiahÞÞ: ð20Þ

The following expressions for a0 and a00 can be derived from Eqs.
(19) and (20)

a0h ¼ �ið24b1 expð�2iahÞ þ c1 expð�2iahÞ þ c3 þ c1þ 24b1

þ c2 expð�iahÞ þ 24b2 expð�iahÞ þ 24b3 � 48b1

� expð�iahÞ � 8c1 expð�iahÞ � 48b3 expðiahÞ þ 24b2

� expðiahÞ þ 24b3 expð2iahÞ � 48b2 þ c2 expðiahÞ
þ c3 expð2iahÞ � 8c3 expðiahÞ � 8c2Þ=ð�8þ expðiahÞ
� 8a1 expð�iahÞ þ a1 expð�2iahÞ � 9b1 expð�2iahÞ
� 9b2 expð�iahÞ þ 9b2 expðiahÞ þ 9b3 expð2iahÞ þ a1

þ 9b1 � 9b3 þ expðiahÞÞ; ð21Þ

a00h¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3expð�iahÞ�6þ3expðiahÞ� ia0h � 8
9 expð�iahÞþ 8

9 expðiahÞ
� �

�1
8 expð�iahÞþ1� 1

8 expðiahÞ

s
:

ð22Þ

For getting a better dispersive accuracy for a0, we set ah �
R½a0h�, where R½a0h� denotes the real part of a0h. This implies that
EðaÞ defined below should be the one having a very small positive
magnitude
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EðaÞ ¼
Z p

2

�p
2

W ah�R½a0 h�ð Þ½ �2dðahÞ ¼
Z p

2

�p
2

W c�R½c0�ð Þ½ �2dc; ð23Þ
where c ¼ ah and c0 ¼ a0h. Note that Eq. (23) can be integrated ana-
lytically provided that the weighting function W shown above is
chosen as follows for A ¼ 72ðb1 þ b3 � a1b2Þ � 81ðb2

1 þ b2
2 þ b2

3Þ
�16ð1 þ a2

1Þ þ 162b1b3, B ¼ 8ð1 þ a2
1Þ þ 18ða1b2 � b1 þ b3Þ � 162

ðb1b2 þ b2b3Þ � 144a1b3 � 32a1Þ, C ¼ 72ða1b2 þ b3 � b1Þ þ 81ðb2
1þ
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(e
Fig. 11. The contours computed from the Leray-a equations for the b
b2
2 þ b2

3Þ � ða2
1 þ 1Þ þ 16a1 � 486b1b3 þ 36a1b3, D ¼ 18ðb1 � a1b2�

b3Þ þ 162ðb1b2 þ b2b3Þ � 2a1 þ 144a1b3, and E ¼ 324b1b3 � 36a1b3

W ¼ Aþ BcosðcÞ þ CcosðcÞ2 þ DcosðcÞ3 þ EcosðcÞ4: ð24Þ

To get the minimal value of E defined in Eq. (23), the extreme con-
dition @E

@c3
¼ 0 is applied. The equation enforced to preserve numer-

ical wavenumber will be used together with the other six
previously derived algebraic equations by way of the modified
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equation analysis to get the higher dissipation and dispersion accu-
racies. The resulting seven introduced unknowns can then be un-
iquely determined as ða1; b1; b2; b3; c1; c2; c3Þ ¼ ð0:875; 0:1251282;
�0:2487176;0:0001282;�1:9359611;1:9969223;�0:0609611Þ. We
remark here that the wavenumber optimized upwinding scheme
developed for @/

@x has the spatial accuracy order of fifth according

to the derived modified equation @/
@x ¼

@/
@x jexact � 0:0007008h5 @6/

@x6 þ
0:0001984h6 @7/

@x7 � 0:0000498h7 @8/
@x8 þOðh8Þ þ � � �.
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Fig. 12. The contours computed from the Navier–Stokes-a equations for t
3.2. Incompressible flow solver

