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In this paper a compact finite-difference solver for solving the Maxwell’s equations in
curvilinear coordinates is presented. The scheme formulated in time domain can theoret-
ically preserve zero-divergence condition and scaled wavenumber characteristics in non-
staggered grids. The inherent local conservation laws are also retained discretely all the
time. The space and time derivative terms are approximated to yield an equal fourth-
order spatial and temporal accuracy. In irregular physical domain, Maxwell’s equations
are recast in terms of the contravariant and covariant field variables so that the devel-
oped dual-preserving solver can be directly implemented. In addition, in curvilinear coor-
dinates the four components in the metric tensor have been calculated under the
guideline that the determinant of the transformation matrix is computed exactly.
Through the computational exercises, it is demonstrated that the newly proposed solver
with a fairly small numerical scaled wavenumber error in curvilinear coordinates is com-
putationally efficient for use to get the long time accurate Maxwell’s solutions in irregu-
lar physical domain.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Provided that the constraint conditions r � B ¼ 0 and r � D ¼ 0 are imposed initially, the divergence-free equations for B
(magnetic flux density) and D (electric flux density) in Maxwell’s equations are preserved all the time by means of the time-
evolving Faraday’s and Ampère’s laws. In other words, the Gauss’ law for the magnetism and electricity can be left out of
consideration when solving the values of B and D from the Faraday’s and Ampère’s laws, respectively. The discrete diver-
gence-free conditions for the magnetism and electricity are not satisfied in general due to the inevitably introduced discret-
ization error. Violation of these two constraint equations for the magnetic and electric flux densities can even result in
numerical instability problem. How to eliminate these non-zero divergence errors when simulating the Maxwell’s equations
becomes, thus, one of the major tasks in the development of numerical methods for solving the Maxwell’s equations. One can
refer to the book of Birdsall and Langdon [1] for getting more information about the numerical control of divergence errors of
B and D. In this study, two divergence-free-preserving algorithms will be investigated in Section 3.

Control of divergence errors is particularly essential when solving the Maxwell’s equations since any accumulated
non-zero divergence error can cause the calculation to breakdown [2]. To enforce divergence-free constraint conditions in
Maxwell’s equations, one can employ the well known Yee’s scheme [3] in staggered grids. The generalized Lagrange
elt Road,
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multiplier formulation of Munz et al. [4] is another class of numerical methods developed to retain divergence-free condi-
tions for the Maxwell’s equations. The local divergence-free solution of Maxwell’s equations can be also computed using the
discontinuous Galerkin method [5].

Numerical errors of the amplitude or the phase type will inevitably appear when approximating the derivative terms. The
resulting dissipation error can attenuate solution amplitude and the dispersion error can lead to an even worse erroneous
numerical phase or group velocity. Since Maxwell’s equations contain only the first-order spatial derivative terms, the indis-
pensable numerical dispersion error can destabilize the scheme. It is therefore essential to reduce this type of errors when
approximating the first-order spatial derivative terms. How to preserve the embedded propagation characteristics in the
Maxwell’s equations is the second challenge of getting an accurate numerical solution.

A trivial way to reduce the dissipation and dispersion errors resulting from the approximation of derivative terms is to
adopt the high-order schemes such as the spectral method [6,7]. Application of this class of methods is, however, limited
to problems in simple domains subject to less complex boundary conditions. The other alternative to spectral methods is
the methods developed on the basis of Pade’ approximation [8]. This class of compact schemes offers high-order approxima-
tions to differential operators using the compact stencils that relate various derivatives with the nodal values of dependent
variables under calculation. Compared to the traditional finite difference methods, a better representation of the shorter
length scale can be obtained using the spectral methods. There has, however, a larger freedom in prescribing the boundary
condition along the irregular boundary [9]. Due to the spectral-like resolution properties in compact schemes, the sixth-or-
der accurate scheme for the first-order spatial derivative terms in time-domain Maxwell’s equations in Section 6.3 and the
Jacobian-preserving scheme developed in Section 6.1 for calculating the metric tensor components will be developed within
the context of compact finite difference methods.

To eliminate the dissipation error entirely, the centered compact scheme is chosen to get a dissipation-free solution. It has
been known that in non-staggered grids the centered compact scheme employed for approximating the first-order spatial
derivative terms might cause numerical oscillations to occur even for the conditions without involving discontinuity in
the solution. To resolve this oscillatory problem without adding dissipation or filter to the dissipation-free centered compact
scheme, in this study a dispersively accurate scheme described in Section 6.3 is proposed so that the difference between the
numerical and exact wavenumbers for the first-order spatial derivative term becomes smallest.

Discretization error is basically cumulative. After solving the EM wave equations for a long distance or for a long time, the
time-evolving solution will be greatly affected by the scheme which can not preserve the multisymplectic geometric structure.
Moreover, the predicted solution can be unphysical since the local conservation laws can no longer be preserved. How to retain
the embedded symplecticity in the Maxwell’s equations in large-scale problem or for a problem involving a long-term compu-
tation poses another difficulty in approximating the time derivative terms shown in the Faraday’s and Ampère’s equations.

