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Abstract Skull-stripping in magnetic resonance (MR)

images is one of the most important preprocessing steps in

medical image analysis. We propose a hybrid skull-strip-

ping algorithm based on an adaptive balloon snake (ABS)

model. The proposed framework consists of two phases:

first, the fuzzy possibilistic c-means (FPCM) is used for

pixel clustering, which provides a labeled image associated

with a clean and clear brain boundary. At the second stage,

a contour is initialized outside the brain surface based on

the FPCM result and evolves under the guidance of an

adaptive balloon snake model. The model is designed to

drive the contour in the inward normal direction to capture

the brain boundary. The entire volume is segmented from

the center slice toward both ends slice by slice. Our ABS

algorithm was applied to numerous brain MR image data

sets and compared with several state-of-the-art methods.

Four similarity metrics were used to evaluate the perfor-

mance of the proposed technique. Experimental results

indicated that our method produced accurate segmentation

results with higher conformity scores. The effectiveness of

the ABS algorithm makes it a promising and potential tool

in a wide variety of skull-stripping applications and studies.

Keywords Skull-stripping � Segmentation �
Active contours � Fuzzy possibilistic c-means � MRI

1 Introduction

Medical imaging is essential and important to biomedical

research and clinical applications due to its valuable

intravital information. Among various medical image

modalities, magnetic resonance imaging (MRI) provides

high contrast images that has been widely used in the

interpretation and visualization of various anatomical

structures. Segmentation in MR images plays a funda-

mental role and simplifies subsequent analysis procedures

by extracting certain useful anatomical structures. Intui-

tively, the segmentation work is carried out by experts such

as doctors and physicians. However, as the amount of MR

image data is exploding nowadays, manual segmentation

has the following disadvantages [33]:

(1) Due to the complex anatomical structure in MR

images, the slice-by-slice manual segmentation is

time-consuming and tedious.

(2) The identification of target boundary is subjective and

the segmentation results with user-intervention is

prone to operator bias.

(3) The nonreproductivity of manual segmentation is less

effective and impractical to the huge amount of MR

image data.

Consequently, a wide variety of studies have been

devoted on semi- or fully automatic computer-aided seg-

mentation for achieving fast and objective segmentation

with high accuracy to facilitate subsequent analyses. In

particular, skull-stripping, belonging to one of the prepro-

cessing step in medical image analysis, aims to remove the

H.-T. Liu � H.-H. Chang (&)

Computational Biomedical Engineering Laboratory (CBEL),

Department of Engineering Science and Ocean Engineering,

National Taiwan University, 1, Sec. 4, Roosevelt Road,

Daan, 10617 Taipei, Taiwan

e-mail: herbertchang@ntu.edu.tw

T. W. H. Sheu

Department of Engineering Science and Ocean Engineering,

National Taiwan University, 1, Sec. 4, Roosevelt Road,

Daan, 10617 Taipei, Taiwan

123

Med Biol Eng Comput (2013) 51:1091–1104

DOI 10.1007/s11517-013-1089-7



non brain tissues and leave the entire brain region. In

essence, the white matter (WM), gray matter (GM), and

cerebrospinal fluid (CSF) compose the three major com-

ponents of the brain region. Many existing skull-stripping

methods are devoted on the extraction of the cerebrum and

cerebellum while the identification of the brain stem varies

subject to specific applications. In addition to skull-strip-

ping methods, numerous contributions have been made on

the individual segmentation of the GM, WM, and CSF [17,

38] as well as the corpus callosum, ventricles, hippocam-

pus, and caudate nuclei [24].

In general, research carried out in the field of skull-

stripping can be broadly classified into three categories.

The first category consists of a series of morphological

operators along with statistical analysis. Wang and Fu [39]

presented the definition of basic operations. Stokking et al.

[31] suggested an automatic model based on histogram and

thresholding followed by morphological operations. Chi-

verton et al. [6] proposed a fully automatic skull stripper

experimented on both adult and infant subjects. Shattuck

et al. [27] developed the brain surface extractor (BSE),

which combines a series of low-level skull-stripping

operations followed by image nonuniformity compensation

to extract the brain surface in T1-weighted MR images.

In the BSE model, the anisotropic diffusion filter is first

used to smooth noisy regions while preserving salient

edges. The diffusion coefficient is designed to adaptively

control the diffusion size using the image intensity gradient

for edge length estimation. The Marr-Hildreth edge detec-

tor is then used to locate the boundary of the brain surface

by a symmetric Gaussian filter followed by the Laplacian

filter. This detector is known for its low computational cost

and results in a closed contour, which is superior to other

edge detection filters such as Canny, Sobel, and Deriche.

After the filtered image volume Ic is obtained, the 1-value

voxels, which constitutes the non edge region, are com-

puted and denoted as F ¼ fk : IcðkÞ ¼ 1f g. Lastly, the

morphological operations are applied to isolate the brain

tissue from the original image volume using the informa-

tion provided by F. The closing operation is further adopted

to fill the holes within the brain region.

The second category is based on classification and

clustering algorithms that categorize each voxel according

to the intensity and local patterns. The support vector

machine (SVM) [32, 34] is one of the representative statis-

tical classifiers beside the typical tools such as Bayesian,

neural networks, and nearest neighbor methods. The SVM

model marks voxels as belonging to a unique class by

determining a set of hyperplanes that maximizes the sepa-

ration between classes [13, 34]. For more details on the SVM,

please refer to the review paper [28]. On the other hand,

much attention has been devoted to the classifiers based on

K-means algorithms such as fuzzy c-means (FCM), which is

the enhanced version of c-means [2] and possibilistic

c-means (PCM) [15]. A hybridization of the above two

models, known as fuzzy possibilistic c-means (FPCM), was

developed to exploit the advantages of these two methods

[20, 21].