Calculation of the regularized flow equations begins with solv-
ing the following two equations in the projection step

unþ1 � unþ1
2

Dt
¼ �rpnþ1; ð25Þ

r � unþ1 ¼ 0: ð26Þ
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Substitution of Eq. (25) into the semi-discretized momentum equa-
tion leads to

unþ1 � un

Dt
þ ðunþ1

2 � rÞunþ1
2 � 1

Re
r2unþ1

2 þrpnþ1 ¼ M1 þM2; ð27Þ

where M1 ¼ ½ðunþ1
2 � rÞrpnþ1 þ ðrpnþ1 � rÞunþ1

2 � 1
Rer

2ðrpnþ1Þ�Dt

and M2 ¼ �½ðrpnþ1 � rÞrpnþ1�Dt2. Let pnþ1 ¼ p	 þ p0, the pressure-

gradient step is decomposed into the step given by u	�unþ1
2

Dt ¼ �rp	

and the step given by unþ1�u	

Dt ¼ �rp0, where p	 is an intermediate
pressure. Then, Eq. (27) is reformulated as

unþ1 � un

Dt
þ ðu	 � rÞu	 � 1

Re
r2u	 þ rp	 ¼ �rp0 þM3 þM4; ð28Þ

where M3 ¼ ½ðu	 � rÞrp0 þ ðrp0 � rÞu	�Dt � 1
Rerðr � u	Þ and M4 ¼

�½ðrp0 � rÞrp0�Dt2. In order to reduce the computational cost, the
following algorithm is employed [21]

Given the solutions of the velocity u	1, pressure p	0 and p00.
For s ¼ 1;2; . . .

unþ1
s � un

Dt
þ u	s � ru	s �

1
Re
r2u	s þrp	s�1 ¼ �rp0s�1; ð29Þ

p	s ¼ p	s�1 þ p0s; ð30Þ
u	sþ1 ¼ unþ1

s � Dtrp0s: ð31Þ

By performing the divergence operator on unþ1�u	

Dt ¼ �rp0, we can get

r � unþ1 ¼ r � u	 � Dtr2p0. Enforcement of r � unþ1 ¼ 0 yields

r2p0 ¼ r�u
	

Dt . At each interior point ði; jÞ, the central approximation gi-

ven below for r2p0 ¼ r�u
	

Dt yields

2ð 1
Dx2 þ

1
Dy2Þp

0
i;j ¼ �

r � u	i;j
Dt

þ 1
Dx2 ðp

0
i�1;j þ p0iþ1;jÞ þ

1
Dy2 ðp

0
i;j�1 þ p0i;jþ1Þ:

ð32Þ

By omitting 1
Dx2 ðp0i�1;j þ p0iþ1;jÞ þ 1

Dy2 ðp0i;j�1 þ p0i;jþ1Þ, the following equa-
tion is derived

p0i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r � u	i;j: ð33Þ

The above formulation for p0 may over-estimate the predicted pres-
sure due to the omitted term. For the compensation of this omis-
sion, Eq. (33) is used first to get the following pressure correction
them p0	

p0	i;j ¼ �
Dx2Dy2

2ðDx2 þ Dy2ÞDt
r � u	i;j: ð34Þ

This is followed by calculating the pressure correction term p0 from
p0	 according to

p0i;j ¼ p0	i;j þ
Dy2

2ðDx2 þDy2Þ ðp
0	
i�1;j þ p0	iþ1;jÞ þ

Dx2

2ðDx2 þDy2Þ ðp
0	
i;j�1 þ p0	i;jþ1Þ:

ð35Þ
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Fig. 13. Illustration of the cutting lines (x ¼ 2;4;6;8;10 and 12; y ¼ 0:4 and �0.
3.3. Three-point sixth-order Helmholtz scheme

To get a more accurate Helmholtz solution, the following proto-
type equation is considered

@2u
@x2 � ku ¼ f ðxÞ: ð36Þ

Denoting the values of @2u=@x2; @4u=@x4 and @6u=@x6 at the nodal

point i as @2u
@x2 ji ¼ si;

@4u
@x4 ji ¼ v i;

@6u
@x6 ji ¼ wi, the compact scheme for

(36) will be developed below at the point i [22]. Derivation of the
scheme starts with relating the terms v, s and w with u as follows

d0 h6wi þ c0 h4v i þ b0 h2si ¼ a1 uiþ1 þ a0 ui þ a�1 ui�1: ð37Þ

It is legitimate to set a1 ¼ a�1 since Eq. (36) is elliptic in nature. Der-
ivation of the Helmholtz scheme is followed by expanding the
terms ui�1 with respect to ui. Substitution of these Taylor-series
expansion equations into Eq. (37) leads to

d0 h6wi þ c0 h4v i þ b0 h2si ¼ a0 þ 2a1ð Þui þ
h2

2!
2a1ð Þ @

2ui

@x2

þ h4

4!
2a1ð Þ @

4ui

@x4 þ
h6

6!
2a1ð Þ @

6ui

@x6

þ h8

8!
2a1ð Þ @

8ui

@x8 þ � � � : ð38Þ

By a term-by-term comparison of the derivatives shown in Eq. (38),
the five simultaneous algebraic equations can be derived. The intro-
duced free parameters can then be derived as a1 ¼ a�1 ¼ �1;a0 ¼
2;b0 ¼ �1; c0 ¼ � 1