It is well known that given a numerical scheme for the partial differential equations the solution with the best numerical
quality is normally computed from a domain of Cartesian grids. This computational fact prompts the calculation of the trans-
formed differential equations in the computational domain cast in a form akin to that in Cartesian coordinate counterpart. In
this study, the Maxwell’s equations formulated in curvilinear coordinates employ the contravariant and covariant field vari-
ables described in Section 4 so that the temporal and spatial schemes derived in the Cartesian coordinates can be applied
directly to get a better solution without the sacrifice of the crosswind diffusion error. The coefficients in these transformed
equations become, however, more complex in their expressions containing the components of metric tensor. It is therefore
essential to accurately compute these terms resulting from the transformation between the physical and computational
coordinates. In Section 6.1, a Jacobian-preserving scheme formulated within the compact finite different framework is pro-
posed to get not only a more accurate representation of the metric tensor components but also a more accurate area ratio
between the physical and computational cells.

The rest of this paper is organized as follows. In Section 2, the Maxwell’s equations which include the Faraday’s law for the
time-evolving magnetic flux density and the Ampère’s law for the time-evolving electric flux density are presented. These two
sets of equations will be solved subject to the Gauss’ laws for the solenoidal magnetism and electricity. In Section 3, we pres-
ent two divergence-free algorithms for the Gauss’ law. In Section 4, the Maxwell’s equations in physical domain are mapped
one-to-one to those in the computational domain. The electric and magnetic field variables are transformed to their corre-
sponding contravariant and covariant components. In Section 5, Maxwell’s equations in perfectly matched layer are presented
in Cartesian as well as in curvilinear coordinates. In Section 6, the first-order spatial derivative terms shown in the Maxwell’s
equations are approximated in a way that the numerical scaled wavenumber error is minimized. Since Maxwell’s equations
are classified to be a set of multisymplectic Hamiltonian partial differential equations [10], we apply a fourth-order accurate
symplectic structure-preserving time integrator to implicity conserve its symplecticity numerically. We also present in the
same section a detailed analysis of our scheme in Fourier space. In Section 7, one problem with the exact solution is solved
to verify the proposed fourth-order space/time accurate scheme, which accommodates the zero-divergence-preserving and
symplecticity-preserving properties, with the smallest numerical wavenumber error. Finally, we draw some conclusions in
Section 7 based on the solutions computed from the Maxwell’s equations in an irregular domain.

2. Working equations

The following Maxwell’s equations in time domain are investigated to get the magnetic field intensity H and the electric
field intensity E
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@H
@t
¼ � 1

l
r� E; ð1Þ

@E
@t
¼ 1
�
r� H: ð2Þ
The magnitudes of � (electric permittivity) and l (magnetic permeability) shown above determine the wave propagation
speed cð� ðelÞ1=2Þ. We assume that the permeability in Faraday’s law and the permittivity in Ampère’s law are homogeneous
and isotropic. These two material parameters are the proportional constants in the linear isotropic constitutive relations
D ¼ �E and B ¼ lH, where B and D are denoted as the magnetic induction (or magnetic flux density) and electric displace-
ment (or electric flux density), respectively. While Maxwell’s equations can be decomposed into the transverse magnetic
(TM) and the transverse electric (TE) modes, only the TM-mode Maxwell’s equations are considered in this study for brevity.

Provided that there are no electric and magnetic sources, analysis of the transport equations for H and E should be con-
strained by the following Gauss’ laws for magnetism and electricity, respectively
r � B ¼ 0; ð3Þ

r � D ¼ 0: ð4Þ
Note that Eqs. (3) and (4) are satisfied if they are both divergence-free initially [5]. This implies that we can neglect these two
divergence-free equations only in the context of continuous differential equations.

Maxwell’s equations (1) and (2) can be reformulated to the equivalent set of mutltisymplectic Hamiltonian
equations ¼M zt þ

P3
k¼1¼

Kk zk ¼ rzSðzÞ for the solution vector z ¼ ðHx;Hy;Hz; Ex; Ey; EzÞT , skew symmetric matrix ¼M, symplectic
structure ¼Kk ðk ¼ 1—3Þ, and the energy functional SðzÞ [11]. By virtue of the local energy conservation law, the total energy
conservation law for the Maxwell’s equations is
Z

X

1
�

H � r � H þ 1
l

E � r � E
� �

dX ¼
Z

X
H � @E

@t
� E � @H

@t

� �
dX: ð5Þ
In other words, equations (1)–(4) are endowed with the following Hamiltonian functional H [12]
HðH; EÞ ¼ 1
2

Z
X

1
�

H � r � H þ 1
l

E � r � E
� �

dX: ð6Þ
Besides the above two available conservation laws, Maxwell’s equations (1) and (2) have the following two additional
invariants
W1ðtÞ ¼
Z

X
ð�E � Eþ lH � HÞdX; ð7Þ

W2ðtÞ ¼
Z

X
�
@E
@t

����
����
2

þ l @H
@t

����
����

2
 !

dX: ð8Þ
The first invariant, or W1ðtÞ, is the energy density in the field of electromagnetism.