The third category is based on active contour models

(ACMs) that deform the contour to fit salient edges in

images. Among several types of ACMs, snakes, proposed

by Kass et al. [14], are a parametric model that deforms

contours under the guidance of geometric properties and

local image information based on the energy-minimization

concept. However, snake-based methods suffer from the

following problems:

(1) Moving distance limitation: a contour segment locat-

ing at the homogeneous region is guided only by

forces based on its geometric properties. Conse-

quently, the moving distance is limited and has

difficulties of evolving into concavities.

(2) Multiple object segmentation: the basic nature of the

snake model is designed for single object segmenta-

tion. The abilities of splitting and merging during

convergence are not straightforward and easy using

snakes.

To address these problems, Cohen [7, 8] proposed an

enhanced version with a balloon force that drives the

contour moving toward the normal direction. Phumeecha-

nya et al. [23] suggested a framework using extensible

search lines to detect the forward and backward regions of

each contour points in an attempt to decide the moving

direction. Aside from the balloon snake embedding forces

on the contour points, Xu and Prince [41] proposed the

gradient vector flow (GVF) snake, which diffuses the edge

map derived from the image. The gradient vector provides

the enhanced external force field that enlarges the capture

range. Wang et al. [40] developed the normally biased

GVF (NBGVF) snake model that sets the diffusion and bias

along the tangential and normal directions, respectively.

The biasing weight is increased in homogeneous region

while declined at boundaries. Alternatively, Tong et al.

[37] suggested a criterion for the presence of multiple

objects when the contour intersects itself. Li et al. [16]

introduced segmentation on the external force field, and

each segmented region is taken as a unique initialization of

contours. Charfi [5] proposed the concept of using diver-

gent points, which are generally located at homogeneous

regions such as the inner part of an object and the gap

between objects, thus providing meaningful information

for snake splitting.

Of particular, the brain extraction tool (BET) [30] is one

of the remarkable skull-stripping models that are based on

deformable models associated with locally adaptive forces

to fit the brain surface. The brain is modeled by a spherical
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tessellated surface centered at the estimated center of

gravity. Each vertex in the surface is moving under the

guidance of an adaptive vector function, which is designed

for driving the vertex in question to the mean position of its

neighboring vertices. The first term in this equation is used

for keeping all vertices in the surface equally spaced. For

the second term, it acts to move the current vertex into lines

with its neighboring vertices and hence increases the

smoothness of the surface. Unlike the preceding terms

involving smoothness, the third component drives the

surface toward the expecting boundary. Finally, the sum of

these three terms in each vertex determines the moving

direction and distance.

Besides the described methods, there are abundant

hybrid approaches for intracranial segmentation. For

example, Shi et al. [29] proposed a level-set based learning

(LSL) algorithm for brain extraction. A level-set- based

fusion method was developed to combine multiple brain

extractions associated with a closed smooth surface and the

parameters were effectively learned from training data.

Region growing based methods [22] connected regions

based on predefined seeded regions along with histogram

analysis, intensity thresholding, and morphological opera-

tions. Watershed techniques constitute a special instance of

region-based methods with the gradient intensity used for

defining connectivity. However, they are sensitive to noise

and can often cause over-segmentation problems. To

overcome this, a hybrid algorithm based on the combina-

tion of watershed algorithms and deformable surface

models has been introduced [26]. The watershed algorithm

was first applied to build an initial estimate of the brain

volume followed by a surface deformation process to allow

the incorporation of geometric constraints into the seg-

mentation procedure. Another watershed-based skull

stripping (WSS) algorithm [12] that combines the histo-

gram characteristics and watershed techniques was also

proposed. The WSS method first estimated tissue bound-

aries by finding inflection points in the image histogram. A

watershed algorithm was then applied to fill the compart-

ments defined from these boundaries, resulting in a skull

stripped brain.

Several studies have shown that none of existing

methods is able to process large-scale MR image data

nowadays [3, 10]. Indeed, the combination of methods in

different categories is necessary for achieving higher

accuracy of skull-stripped results. Motivated by the effec-

tiveness of deformable models and classifiers, this paper

presents a new framework that combines the FPCM model

with an adaptive balloon snake (ABS) model in an attempt

to establish a more robust algorithm. The FPCM is used for

classifying the brain image into five distinct classes, of

which partially represents the CSF is used to enhance the

image. The snake contour is then initialized outside the

enhanced brain surface and shrunk to capture the brain

region under the guidance of an adaptive balloon force. To

evaluate the proposed ABS algorithm, several T1-weighted

MR image data sets were segmented in comparison with

existing state-of-the-art methods.

2 Methods

As illustrated in Fig. 1, the proposed algorithm consists of

two major phases: image preprocessing and image

segmentation.