12 and d0 ¼ � 1
360. Note that wi ¼ k3ui þ k2fiþ

k @2 fi
@x2 þ @4 fi

@x4 ;v i ¼ k2ui þ kfi þ @2 fi
@x2 , and si ¼ k ui þ fi. Eq. (37) can then

be expressed as

uiþ1 � 2þ h2 kþ 1
12

h4k2 þ 1
360

h6k3
� �

ui þ ui�1

¼ h2fi þ
1

12
h4 kfi þ

@2fi

@x2

 !
þ 1

360
h6 k2fi þ k

@2fi

@x2 þ
@4fi

@x4

 !
: ð39Þ

The corresponding modified equation for (36) is derived as
@2u
@x2 � k u ¼ f þ h6

20;160
@8u
@x8 þ h8

1;814;400
@10u
@x10 þ � � � þ H:O:T:. This means that

the proposed three-point scheme is sixth-order accurate.

4. Verification study

The proposed combined compact spatial scheme and pressure
correction algorithm will be validated by solving the unsteady Na-
vier–Stokes equations, Leray-a regularized equations, and the NS-
a regularized equations. In a square �1 6 x; y 6 1, it is assumed
that the exact solutions for the velocity vector u, filtered velocity
vector u, and the scalar pressure p take the following forms pro-
vided that the source terms are derived by substituting the solu-
tions of (40)–(44) into their respective equations
20 25 30

y=0.4

y=-0.4

4) used for the comparison of results in the backward-facing step problem.
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uðx; y; tÞ ¼ �cosðpxÞsinðpyÞe�2p2 t
Re ; ð40Þ

vðx; y; tÞ ¼ sinðpxÞcosðpyÞe�2p2 t
Re ; ð41Þ

pðx; y; tÞ ¼ �1
4
ðcosð2pxÞ þ cosð2pyÞÞe�4p2 t

Re ; ð42Þ

uðx; yÞ ¼ cosðpxÞ cosðpyÞ; ð43Þ
vðx; yÞ ¼ sinðpxÞ sinðpyÞ: ð44Þ
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Fig. 14. Comparison of the predicted velocity profiles for the backward-facing
All the calculations will be performed at Re ¼ 1000 and
Dt ¼ 10�2Dx for the grid sizes chosen as 1

20 ;
1

40 ;
1

80 ;
1

120 ;
1

160. In Tables
3–5, one can clearly see that the predicted L2-norm errors are all
fairly small and the computed rates of convergence are high for
the Navier–Stokes equations and the regularized equations under
current investigation. The proposed discretization scheme and
the solution algorithm are thus numerically demonstrated to be
correct.
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step problem. (a) and (b) x ¼ 2; (c) and (d) x ¼ 4; and (e) and (f) x ¼ 6.
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Having analytically justifying the proposed numerical method,
we will investigate next the lid-driven cavity and the backward-
facing step problems to assess the two chosen regularized turbu-
lence models.
5. Discussion of results

We begin with the investigation of the lid-driven cavity flow
problem and then the backward-facing step problem. Comparison
of our simulated results with other existing reliable results, exam-
ination of the zero-divergence condition for the filtered and unfil-
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Fig. 15. Comparison of the predicted velocity profiles for the backward-facing
tered velocity vectors, check on the global mass conservation, and
the illustration of the difference of the computed results between
the classical and regularized Navier–Stokes equations are the main
themes in the following discussion of results.
5.1. Lid-driven cavity problem

The internal flow problem subject to the boundary condition
shown in Fig. 1 is considered first. Given the unit upper lid velocity
(or u ¼ 1), calculation will be performed at Re ¼ 7500 in a square of
length 1. In this flow simulation, 200� 200 mesh points are
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step problem. (a) and (b) x ¼ 8; (c) and (d) x ¼ 10; and (e) and (f) x ¼ 12.
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uniformly distributed in the square cavity while for the Leray-a
and NS-a flow simulations the mesh resolution has been both re-
duced by four times. In the assessment of the investigated regular-
ization models applied in the domain of 100� 100 mesh points, we
assume that the NS solutions computed in the finer mesh
(200� 200 nodal points) are conceptually regarded as being exact.