3. Divergence-free-preserving solution algorithm

There are six unknown field variables shown in the differential set of eight Eqs. (1)–(4), which include three equations in
Faraday’s law for B, three equations in Ampère’s law for D, and two equations in Gauss’ law for magnetism and electricity. To
close this dynamical system, we need only six of the eight equations. This leaves the two elliptic Eqs. (3) and (4) out of con-
sideration. Omission of these two divergence-free equations can very often result in a serious numerical stability problem.
We are therefore motivated to modify Eqs. (1) and (2) and then solve them in time domain. The resulting computed solutions
satisfy Eqs. (3) and (4) or the Gauss’ laws all the time. In this study we propose two methods and assess their performance in
terms of the divergence-free numerical errors and the required computational times.

To ensure satisfaction of the Gauss’ law in a discrete sense, two potential functions U1 and U2 have been introduced into
Eqs. (2) and (1), respectively, to get the following modified Ampère’s and Faraday’s equations [13,1].
@E
@t
� 1
�
r� H þrU1 ¼ 0; ð9Þ

@H
@t
þ 1

l
r� EþrU2 ¼ 0: ð10Þ
To close the above set of modified Maxwell’s equations, two transport equations for modeling the correction potentials U1

and U2 need to be derived. Define first the differential operators D1 and D2 for the Gauss’ law and then rewrite the modified
Gauss’ law as follows
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Fig. 1. (a) Schematic of interior cells in physical and computational domains with the nodes 1;2;3;4; (b) Schematic of the four areas marked by 1;2;3;4 in a
cell.
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D1U1 þr � E ¼ 0; ð11Þ

D2U2 þr � H ¼ 0: ð12Þ
By performing the divergence operator (r�) on Eq. (9) and then the differential operator @=@t on Eq. (11), the equation for U1

can be derived as follows
@D1ðU1Þ
@t

�r2U1 ¼ �
1
�
r � ðr � HÞ: ð13Þ
Since D1U1 ¼ �r � E, we can get
r2U1 ¼ �
@

@t
ðr � EÞ: ð14Þ
For the two-dimensional case without considering the current density and electric charge density, the equation governing
the correction function U1 turns out to be the Laplace equationr2U1 ¼ 0. One can similarly perform the divergence operator
ðr�Þ on Eq. (10) and the differential operator @=@t on Eq. (12). The following transport equation for U2 can be derived through
the identity equation r � ðr � EÞ ¼ 0
r2U2 ¼ �
@

@t
ðr � HÞ: ð15Þ
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One can also express the computed electrical field vector as the sum of �r/ andr� V , where / denotes a scalar function
and V is a vector function. Decomposition of the solution in this way permits us to correct the electrical field by means of
Ec ¼ Eþr/ and this helps to make the corrected vector Ec to be solenoidal. By performing the divergence operator ðr�Þ on
both hand sides of Ec ¼ Eþr/E, we can get the following equation for the correction term in X
Fig. 2.
points)
diagona
r2/E ¼ �r � E: ð16Þ
Given the computed values of E from the Faraday’s equations, the above equation for / is solved subject to the zero boundary
condition / ¼ 0 along the boundary @X since the Lagrangian multiplier is simply used to enforce divergence-free condition.
Note that /E is prescribed to be zero along the boundary since its primary role is to ensure numerical stability [14]. One can
adopt the similar correction idea by addingr/H to the magnetic field solution E computed from the Ampère’s law, where /H

is governed by r2/H ¼ �r � H in X and /H ¼ 0 is prescribed along @X.
4. Maxwell’s equations in curvilinear coordinates

To simulate the EM wave propagation over a geometrically complex electromagnetic structure, we can transform the
Maxwell’s equations, governed by Eqs. (9) and (10) in Cartesian coordinates xiði ¼ 1—3Þ, to their corresponding equations
in a non-orthogonal curvilinear coordinate system niði ¼ 1—3Þ. In an irregular physical domain, mesh lines are not necessar-
ily orthogonal to each other. The mesh sizes can also vary considerably from one region to the other. It is therefore essential
to solve the transformed equations more accurately in a computationally best orthogonal and uniform grid system. Provided
that a coordinate transformation is performed, the transformed equations become much more complex by the space deriv-
ative terms generated from the coordinate transformation. For the sake of retaining solution accuracy as that predicted in
Cartesian coordinates without deteriorating convergence when solving the Maxwell’s equations in nonuniform curvilinear
meshes, one should choose a proper set of dependent variables for the investigated magnetic and electric field variables.
In this study, we transform equations (1) and (2) to their equivalent equations cast in both covariant and contravariant com-
ponents for E and H.