2.1 Image preprocessing

The image preprocessing phase includes the preceding two

blocks of the flow chart. First, input MR images are

enhanced by a series of low level operations: pixels with

Fig. 1 Flowchart of the proposed skull-stripping algorithm
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relatively high intensity values lying above 95 % of the

cumulative histogram are treated as background and set to

0. The processed images are rescaled to an 8-bit intensity

range [0, 255] using:

I0ðx; yÞ ¼ 255� Iðx; yÞ � Imin

Imax � Imin

; ð1Þ

where I(x, y) is the input image intensity located at

(x, y), Imax and Imin are the maximum and minimum

intensity values of I, respectively. To handle the random

noise commonly existed in MR images, the scaled images are

further smoothed by the bilateral filter [36], which is an edge-

preserving operator that smoothes images while maintaining

salient edges as given in the following equation.

~Iðx0; y0Þ ¼
1

C

Xn

k¼1

c1c2I0ðxk; ykÞ; ð2Þ

where

c1 ¼ exp
�kðxk � x0; yk � y0Þk2

2r2
d

 !
ð3Þ

and

c2 ¼ exp
�jI0ðxk; ykÞ � I0ðx0; y0Þj2

2r2
r

 !
: ð4Þ

In Eq. (2), (xk, yk) represents the neighboring pixels

located in the current window centered at (x0, y0) and n is

the number of pixels in the corresponding window. The

symbol C =
P

k=1
n c1c2 is used for intensity normalization.

The FPCM algorithm is then applied to classify each slice

into five clusters, and pixels in the same cluster are with an

identical label as presented in Table 1. Detailed description

of the FPCM algorithm is summarized in Appendix ‘‘ 1’’.

Those classes in Table 1 are sorted and classified based

on the mean intensity in each class. Specifically, class A

mainly represents the image background and class B esti-

mates the CSF and partial GM. Obviously, the mean

intensity of class A is the lowest, while the mean intensity

of class E is the highest. Subsequently, a series of mor-

phological operations are carried out for enhancement as

described below:

(1) Pixels belonging to class A or B are extracted from

the classified image ~Ifpcm and denoted as Rab (the

black region in Fig. 2c). The remaining classes in the

image are treated as one region and denoted as Rcde

(the white region in Fig. 2c).

(2) To make the region representing the CSF more

salient, region Rab is dilated by a structure element

se1 (disk of radius 3):

Rab � se1 ¼ c 2 ~Ifpcm j c ¼ aþ b; for some
�

a 2 Rab and b 2 se1g ð5Þ

Region Rab is accordingly expanded while Rcde is contrarily

shrunk as shown in Fig. 2d.

(3) Since the brain surface is usually the largest con-

nected component in the image [26, 27], other

connected components in Rcde are removed. Besides,

the holes inside Rcde are filled to make the region

more compact as shown in Fig. 2e.

(4) In step 2, the brain region is slightly truncated owing

to morphological dilation. To recover the missing

part, dilation is applied again but on Rcde as shown in

Fig. 2f using

Rcde � se1 ¼ c 2 ~Ifpcm j c ¼ aþ b; for some
�

a 2 Rcde and b 2 se1g: ð6Þ

(5) Region Rcde is further modified by morphological

closing to maintain smoothness at the brain boundary.

This step can significantly facilitate contour

initialization for brain boundaries with severe

concavities and convexities. The closing operation

is described as follows:

Rcde � se2 ¼ ðRcde � se2Þ � se2; ð7Þ

where closing is the combination of dilation followed by

erosion with structure element se2 (disk of radius 5). For

clarity, the processed Rab and Rcde are denoted as Rab

0
and

Rcde

0
, respectively, as depicted in Fig. 2g.

(6) Finally, region Rab

0
is superimposed on the filtered

image ~I, i.e., pixels in ~I corresponding to the pixels

belonging to R0ab in ~Ifpcm are set to zero:

~Ienhðx; yÞ ¼ 0; if~Ifpcmðx; yÞ 2 R0ab
~Iðx; yÞ; otherwise

�
; ð8Þ

where ~Ienh denotes the partially enhanced image. As shown

in Fig. 2h, the processed image provides a somewhat clean

and clear brain boundary for subsequent processing.

Morphological operations manipulated on the sub-

sequent slices are more straightforward comparing to the

center slice. Region Rab obtained from the FPCM image is

expanded by dilation. Subsequently, closing is proceeded

on the largest connected component in region Rcde to

generate a clear brain boundary.

Table 1 Five classes and labels

used in the FPCM classification

algorithm

Class Classification Label

A Background 1

B CSF/GM 2

C GM 3

D WM/GM 4

E WM 5
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2.2 Image segmentation

The segmentation steps are summarized in the following

four middle blocks in Fig. 1. While many existing methods

place initial contours inside the brain [30, 35], we initialize

the snake contour outside the brain surface after ~Ienh is

obtained.

2.2.1 Contour initialization on the center slice

Our segmentation starts from the center slice and continues

on the subsequent slices until the whole volume is pro-

cessed. In the center slice i, the initial snaxels vi ¼
vi1; vi2; . . .; vinf g are successively generated clockwise by a

sequence of searching paths, where n is the number of

paths. The searching paths pi ¼ pi1; pi2; . . .; pinf g are a set

of lines generated clockwise on the center slice that record

the pixel intensity values starting from the centroid Ci to

the image border. Fig. 3a shows the brief view of contour

initialization and notations. Detailed steps are described

below:

(1) First, the centroid Ci of the searching paths is

calculated using the geometric centroid of Rcde

0
, -

which is used for the starting searching point in each

path.