In Fig. 2, our computed NS velocity profiles at two mid-planes
are seen to agree excellently with those of Ghia et al. [23] and Er-
turk and Corke [24]. It is worthy to point out here that the residual
reduction shown in Fig. 3 during the nonlinear iteration is excel-
lent for the two investigated regularization models. This can be
considered as an indirect evidence to show the superiority of
applying the currently developed advection scheme which accom-
modates the optimized numerical modified wavenumber. For the
comparison sake, the velocity profiles computed from the Leray-
a and NS-a equations in the coarser mesh are also plotted in the
same figure. One can see that the predicted regularized velocity
profiles agree quite well with each other. In comparison, the NS-
a velocity profiles are slightly closer to the NS velocity profiles.

We then compare the velocity profiles for u and v along the
other five particularly chosen lines illustrated in Fig. 1. These cho-
sen lines pass the central larger eddy and the relatively smaller two
corner eddies. In Figs. 4 and 5, the computed differences between
the NS and regularized NS velocity profiles appear mainly in the
primary eddy. The largest difference occurs near the core of the pri-
mary eddy. The corner eddies are found to compare quite well for
both sets of the regularization equations. From the viewpoint of
the sectional velocity profiles, the NS-a model outperforms the
Leray-a model based on the current numerical simulation.

We then check whether or not the value ofr � u is equal to zero
in NS and Leray-a equations andr � u ¼ 0 in the NS-a equations. In
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Fig. 16. Comparison of the predicted velocity profiles for the backward
this check, the L2 error norms for u and u are calculated based on
the current analysis and we tubulated them in Table 6. One can
clearly see from this table that the divergence-free condition is re-
tained for the unfiltered velocity vector u, or r � u ¼ 0, for the NS
and Leray-a models while it is divergence-free for the filtered
velocity, or r � u ¼ 0, only for the NS-a equations. This calculation
implies that r � u ¼ r � u ¼ 0 cannot be both considered as the
governing equations [25,26] in the construction of the regularized
turbulent equations subject to the no-slip velocity boundary
condition.

The effect of a prescribed for the calculation of the regularized
Navier–Stokes equations is also examined. The sectional velocity
profiles computed at a ¼ 1

100 ;
1ffiffiffiffi
24
p ; 1

2 ;
3
4 and 99

100 in að� ahÞ, where h de-

notes the grid size, are plotted in Figs. 6 and 7 for the Leray-a and
NS-a equations. It is under our expectation that the regularized
Navier–Stokes solutions approach the classical Navier–Stokes solu-
tions as the value of a gradually approaches zero. For the given va-
lue of a, a better agreement is found near the wall. The discrepancy
becomes increasingly larger in the cavity core with the increased
value of a.

Finally, the relative dominance of the convection and diffusion
is explored for the cavity flow investigated at Re ¼ 7500. Three

ratios, which are RNS ¼ u�ru

r2u
;RLeray�a ¼ u�ru

r2u
and RNS�a ¼ u�ru

r2u
, are de-

fined. These results, plotted in Fig. 8 for their contours, show the
dominant diffusion phenomenon in the three corner eddies while
the convection phenomenon is prevailing in the center eddy. In
the upper center eddy, the degree of convection dominance is de-
creased from the left to the right while in the lower part of the
center eddy, the degree of dominance in convection is decreased
from right to left. Generally speaking, the smoothing operator
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(d)
-facing step problem. (a) and (b) y ¼ 0:4; and (c) and (d) y ¼ �0:4.



Fig. 17. The computed contours for the backward-facing step problem. (a) RNS for u; (b) RNS for v; (c) RLeray-a for u; (d) RLeray-a for v; (e) RNS-a for u; and (f) RNS-a for v.

T.W.H. Sheu et al. / Computers & Fluids 74 (2013) 13–31 29



Table 7
The predicted mass fluxes at the lines x = 3, 6 and 9 using the two chosen model equations to simulate the backward-facing step problem.

Models Inlet x = 3 Error (%) x = 6 Error (%) x = 9 Error (%)

Navier–Stokes 0.5 0.500886 0.1773 0.501463 0.2926 0.500981 0.1962
Leray-a 0.5 0.497031 0.5937 0.498299 0.3401 0.497372 0.5254
Navier–Stokes-a 0.5 0.497088 0.5823 0.498810 0.2379 0.497441 0.5116

30 T.W.H. Sheu et al. / Computers & Fluids 74 (2013) 13–31
can regularize the flow in a sense that the distributions of RLeray-a

and RNS-a become more smooth in comparison with the solution
smoothness computed from the classical Navier–Stokes equations.
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Fig. 18. Illustration of the residual reductions for the backward-facing ste

Table 8
Comparison of the computed divergence errors for u
from the three sets of equations for solving the back-
ward-facing step problem.