Given a vector v ¼ v i, which is E or H in the Maxwell’s equations, it can be expressed either in the covariant basis vector

eðiÞ � @x
@ni

� �
form or in the contravariant basis vector eðiÞ � @ni

@x

� �
form by v ¼ Vi eðiÞ ¼ VieðiÞ. Note that Vi are denoted as the con-

travariant components of v along the covariant basis vector that is tangential to v . On the contrary, Vi are denoted as the
covariant components of v along the contravariant basis vector that is orthogonal to v . These two basis vectors are related
to each other through the duality relation eðiÞ � eðjÞ ¼ di

j (Kronecker delta). Note also that eðiÞ ¼ ðeðjÞ � eðkÞÞ=J and vice-verse

eðiÞ ¼ ðeðjÞ � eðkÞÞJ, where the Jacobian J � ffiffiffi
g
p ¼ jeðiÞ � eðjÞ � eðkÞj represents the volume of a hexahedron formed by the vector eðiÞ.

By multiplying eðiÞ on both hand sides of (10), we can easily transform the Faraday’s equations in Cartesian coordinates
ðx; y; zÞ to its corresponding equations written in terms of the contravariant and covariant components in the curvilinear
coordinate system ðn;g; fÞ. Define first gi ¼ eðiÞ for i ¼ 1—3. The contravariant components of H can be expressed in terms
αh
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of giasð ^H1;
^H2;

^H3Þ � H�g1;H�g2;H�g3Þ and the covariant components of E can be expressed in terms of
gi as ðÊ1; Ê2; Ê3Þ � E�g1; E�g2; E�g3Þ. The resulting Faraday’s equations written in terms of the contravariant components of
H are as follows:
@Ĥ1

@t
¼ �

@Ê3
@g �

@Ê2
@f

� �
l ffiffiffi

g
p �rU2 � g1; ð17Þ

@Ĥ2

@t
¼ �

@Ê1
@f �

@Ê3
@n

� �
l ffiffiffi

g
p �rU2 � g2; ð18Þ

@Ĥ3

@t
¼ �

@Ê2
@n �

@Ê1
@g

� �
l ffiffiffi

g
p �rU2 � g3: ð19Þ
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It is worthy to note here that the Faraday’s equations (17)–(19) cast in curvilinear coordinates use the contravariant com-
ponents of the magnetic vector in the left hand side while in the right hand side the covariant components of the electric
vector are taken into account. One can also notice that the above transformed equations take almost the same form as their
corresponding equations defined in Cartesian coordinates except gi ði ¼ 1;2;3Þ, which involve only the differentiation terms
time(s)
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Table 1
Comparison of the required CPU times using the two investigated schemes, which yield approximately the same L2-error norms, at time t = 10.

Present Yee [3]

L2-error norm Grid CPU time (s) L2-error norm Grid CPU time (s)

1.6973E�02 41 � 41 2.2969 1.5649E�02 121 � 121 4.6719
7.3012E�03 51 � 51 3.0156 6.3570E�03 189 � 189 19.0937
3.8695E�03 61 � 61 4.3438 3.1511E�03 268 � 268 56.5937
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between two coordinates. Such an analogy in the two equation expressions helps to get the same prediction quality when
solving the Maxwell’s equations in Cartesian and curvilinear coordinates.

The Ampère’s equations for the electric field E in (9) can be similarly transformed to the following equations, written in
terms of the contravariant components ðÊ1; Ê2; Ê3Þ and the covariant components ðĤ1; Ĥ2; Ĥ3Þ, in curvilinear coordinates
Fig. 7.
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In the above, g1; g2 and g3 contain the information of transformation between two coordinate systems. One can find from the
above transformed Ampère’s equations that they are similar to those written in Cartesian coordinates provided that the con-
travariant components of E are used in the left hand side and the covariant components of H are used in the right hand side.
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Upon calculating the contravariant magnetic components from (17)–(19), we need to transform them to their corre-
sponding covariant components that are needed to get the updated contravariant electric field variables. One can then trans-
form them to their corresponding covariant components when solving Eqs. (17)–(19) for the magnetic field variables. A
relationship used to calculate the contravariant components from the covariant components and vice versa involves the met-
ric tensor gij � eðiÞ � eðjÞ and the inverse metric tensor gij � eðiÞ � eðjÞ. Having computed the tensors gij and gij, one can calculate
the contravariant components Vi from the covariant components Vj through Vi ¼ gijV j. Similarly, the covariant components
Vj can be calculated from the contravariant components Vi by means of Vj ¼ gijV

i.