(2) There exists one or more 0-intensity fragments in

each searching path pij, one of which approximately

represents the CSF position. Case 1: For searching

paths with only one 0-intensity fragment, the snaxel

vij is initialized at t1 distance from the beginning of

this detected fragment (t1 equal to 5 pixels). Case 2:

For two or more 0-intensity fragments on the

searching path, the longest fragment (excluding the

fragment from the skin to the image border) is

considered to estimate the CSF position. The snaxel is

initialized at t2 percent from the beginning of this

fragment (t2 equal to 70). These two different

scenarios with the case number indicated beside the

corresponding searching path are illustrated in the

right diagram of Fig. 3a.

(3) Repeat step 2 to obtain all initial snaxels clockwise

path by path.

2.2.2 Contour refinement

After the initialization of snaxels surrounding the brain

surface, refinement is applied to adjust the outlier

positions that are poorly estimated. We do this by

computing the distance from the centroid Ci to the

estimated snaxel, which is denoted as di ¼
di1; di2; . . .; dinf g, where dik = |vik - Ci|. The simple

moving average (SMA) filter [9] is then used to measure

the average of a subset in di:

dik ¼
1

2hþ 1

Xkþh

j¼k�h

dij ¼
1

2hþ 1

Xkþh

j¼k�h

jvij � Cij; ð9Þ

where 2h ? 1 is the number of snaxels included in the

computation and h = 5. The difference between dik and dik

is calculated and a snaxel vik is identified as an outlier if

jdik � dikj[ t, where t is a prescribed threshold equal to 10.

Finally, the snaxel outliers are replaced by the geometric

centroid of adjacent snaxels as illustrated in Fig. 3b. It is

evident that the contour becomes smoother after the

refinement process and simultaneously maintains a nice

shape corresponding to the brain surface.

Fig. 2 Illustration of morphological operations for image enhance-

ment. a Original image. b FPCM results. c Rab and Rcde. d Rab � se1.

e The largest connected component with holes filled. f Rcde � se1.

g Rcde • se2. The black region and the white region represent Rab

0
and

Rcde

0
, respectively. h ~Ienh
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2.2.3 Contour initialization on subsequent slices

Given the continuity of adjacent slices, snake contours on

the processed neighboring slices can be used as a reference

for the contour initialization of the current slice. Snaxels on

the same searching path but locating at neighboring slices

should have approximately close 2D spatial locations. For

example, snaxels vi,j and vi-1,j, locating at the jth searching

path belonging to the i - 1th and ith slices, respectively,

might have nearly identical locations in 2D view. A narrow

band centered at vi-1 is created on the ith slice for gener-

ating vi. The narrow band is bounded on both sides of vi-1

with a bandwidth of 2d as shown in Fig. 4a. In our

approach, the snaxels vi are located at the center of the

fragment that is nearest to snaxels vi-1,j as illustrated in

Fig. 4b, where the red dots represent snaxels vi-1,j, the

yellow dots denote the fragment centers, and the selected

centers, i.e., snaxels vi,j, are connected with dashed lines.

Moreover, the estimated snaxel vi,j is replaced with the

geometric centroid of vi-1,j and the selected fragment

center if it is not in the narrow band. Two examples of

using this strategy to obtain the initial contour are given in

Fig. 4c, d.

2.2.4 Adaptive balloon force

Once all initial contours are computed, a balloon snake

model is used for contour evolvement to obtain final skull-

stripping results. As described in ‘‘Appendix 2’’, a tradi-

tional balloon snake model [7, 8] is formulated as internal,

external, and balloon forces using Esnake ¼
R 1

0
EintðvðsÞÞþ

EextðvðsÞÞ þ EbalðvðsÞÞds, where Eint = a(s)|vs|
2 ? b(s)|vss|

2

shortens the distances between adjacent snaxels, and the

Fig. 3 a Illustration of contour

initialization. Left; Brief view of

initialized snaxels and searching

paths. Middle: notations. Right:

two cases of the searching paths.

b Illustration of refinement

process. Top: the estimated

contour. The blue line

represents the distances di from

the snaxel vi to the centroid Ci

and the green line exhibits the

corresponding distance di using

the SMA filter. Bottom: the

refined contour
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second order term makes the contour resist bending. The

external energy Eext drives the contour toward salient

edges, and the balloon energy Ebal = j n(s) increases the

moving distance by embedding a normal force into each

snaxel.

A new parameter j(s) is defined as:

jðsÞ ¼ j rI jmax � j rIðvðsÞÞ j
j rI jmax � j rI jmin

; ð10Þ

where j rI jmax and j rI jmin are the maximum and

minimum magnitudes of the image gradients,

respectively. Consequently, snaxels associated with high

gradient values will have smaller values of j(s). This j(s) is

further used to adjust the balance between j and b(s) by

modifying the energy functions as:

EintðvðsÞÞ ¼ ajvsj2 þ jðsÞ�1bjvssj2; ð11Þ

and

Ebal ¼ jðsÞjnðsÞ: ð12Þ

Doing this, snaxels associated with a large value of j(s) will

have a relatively smaller value of j(s)-1b, but a relatively

larger value of j(s)j. Smaller values of j(s)-1b will

strengthen the elasticity while larger values of j(s)j will

increase the balloon force, leading to more robust

segmentation.

2.3 MR image data

We evaluated the proposed algorithm using the internet

brain segmentation repository (IBSR) data set in which

brain MR images along with their ground truth segmenta-

tion results were provided by the Center for Morphometric

Analysis (CMA) at Massachusetts General Hospital [19].