Models r � u

Navier–Stokes 1.983 � 10�6

Leray-a 4.219 � 10�7

Navier–Stokes-a 4.857 � 10�2
5.2. Backward-facing step problem

In the current assessment of the regularized Navier–Stokes
equations, we investigated also the external flow problem. In this
study the well-known benchmark backward-facing step problem
schematic in Fig. 9 is considered. In the rectangular domain of the
lengths 30 and 1 along the respective x and y directions, the uniform
meshes of 1200� 60 grid points for the Navier–Stokes equations
and 600� 30 grid points for the regularized Navier–Stokes equa-
tions are considered for the case investigated at Re ¼ 1000. Along
the inlet, a fully developed velocity vector (u ¼ 24yð0:5� yÞ;0) is
prescribed while along the outlet the conditions p ¼ 0 and
@u
@x ¼ @v

@x ¼ 0 are applied. The rest of the boundaries are specified by
u ¼ 0. As before, the Navier–Stokes solutions computed in the finer
(b)

(c)
p problem. (a) Navier–Stokes; (b) Leray-a; and (c) Navier–Stokes-a.
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grids are considered as the reference solutions for making the
assessment of the regularized turbulence models.

Before the discussion of the computed results, the currently
predicted Navier–Stokes solutions will be compared with other
available solutions. In Figs. 10–12 good agreement in the velocity
profiles and the lengths of the reattachment and separation are
seen. These simulated results are considered as the referenced
solutions in the later assessment of the regularized solutions.

As in Section 5.1, velocity profiles are plotted at the lines
x ¼ 2;4;6;8;10;12 and y ¼ 0:04;�0:04. Except at the outlet, all
the lines schematic in Fig. 13 get across the two predicted eddies
near the upper and lower channel walls. According to the simu-
lated velocity profiles for uðyÞ and vðyÞ in Figs. 14 and 15 and
uðx;0:4Þ and vðx;�0:4Þ in Fig. 16, the regularized NS solutions dif-
fer from the NS equations mostly in the non-eddy regions. The reg-
ularized model solutions agree quite well in the upper and lower
eddies. This finding has been also observed in the above lid-driven
cavity flow problem. The discrepancy is particularly pronounced at
the end of the corner eddy that is attached to the lower channel
wall and in the beginning of the roof eddy. This region is, in fact,
the most unstable region in the channel. Of the two simulated reg-
ularized solution profiles, the NS-a solution has a better agreement
with the classical Navier–Stokes solution. This observation is again
found as that observed in the lid-driven cavity flow problem. The
computed ratios between the convection and diffusion terms de-
fined in Section 5.1 are also plotted in Fig. 17. One can find from
these figures that the diffusion effect dominates mostly in the en-
tire channel except in the thin regions located between the free-
stream and the upper/lower eddies.

In the current inflow–outflow simulation, it is essential to check
whether the predicted sets of solutions accommodate the global
mass conservation. For this reason, we integrate the velocity along
the cutting lines and tabulate the computed mass in Table 7. One
can see that mass is conserved excellently. Also, NS-a model out-
performs the Leray-a model since NS-a has a better global mass
conservation. We also elaborate on the issue of simultaneously
considering r � u ¼ 0 and r � u ¼ 0 as the governing equations.
For this purpose, we plot the L2 norms of the divergence of the fil-
tered velocity field u and the unfiltered velocity field in Table 8. As
the conclusion made in Section 5.1, only r � u ¼ 0 holds in the Na-
vier–Stokes and Leray-a equations.

Before closing this section, the excellent convergence of the
residuals will be shown using the currently proposed scheme
when solving the two chosen sets of Navier–Stokes equations.
Quite a monotonic reduction of the residuals can be observed in
Fig. 18 for the two investigated regularization equations. The effec-
tiveness of applying the current numerical method is again demon-
strated from this inflow–outflow problem.
6. Concluding remarks

In this study a dispersively very accurate convection scheme is
proposed to simulate the high Reynolds number flow. Good con-
vergence has been demonstrated due probably to the application
of the effective advection scheme which accommodates the opti-
mized numerical wavenumber. Besides the classical Navier–Stokes
equations, two types of the regularized Navier–Stokes equations
have been numerically studied in details. Of the Leray-a and NS-
a subgrid model equations, it can be concluded that the NS-a mod-
el is superior to the Leray-a model because the former model
yields a better agreement with the classical Navier–Stokes solu-
tions computed in a mesh with four-time grid resolution. The
agreement between the classical and regularized Navier–Stokes
solutions were all observed in the smaller eddy regions. Larger
discrepancy was normally found in the region located between
the primary and the corner eddies.
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