5. Maxwell’s equations in uniaxial perfectly matched layer

For the problem defined in an open region, to make the numerical simulation of Maxwell’s equations tackleable we need
to truncate the domain by attaching a layer of absorbing medium, known as the perfectly matched layer (PML). Besides the
Berenger’s PML formulation [15] and the mathematically derived PML formulation [16,17], a model was also developed for
the aisotropic and perfectly matched medium known as the uniaxial PML (UPML) [18,19]. We will apply it in this study to
avoid the unphysical field splitting difficultly.

Maxwell’s equations in UPML can be written as [18,19]
@Ex

@t
¼ 1

e
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@y
� @Hy

@z
� ry

e0
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The above set of equations can be transformed to their corresponding equations in the curvilinear coordinate system as
follows
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Fig. 9. Comparison of the semi-analytical and the present numerical solutions for (a) Ezðx;0Þ; (b) Ezð0; yÞ
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Fig. 10. Contour plots of the computed electromagnetic wave in total-field/scattered-field in a domain with a scattered structure at the time step = 0. (a) Ez-
field; (b) Magnetic field lines; time step = 350; (c) Ez-field; (d) Magnetic field lines; time step = 400; (e) Ez-field; (f) Magnetic field lines; time step = 450; (g)
Ez-field; (h) Magnetic field lines.
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@Ê3

@t
¼ 1

e
1
J

@Ĥ2
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In the above, rx;ry and rz denote the electric conductivities in the x; y; z dimensions while r1;r2 and r3 are the electric con-
ductivities along the n,g,f coordinates in the curvilinear system.

6. Discretization method

For ease of presentation of the proposed discretization scheme, we consider the following two-dimensional Maxwell’s
equations in Cartesian coordinates. For the transverse magnetic polarization case, the time-evolving magnetic field
ðHx;Hy;0Þ and the scalar electric field ð0;0; EzÞ are governed by
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¼ � 1

l
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� �
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@t
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� �
:

ð35Þ
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The transformed equations in curvilinear coordinates for (35), cast in contravariant and covariant components of H and E, are
as follows:
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where S1 ¼ ðy2
g
@U2
@n � ynyg
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g
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n
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@n Þ. One can rewrite the working

equations for the two chosen auxiliary variables q � U1 and U2 in curvilinear coordinates as follows
r2q ¼ 1ffiffiffi
g
p @

@ni
gij ffiffiffi

g
p @q

@nij

� �
: ð37Þ
On examining the four equations shown in (36) we know that the quality of the predicted TM mode solutions depends on the
employed flux discretization scheme. It depends also on the scheme used to calculate the values of xn; xg; yn; yg, which are the
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Contour plots of the computed electromagnetic wave in total-field/scattered-field in a domain with a scattered structure at the time step = 550. (a)
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components in the covariant basis vector. We will present in Section 6.1 for these derivative terms that involve the trans-
formation of equations between the two coordinate systems, in Section 6.2 for the temporal derivatives, and finally in Sec-
tion 6.3 for the spatial derivative terms shown in (36).

6.1. Jacobian-preserving compact scheme

Due to the Jacobian 1
J � 1ffiffi

g
p

� �
shown in the transformed Maxwell’s equations in (17)–(22) (29)–(34) for simple medium

and in (36) for perfectly matched layer, it is essential to compute the magnitude of Jacobian. As a result, the quality of
the predicted electric and magnetic field variables in complex domain depends on the computed accuracies of the compo-
nents @x

@n,
@x
@g, @y

@n,
@y
@g in the following Jacobian matrix Jð� @xi

@nj
Þ and the determinant itself
jJj ¼ @x
@n

@y
@g
� @x
@g

@y
@n
: ð38Þ
It has been well known that simulation quality can be considerably deteriorated by a large mesh skewness and a high aspect
ratio. To avoid this problem, a rigorous means of computing the four components in the Jacobian matrix is presented below.

Let f be x and f 0 be @x
@n, for example, the value of f 0 at a node i is computed implicitly by the following centered compact

equation so that the metric tensor term @x
@n, for example, can be accurately obtained in a grid of three stencil points
af 0iþ1;j þ f 0i;j þ af 0i�1;j ¼
bðfiþ1;j � fi�1;jÞ

2h
: ð39Þ
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Fig. 12. Contour plots of the computed electromagnetic wave in total-field/scattered-field in a domain with a scattered structure at the time step = 840. (a)
Ez-field; (b) Magnetic field lines; time step = 860; (c) Ez-field; (d) Magnetic field lines; time step = 900; (e) Ez-field; (f) Magnetic field lines; time step = 1000;
(g) Ez-field; (h) Magnetic field lines.
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After conducting modified equation analysis on the above discrete equation, the leading error term is eliminated to get the
following algebraic equation
�2aþ b ¼ 1: ð40Þ
We can then substitute this equation into (39) to get the following equation for f 0i
f 0i;j ¼ �aðf 0iþ1;j þ f 0i�1;jÞ þ
ð1þ 2aÞðfiþ1;j � fi�1;jÞ

2h
: ð41Þ
Referring to Fig. 1, we can similarly derive the approximated expressions for @x
@n,