The IBSR is a public Wide Web resource providing access

to MR brain image data and segmentation results, which is

supported by the NIH under Grant number 1 R01

NS34189-01 from the National Institute of Neurological

Disorders and Stroke (NINDS). The T1-weighted coronal

scans from people with different ages are positionally

normalized in each volume. The first data set we obtained

in IBSR contains 10 subjects, each of which consists of 128

slices. The dimension of each slice in this IBSR10 image

data is 256 9 256 pixels. The second data set was obtained

from 20 young middle aged individuals, which we referred

to as IBSR20. Each subject includes 60 to 65 slices, and

each slice is 3.1 mm thick with a dimension of 256 9 256

pixels. These two image data sets are real scans and suffer

from inhomogenities and noise in some slices. Addition-

ally, volumes in the IBSR20 data set contain a large area of

the neck and shoulder that could severely bias the perfor-

mance. For fair competition, regions contain the neck and

shoulder were manually removed beforehand.

Simulated brain MR image volumes obtained from the

McGill Brain Web [18] were also used to evaluate our

method. The images were generated from the normal brain

database using the T1 modality, 3 mm slice thickness with

various combinations of 1, 3, 5, 7, and 9 % noise levels

along with 0, 20, and 40 % intensity nonuniformity settings

that produced 15 different subjects, which is referred to as

SBD15.

2.4 Performance evaluation metrics

To provide quantitative evaluation of skull-stripping

methods, we compute different similarity indexes between

the segmentation result R1 and the ground truth (gold

standard) mask R2. The overlapping area is expected to be

as larger as possible, which can be evaluated using the true-

positive (hTP) index. On the other hand, the false-negative

(hFN) index is the nonsegmented region that should be

included in actual. It is clear that R1 ¼ hTP [ hFPf g and

R2 ¼ hTP [ hFNf g. More specifically, conformity jc is used

to evaluate unity subtracted by the ratio of the amount of

the mis-segmented pixels to the amount of correctly seg-

mented pixels using [4]

Fig. 4 Contour initialization on the subsequent slices. a Narrow band with a bandwidth 2d. b The fragment centers on the i - 1th slice and the

estimated snaxels on the ith slice. c and d Two examples with complete initial contours
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jc � 1� hFP þ hFN

hTP

� �
: ð13Þ

It has been shown that conformity is more sensitive and

precise than existing measurement coefficients such as

Jaccard and Dice in detecting small variations in seg-

mented images.

Alternatively, sensibility gsbl and sensitivity gstv aim to

evaluate local segmentation performance. Sensibility

locally characterizes how many pixels outside the ground

truth are segmented and excludes the impact of image

background properties, thus providing consistent evalua-

tion scores [4]:

gsbl � 1� hFP

hTP þ hFN

� �
: ð14Þ

Contrarily, sensitivity measures the number of pixels

located in the ground truth R2, which is correctly segmented,

without considering other regions outside R2 [11]:

gstv �
hTP

hTP þ hFN

� �
: ð15Þ

One more evaluation metric is the false-positive rate ufpr,

which measures the over-segmentation level and is

calculated as the rate of the incorrectly segmented region

divided by the ground truth [6]:

ufpr �
hFP

hTP þ hFN

� �
: ð16Þ

3 Results

All experiments were performed on a Core i3-380M

2.83 GHz machine with 4 GB of main memory running

Microsoft Windows 7. The proposed algorithm was

implemented using Matlab in which the FPCM toolbox was

established from Yashil [42] and the adaptive balloon

snake model is modified and extended from the traditional

snake model written by Kumar [25]. The experiments were

performed to compare our ABS algorithm with other

available state-of-the-art methods of LSL [29], BSE [27],

WSS [12], and BET [30].

Table 2 presents the performance comparison of the

LSL, BSE, WSS, BET, and ABS methods on the IBSR10

data set using different evaluation coefficients. Our ABS

algorithm has a better overall performance with more

consistent scores of conformity than the LSL, BSE, WSS,

and BET methods in skull-stripping these ten subjects.

While the sensibility and sensitivity scores of the proposed

method are closely high, the scores of other methods are

somewhat distinctive and incomparable. To better under-

stand the performance on each individual subject of

IBSR10, we present the corresponding scores of confor-

mity, sensibility, and sensitivity in Fig. 5. For the ABS

method, it is obvious that the scores of sensibility are pretty

high approximately between 0.95 and 1.00 in all subjects,

which is also the case for sensitivity in the first six subjects.

However, the sensitivity scores drop below 0.95 in the last

Table 2 Performance

comparison of LSL, BSE, WSS,

BET, and ABS on IBSR10,

IBSR20, and SBD15 data sets

Performance metrics (Avg. ± Std.)

jc gsbl gstv ufpr

IBSR10

LSL 0.8316 ± 0.0364 0.8333 ± 0.0375 0.9985 ± 0.0013 0.1667 ± 0.0375

BSE 0.9022 ± 0.0388 0.9248 ± 0.0371 0.9795 ± 0.0109 0.0752 ± 0.0371

WSS 0.8131 ± 0.2187 0.8235 ± 0.2254 0.9903 ± 0.0130 0.1765 ± 0.2254

BET 0.8519 ± 0.0700 0.8876 ± 0.0430 0.9704 ± 0.0351 0.1124 ± 0.0430

ABS 0.9368 ± 0.0289 0.9777 ± 0.0173 0.9623 ± 0.0340 0.0223 ± 0.0173

IBSR20

LSL 0.7728 ± 0.1856 0.7808 ± 0.1808 0.9938 ± 0.0092 0.2192 ± 0.1808

BSE 0.8802 ± 0.0493 0.9353 ± 0.0227 0.9526 ± 0.0485 0.0647 ± 0.0227

WSS 0.8346 ± 0.2086 0.8497 ± 0.1826 0.9893 ± 0.0164 0.1503 ± 0.1826

BET 0.6945 ± 0.0587 0.6954 ± 0.0587 0.9993 ± 0.0006 0.3046 ± 0.0587

ABS 0.9083 ± 0.0431 0.9321 ± 0.0322 0.9787 ± 0.0211 0.0679 ± 0.0322

SBD15

LSL 0.6904 ± 0.0632 0.9060 ± 0.0106 0.8374 ± 0.0466 0.0940 ± 0.0106

BSE 0.8506 ± 0.0185 0.9934 ± 0.0021 0.8760 ± 0.0154 0.0066 ± 0.0021

WSS 0.8763 ± 0.0138 0.9109 ± 0.0210 0.9691 ± 0.0093 0.0891 ± 0.0210

BET 0.9171 ± 0.0078 0.9864 ± 0.0013 0.9360 ± 0.0077 0.0136 ± 0.0013

ABS 0.9425 ± 0.0048 0.9481 ± 0.0052 0.9947 ± 0.0010 0.0519 ± 0.0052
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four subjects (same tendency for the BSE and BET meth-

ods), which results in poor overall scores of conformity.

The performance of our algorithm on the IBSR20 data

set in comparison with the LSL, BSE, WSS, and BET

methods is presented in Table 2 based on the conformity,

sensibility, sensitivity, and false-positive rate. Once again,

the ABS method outperformed other methods in providing

higher overall conformity scores. While the LSL, WSS,

and BET methods produced pretty high sensitivity scores,

their sensibility values were much smaller than other

methods. Both BSE and ABS methods provided somewhat

consistent scores of sensibility and sensitivity. Note that the

false-positive rates of the BET and LSL methods are

extremely high comparing to other methods, which dra-

matically drags the conformity scores below 0.70 and 0.78,

respectively. Table 2 also summarizes the performance

evaluation scores of the five methods on the SBD15 data

set. Our algorithm achieved a higher average score of

conformity (0.9425) with less standard deviation compar-

ing with other methods.

Finally, we demonstrate qualitative analysis of using our

algorithm on some arbitrary selected image volumes.

Fig. 6a illustrates visual representations of skull-stripping

results along with snake contour evolutions on some slices

of the second volume in the IBSR10 data set. Every row

represents the same slice with different image and pro-

cessing information. In each individual row, the original

image I is shown in the first column, and the enhanced

image Ienh associated with the initial contour (the yellow

curve) is shown in the second column. In the third column,

we show the final contour associated with the final seg-

mentation result. For reference, the corresponding ground

truth is shown in the last column. Other examples of sub-

ject 4_8 in the IBSR20 data set are illustrated in Fig. 6b. In

both illustrations, it is clear that all initial snake contours

were correctly placed outside the brain after the FPCM

procedure and the final evolved contours precisely

encompassed the brain surface.

4 Discussion

We have introduced a hybrid methodology for skull-strip-

ping brain MR images based on an adaptive balloon snake

model. Generally, the brain is surrounded by the CSF,

whose intensity is lower than the adjacent skull and GM in

T1-weighted MR images. However, there may exist some

strong linkages between these tissues that cause ambiguous

patches and blurred boundaries. To deal with this difficulty,

the FPCM algorithm is first applied to partition the brain

into five clusters, one of which representing the CSF is

further enhanced to facilitate contour initialization.

Most existing contour based skull-stripping methods

initialize the contour inside the brain region based on

intensity thresholding and histogram analysis. The initial

contour could be conservatively placed within the brain

region while it suffers from noise sensitivity problems

owing to a relatively longer moving distance. Inspired by

such limitation and Segonne’s work [26], our algorithm

initializes the contour just outside the brain region. Com-

paratively, unwanted noise effect is relieved using this

strategy, which has the advantages of short moving dis-

tance, automation without user intervention and high

accuracy.

In practice, the coefficients a, b, and j in the balloon

snake model are generally set to constants in many appli-

cations for simplicity. This may have satisfactory perfor-

mance in segmenting objects with simple geometries and

clear boundaries. However, the complex anatomical

structure and unexpectable intensity variation in brain MR
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Fig. 5 Comparison of performance evaluation metrics between the

BSE, BET, and proposed ABS methods on IBSR10 data set.

a Conformity. b Sensibility. c Sensitivity

Med Biol Eng Comput (2013) 51:1091–1104 1099

123



Fig. 6 Qualitative illustration of skull-stripping results using the

ABS algorithm. First column: original images, second column:

enhanced images with initial contours, third column: final contours,

and last column: ground truths. a Subject 02 of the IBSR10 data set.

First row: slice 20, second row: slice 30, and third row: slice 40.

b Subject 4_8 of the IBSR20 data set. First row: slice 5, second row:

slice 15, and third row: slice 23
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images make it a challenging task. To address this problem,

we proposed an enhanced model with an adaptive

weighting function incorporating into the traditional snake

contour, which is driven by the guidance of this new

integrated balloon force. The design is based on the

assumption that snaxels are associated with high image

gradients when they locate at the target boundary. Con-

trarily, snaxels accompany lower gradients when they

locate at homogeneous regions.