@x
@g, @y

@n,
@y
@g. The determinant of the Jacobian ma-

trix is thus expressed as follows
jJðaÞj ¼ @x
@n

@y
@g
� @x
@g

@y
@n

¼ ðaþ 0:5Þðx3 � x1Þ � aðxnj3 þ xnj1Þ½ �

� ðaþ 0:5Þðy4 � y2Þ � aðygj4 þ ygj2Þ
h i
� ðaþ 0:5Þðx4 � x2Þ � aðxgj4 þ xgj2Þ
� 	
� ðaþ 0:5Þðy3 � y1Þ � aðynj3 þ ynj1Þ
� 	

:

ð42Þ
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It is now clear that the accuracy of the determinant of Jacobian matrix depends on the free parameter a introduced in Eq.
(39). For a better calculation of @x

@n,
@x
@g, @y

@n and @y
@g, in this study we underlie that the exact value of jJj is the ratio of the area

of the physical domain and the area of the corresponding computational domain, or
Jexact ¼
Aphysical

Acomputational
: ð43Þ
The area of the physical domain Aphysical for a point at ði; jÞ, for example, is the summation of the four areas 1–4 and the
area of computational domain Acomputational, which is the summation of the four areas schematic in Fig. 1. By setting
jJðaÞj ¼ jJexactj, one can determine the coefficient a for each interior grid point.
6.2. Fourth-order accurate symplecticity-preserving temporal scheme

When simulating the Hamiltonian differential equations (1,2), one in theory must apply a symplectic structurre-preserv-
ing numerical method to retain its long-term solution behavior. At the same time we demand also satisfaction of the local
conservation law [12,13]. For the purpose of preserving the multisymplectic geometric structure embedded in Maxwell’s
equations, the symplectic integrator is employed to approximate the time derivative terms shown in the equations in (35).

The first three equations in (35) can be written as @/=@t ¼ f , where / ¼ ðHx;Hy; EzÞT and

f ¼ � 1
l @Ez=@y� @U2=@x; 1

l @Ez=@x� @U2=@y; 1
� ð@Hy=@x� @Hx=@yÞ

� �T
. One of the representative scalar equations in

@/=@t ¼ f , which is given by @/=@t ¼ f , will be approximated within the semi-discretization framework. By applying the
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fourth-order accurate implicit symplectic Runge–Kutta scheme [2], the resulting coupled equations shown below can be em-
ployed to get the fourth-order temporal accuracy for the equation @/=@t ¼ f :
/ð1Þ ¼ /n þ Dt
1
4

f ð1Þ þ 1
4
þ 1

2
ffiffiffi
3
p

� �
f ð2Þ


 �
; ð44Þ

/ð2Þ ¼ /n þ Dt
1
4
� 1

2
ffiffiffi
3
p

� �
f ð1Þ þ 1

4

� �
f ð2Þ


 �
; ð45Þ

/nþ1 ¼ /n þ Dt
1
2

f ð1Þ þ 1
2

f ð2Þ

 �

: ð46Þ
In the above, f ð1Þ and f ð2Þ represent the values of f evaluated at t ¼ nþ 1
2þ 1

2
ffiffi
3
p

� �
dt and t ¼ nþ 1

2� 1
2
ffiffi
3
p

� �
dt, respectively. We

will then approximate the remaining first-order spatial derivative terms in the Maxwell’s equations.

6.3. Optimized compact scheme for the first-order derivative term

When discretizing the first-order derivative terms in non-staggered grids, we should carefully eliminate the numerical
oscillations of an even–odd (or checkerboard decoupling) type. Approximation of @Hx=@x, for example, at an interior point
ði; jÞ in collocated mesh system, it is essential to take the nodal value of Hxji;j into consideration. Such an approximation helps
not only to get rid of the so-called even–odd decoupling oscillations but also to yield better resolution properties than other
conventional finite difference schemes of the comparable order of accuracy. The centered compact difference scheme pro-
posed earlier in [20,21] is employed in a mesh of grid spacing h:
@Hx

@x

����
i;j

¼ a1Hxjiþ3;j þ a2Hxjiþ2;j þ a3Hxjiþ1;j � a3Hxji�1;j � a2Hxji�2;j � a1Hxji�3;j: ð47Þ
The coefficients a1; a2 and a3 shown above are determined by applying Taylor series expansion for Hxji�1;j;Hxji�2;j and Hxji�3;j

with respect to Hxji;j and, then, eliminating the first two leading error terms @2Hx
@x2 and @3Hx

@x3 shown in the modified equation. One
more algebraic equation needs to be derived for uniquely determining the three weighting coefficients introduced in (47).