Since the proposed method placed the initial contour

outside the brain and shrank to capture the brain boundary,

the segmented region was always smaller than the initial

contour, which maintained high and consistent scores of

sensibility in all subjects as can be realized in Table 2. The

robustness of our algorithm across various noise levels and

intensity nonuniformity settings was validated by the high

performance evaluation scores of the SBD15 data set. The

inconsistent performance of sensitivity of the IBSR10 data

set shown in Fig. 5c is probably because that the topo-

logical boundaries of the brain are relatively smoother in

the preceding six subjects while the brain contains several

convexities and concavities in the last four subjects. These

convexities and concavities trapped initially estimated

snaxels on several slices, leading to difficult contour

advancement.

In addition, most evaluated skull-stripping techniques

had poor performance with lower conformity scores on the

IBSR20 data set comparing to the IBSR10 data set. The

degree of degradation is somewhat slight for the LSL,

BSE, and ABS methods, but severe for the BET method.

This is partially resulted from the double amounts of

image data and more significant artifact of inhomogeneity

in the IBSR20 data set. The higher score of the false-

positive rate in the BET method indicates the inherited

over-segmentation problem. This problem is due to the

fact that the snake contour in the BET method is initial-

ized inside the brain and evolved outward to capture the

brain boundary. In situations of severely blurred brain

boundaries, no strong image forces are presented to stop

the contour, leading to leakage. On the other hand, the

snake contour of our algorithm is advancing inward and

stopped at the brain surface that provides more accurate

results.

One limitation of the ABS algorithm is the splitting of

contours for multi-object segmentation, which also exists

in many snake models. In the axial (transversal) view of

brain MR images, the brain is separated into two lobes on

several lower-end slices. Currently, the proposed method

segmented these separated lobes using one entire contour,

which can deteriorate the performance. Nevertheless, these

regions are somewhat small, and the influence is quite

slight comparing to contour leakage. Topological changes

based on snake models are usually complicated, time

consuming, and difficult to implement. Contrarily, the

evolution of the proposed balloon snake model is time

efficient and easy to implement. Regardless, the investi-

gation of introducing splitting and merging abilities into

the ABS model will be interesting, but challenging in the

future.

Lastly, the balloon snake contour in the proposed ABS

framework is evolved by the adaptive balloon force in one

single inward direction with the snaxels initialized outside

the brain surface. One possible way for future research is to

locate the contour around the brain boundary and adopt

bidirectional evolution, which deflates and inflates the

contour simultaneously. With this bidirectional deforma-

tion force, the ABS algorithm may provide more flexibility

and achieve better performance. The accuracy of our

method extensively depends on the precision of contour

initialization associated with the FPCM result. In MR

images, the slices around both ends somewhat suffer from

non uniformity and shading effects, which more or less

mislead our FPCM clustering. To investigate the use of

machine learning techniques such as the SVM and to

incorporate artifact rectification, techniques in the image

preprocessing step will be beneficial to more robust

segmentation.

In summary, we proposed a new hybrid skull-stripping

algorithm based on an adaptive snake model associated

with a FPCM cluster. The proposed method was validated

using a wide variety of brain MR image volumes in various

data sets. Experimental results indicated that our algorithm

outperformed several state-of-the-art methods in achieving

more accurate skull-stripping results. While further

research is advantageous to achieve better performance, we

believe that our ABS technique is efficient and promising

in a variety of brain image segmentation applications.
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Appendix 1: Cluster analysis

Cluster analysis aims to partition a set of objects into

several groups (clusters) by assigning different labels to

each individual object. In general, groups are identified

according to some specific senses such as connectivity-

based, distribution-based, and centroid-based classification.

A clustering algorithm can be generally defined as clus-

tering an unlabeled data set D ¼ d1; d2; . . .; dnf g into

c subgroups, where 1 \ c \ n is the number of the clusters

usually predefined by the user. Vectors in the same parti-

tion are assigned with an identical label. The c-partition of

D can be arrayed as a matrix Uc 9 n = [uik] with size
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c 9 n. The value of uik varies between different clustering

algorithms. Moreover, a set of centroids or prototypes V ¼
v1; v2; . . .; vcf g is further defined for representing each

cluster in centroid-based models.

The fuzzy c-means (FCM), proposed by Bezdek [2], is a

centroid-based model that incorporates the fuzzy concept

in the membership, i.e., the membership of each object dk is

defined as the inversely relative distance of dk to the cen-

troid V. The membership of the data set can be arrayed as

UFCM = [uik] and is constrained by the following

equations:

Xc

i¼1

uik ¼ 1; 8k ð17Þ

and

Xn

k¼1

uik [ 0; 8i: ð18Þ

Equation (17) indicates that the membership of an object dk

in each cluster is a normalized value such that the mem-

bership of dk sums to 1 while Eq. (18) implies that there

exists at least one object associated with positive mem-

bership in each centroid.

Since the membership is the inverse function of the

object distance to the centroid, one problem of the FCM is

that for points that are naturally identified as outliers but

equidistant from two prototypes, the same membership is

given to these points. The calculated values of membership

thus provide unrepresentative associations between objects

and prototypes. Such drawback is resulted from Eq. (17) in

that the membership is normalized and unable to present

the actual spatial relationship.

Subsequently, Krishnapuram and Keller [15] proposed

the possibilistic c-means (PCM), in an attempt to relieve

the problem in the FCM. The PCM model replaces the

column sum constraint with a looser form as:

0\
Xc

i¼1

uik\c 8k 9i 3 uik [ 0; ð19Þ

where each element uik is between 0 and 1. The value of uik

is interpreted as typicality instead of membership of dk

relative to the centroid vi. It is also recommended to

interpret each row of U as a possibility distribution over

D. The PCM model somewhat overcomes the drawbacks of

the FCM while it sometimes suffers from coincident cluster

problems, which refer to incorrect assignment of an object

that naturally belongs to another [1].

Fuzzy possibilistic c-means (FPCM), as the name

implies, combines the features of the fuzzy and possibilistic

c-means and address the problems of these two models.

The FPCM finds out the optimal solution of classification

by minimizing the following objective function,

min
U;T;V

Jm;gðU;T;V; XÞ ¼
Xc

i¼1

Xn

k¼1

ðum
ik þ t

g
ikÞjjxk � vijj2;

ð20Þ

where U denotes the relative typicality (membership)

described in the FCM, T represents the absolute typicality

in the PCM, and V is a vector of element vi representing the

center belonging to cluster i. The symbols m and g are

weighting exponents with m [ 1 and g[ 1. The constant

c is the number of clusters and k the number of data points.

Details of the minimization process and proof are given in

[20]. Herein, we briefly describe the necessary conditions

for minimizing the objective function Jm,g as follows:

uik ¼
Xc

j¼1

jjxk � vijj
jjxk � vjjj

� � 2
m�2

" #�1

; 8i; k ð21Þ

and

tik ¼
Xn

j¼1

jjxk � vijj
jjxj � vijj

� � 2
g�2

" #�1

; 8i; k: ð22Þ

Based on these conditions, vector V is updated using

vi ¼
Pn

k¼1ðum
ik þ t

g
ikÞxkPn

k¼1ðum
ik þ t

g
ikÞ

; 8i: ð23Þ

Appendix 2: Balloon snake models

Snakes (also known as parametric active contours), pro-

posed by Kass et al. [14], have been widely applied in

image segmentation and object tracking. A snake can be

defined as a set of ordered points or snaxels

v(s) = [x(s), y(s)], usually generated counter-clockwise.

The parameter s 2 ½0; 1� is a normalized arc length starting

from the first snaxel. The deformation of each snaxel is

governed by both internal and external forces. The internal

force is related to the stretching ability (or tension) and

smoothness of the curve, which shrinks to a tiny circle

when the driving forces are only internal. While the

internal force is independent from the image data, the

external force is related to salient features such as termi-

nations and edges in images. The balance of internal and

external forces drives the snake curve moving toward the

object boundary while simultaneously maintaining the

tension and stiffness.

Subsequently, Cohen et al. [8] embedded a balloon

force into the traditional snake models to solve the problem

of limited moving distances. This enhanced version of

snakes simulates the action of balloons including deflation

and inflation along the normal direction. An overview of

the balloon snake model is shown in the following

equation:
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Esnake ¼
Z1

0

EintðvðsÞÞ þ EextðvðsÞÞ þ EbalðvðsÞÞds; ð24Þ

where Eint, Eext and Ebal represent the internal, external,

and balloon energy, respectively.

The internal energy in Eq. (24) is defined as:

Eint ¼ aðsÞjvsj2 þ bðsÞjvssj2; ð25Þ

where a(s) and b(s) are weighting functions, and subscripts

are used to indicate derivatives. The first order derivative

with respect to s controls the distance between adjacent

snaxels. During energy minimization, the second order

term makes the contour resist bending. Consequently, the

snake contour tends to collapse in the absence of other

constraints or forces. The relative strength of tension and

stiffness can be adjusted by controlling the values of

a(s) and b(s).

Alternatively, the external energy in Eq. (24) is defined as

Eext ¼ �c j rGrðx; yÞ � Iðx; yÞ j2; ð26Þ

where Gr denotes the Gaussian filter with r controlling the

spatial extent of the local minima of the convolution ker-

nel, r is the gradient operator, I is the image intensity, and

the notation j � j represents norm. The parameter c is a

weighting function for controlling the magnitude of the

external energy. Accordingly, regions with salient features

have relatively smaller external energy while homogeneous

regions are associated with higher external energy.

By embedding a normal force into each snaxel, the

balloon energy increases the moving distance using:

Ebal ¼ jnðsÞ: ð27Þ

where j is a weighting function and n(s) is the normal

vector that is further resolved into x and y components:

nxðsÞ ¼
ysþ1 � ys�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxsþ1 � xs�1Þ2 þ ðysþ1 � ys�1Þ2
q ð28Þ

and

nyðsÞ ¼
�ðxsþ1 � xs�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxsþ1 � xs�1Þ2 þ ðysþ1 � ys�1Þ2
q ð29Þ

where xs and ys in pair represent the coordinates of the sth

snaxel.

According to the theory of the fundamental Euler-

Lagrange differential equation and minimizing Esnake, the

snake evolution is achieved when the following equation is

satisfied:

Fint þ Fext þ Fbal ¼ 0 ð30Þ

where

Fint ¼ aðsÞvss � bðsÞvssss; ð31Þ

Fext ¼ �rEext; ð32Þ

and

Fbal ¼ rEbal: ð33Þ
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