When applying the centered compact difference schemes to approximate the first-order spatial derivative terms in the
currently adopted non-staggered meshes, the prediction very often suffers numerical oscillations [22]. Reduction or removal
of oscillations of this type requires directly introducing a proper dissipation or adding a dissipative term implicitly through
an appropriate filter [23,24]. These procedures inevitably add dissipation to the numerical scheme and can smear the phys-
ically sharp solution. This is the impetus for the development of the optimized centered compact difference scheme given
below in a less explored non-staggered grid system in the area of computational electromagnetism for the elimination of
numerical instability.

Instead of solely applying the truncation analysis to get the three algebraic equations for the introduced weighting coef-
ficients in the proposed compact equation, we intend to eliminate the wave-like error and hope to get a better resolution by
minimizing the dispersion error. Following the work of Tam and Webb [25], the Fourier transform and its inverse for @Hx

@x are
defined as follows
~HxðaÞ ¼
1

2p

Z þ1

�1
HxðxÞe�iaxdx; ð48Þ

HxðxÞ ¼
Z þ1

�1

~HxðaÞeiaxda: ð49Þ
Fourier transform is then conducted on each term shown in Eq. (47) to get the following actual wavenumber a
a ’ �i
h
ða1ei3ah þ a2ei2ah þ a3eiah � a3e�iah � a2e�i2ah � a1e�i3ahÞ: ð50Þ
In an approximation sense, the effective wavenumber ~a is defined as follows [25]
~a ¼ �i
h
ða1ei3ah þ a2ei2ah þ a3eiah � a3e�iah � a2e�i2ah � a1e�i3ahÞ; ð51Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

. To get a better dispersive approximation, the magnitude of ah� ~ahj j2 should be very close to 0þ. The error
function EðaÞ defined below is therefore minimized over the modified (or scaled) wavenumber range � p

2 6 c 6 p
2

EðaÞ ¼
Z p

2

�p
2

ah� ~ahj j2dðahÞ ¼
Z p

2

�p
2

c� ~cj j2dc; ð52Þ
where c ¼ ah. The positive-valued function E is minimized by enforcing the limiting condition @E
@a3
¼ 0 to get the third alge-

braic equation. The equation derived by the above minimization of modified wavenumber error is used together with the
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other two algebraic equations derived previously from the modified equation analysis. By virtue of the above two underlying
analyses, we can get the following three coefficients aiði ¼ 1 � 3Þ shown in (47)
a1 ¼ �
2ð3p� 10Þ

3ð15p� 32Þ ; ð53Þ

a2 ¼
3ð9p� 32Þ

4ð15p� 32Þ ; ð54Þ

a3 ¼
12

15p� 32
: ð55Þ
The proposed compact difference scheme through the minimization of numerical scaled wavenumber error has the spatial
accuracy of order four
@Hx

@x
¼ @Hx

@x
jexact �

9ð5p� 16Þ
10ð15p� 32Þh

4 @
5Hx

@x5 þ Oðh6Þ þ � � � ð56Þ
Analysis of the proposed spatial scheme starts from defining the coefficients ki and kr for the respective dispersion and dis-
sipation errors as ki ¼ R½~ah� and kr ¼ I½~ah�. R½~ah� denotes the real part of ~ah and I½~ah� stands for the imaginary part of ~ah for
the proposed scheme. It is worthy to note that the value of kr is always equal to zero because of the symmetric stencil points
used in the centered compact difference scheme. In Fig. 2, the predicted values of ki are plotted with respect to the modified
wavenumber ah. For the sake of comparison, we also plot the values of ki for the schemes of Tam and Webb [25], Lele [9], and
Bogry and Bally [26].

7. Numerical results

The dual-preserving scheme formulated in non-staggered grids for simulating the TM wave is verified first by solving the
Maxwell’s equations that are amenable to the analytic solution. This problem solved at l ¼ 1 and � ¼ 1 in
�1 6 x 6 1; �1 6 y 6 1 has the following divergence-free initial solutions Ezðx; y;0Þ ¼ sinð3pxÞsinð4pyÞ,
Hxðx; y;0Þ ¼ � 4

5 cosð3pxÞcosð4pyÞ; Hyðx; y; 0Þ ¼ � 3
5 sinð3pxÞsinð4pyÞ. The resulting exact solutions for Eqs. (1,2) are as follows

[2]
Ezðx; y; tÞ ¼ sinð3px� 5ptÞ sinð4pyÞ;

Hxðx; y; tÞ ¼ �
4
5

cosð3px� 5ptÞcosð4pyÞ;

Hyðx; y; tÞ ¼ �
3
5

sinð3px� 5ptÞ sinð4pyÞ:

ð57Þ
Two sets of calculations are performed to get the spatial and temporal rates of convergence. Calculations are first per-
formed at Dt ¼ 1=5000, which is smaller than the finest grid of spacings Dx ¼ Dy ¼ 1=20;1=30;1=40;1=50. The predicted er-
rors cast in L2-error norms are plotted in Fig. 3, from which the spatial rate of convergence is numerically predicted to be
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Fig. 13. Schematic of the four isotropic cylinders in physical domain.
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Fig. 14. Comparison of the current and Lumerical FDTD results for Ez at five different locations ðx; yÞ. (a) (0 nm,0 nm); (b) (272 nm,272 nm); (c)
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fourth. The second set of calculations is performed similarly at the fixed grid spacing Dx ¼ Dy ¼ 1=50, which is smaller than
the smallest chosen time interval of Dt ¼ 1=18;1=19;1=20;1=21, so that we can calculate the temporal rate of convergence.
As Fig. 4 shows, the L2-error norms decrease with the reduced time interval Dt at an approximated rate of fourth.

For the purpose of justifying the proposed scheme, the Hamiltonian defined in (6) and the energy density given in (7) are
calculated. Since the Hamiltonian is trivially equal to zero for the two dimensional TM-mode Maxwell’s equations, we only
plot the predicted and exact values of the energy density W1 versus time. In Fig. 5. one can clearly see that the computed
value of W1 is not varied with time. One can clearly see in Fig. 6 that the magnetic field is indeed discretely divergence-free
in a domain of 51 � 51 grid points. We also compare the required CPU times capable of getting the similar L2-error norms in
Table 1. Based on this comparison study we know from the tabulated results that the current non-staggered scheme per-
forms much more effectively than the Yee scheme implemented in staggered grids.

We then solve the TM-mode Maxwell’s equations cast in curvilinear coordinates in a domain as shown schematic in Fig. 7.
This problem is solved at l ¼ � ¼ 1 for the case with the specified exact boundary value according to (57). For Hx;Hy and
r � H, these values are obtained as 1.939E�3, 1.283E�3, 1.909E�3 and 1.791E�5, respectively. In the uniformly discretized
domain with 51 � 51 grid points, the predicted solutions at t ¼ 2 s are seen to agree well with the exact solution.

Furthermore, we verify the dual-preserving solver by solving the classical Mie scattering problem in curvilinear coordi-
nates. In Fig. 8(a), a plane wave of wavelength k ¼ 632:8 nm is incident on the isotropic cylinder of radius 63:28nm. For pre-
venting wave being reflected back to the physical domain X ½�380;380� nm from the truncated boundary C, the domain is
divided into the total-field and the scatter-field (TF/SF). One region contains the total field (i.e. the sum of the incident field
and the scattered field) while the other region contains only the scattered field. In addition, an uniaxial perfectly matched
layer (UPML) is attached to the truncated boundary lines, within which the Maxwell’s equations shown in (29)–(34) with
the absorbing ability are solved in the 190 � 190 curvilinear grid system as shown schematic in Fig. 8(b). The computed val-
ues of Ez along the x-axis and y-axis in Fig. 9 show good agreement with the exact solutions. For the sake of completeness, we
also plot in Figs. 10–12 the simulated time evolving contours of Ez and the magnetic field lines. One can clearly see that the
originally planar incident wave becomes curved as the wave approaches the scatter.

After successfully simulating the Mie scattering problem, the proposed solver for Maxwell’s equations is applied to pre-
dict the incident EM wave propagating in a geometrically more complex domain. Four isotropic cylinders of the same radius
63.28 nm are placed in the physical domain as shown schematic in Fig. 13, which involves as before the UPML absorbing
layer. The results shown in Fig. 14, which plots Ezðx; y; tÞ at the locations ðx; yÞ = (0 nm,0 nm), (272 nm,272 nm),
(272 nm,480 nm), (480 nm,272 nm) and (480 nm,480 nm), are compared with other numerical results computed by Lumer-
ical Solutions (http://www.lumerical.com). Good agrement between the two sets of numerical results confirms the applica-
bility of the currently proposed solver to predict wave propagation in the curvilinear coordinate system as shown
schematically in Fig. 14.

8. Conclusions

A centered compact difference scheme for the approximation of first-order spatial derivative terms shown in TM-mode
Maxwell’s equations has been developed in collocated curvilinear grids. The contravariant and covariant components for
both electric and magnetic vectors are chosen altogether to transform the Maxwell’s equations in Cartesian coordinates
to the equations in curvilinear coordinates. The resulting transformed equations involving both of the contrvariant and
covariant variables take almost the same form as the Cartesian Maxwell’s equations. As a good discretization scheme, the
symplectic and conserved properties embedded in the Maxwell’s equations should be retained discretely all the time. This
is the reason of employing the symplectic time integrator to preserve Hamiltonian structure in Maxwell’s equations and
developing compact difference scheme with the optimized numerical wavenumber characteristics for the first-order spatial
derivative terms. The fourth-order accurate divergence-free Maxwell’s solutions are also shown to computationally satisfy
the Gauss’ law for magnetism and electricity. In the current non-staggered grid approach, to compensate for the omitted
Gauss’s laws two modified Maxwell’s equations are investigated and they are assessed as well. Several analytic and bench-
mark problems have been solved and the predicted solutions have good agreement with the exact and other referenced
solutions.
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