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In this paper we are aimed to solve the non-dissipative Degasperis–Procesi equation based
on the u� P formulation. To resolve the computational difficulty at the wave crest where
the first-order derivative may diverge and the shockpeakon solution may form, the first-
order spatial derivative term in the two-step equations will be approximated in a conser-
vative form. The resulting equations will be approximated by the symplecticity-preserving
time-stepping scheme and the spatial discretization scheme that can optimize the numer-
ical wavenumber for the first-order spatial derivative term. This scheme will be developed
in a three-point grid stencil with the accuracy order of seventh within the combined com-
pact finite difference framework. Besides the validation of numerical accuracy, we will in
particular address the discrete conservation of Hamiltonians even when peakon collides
with antipeakon and generates, as a result, a shockpeakon. We will also demonstrate the
capability of applying the proposed numerical method to sharply resolve some important
features of the third-order dispersive DP equation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many existing third-order nonlinear partial differential equations in the areas of hydraulics and optics permit formation
of soliton solutions. Soliton is by definition a solitary wave (or a humped wave of budge of water). When a soliton nonlin-
early interacts with the other soliton waves, both wave velocity and shape can be asymptotically preserved. In this class of
equations, the most distinguished equation bears the names of Korteweg and de Vries (KdV). KdV equation models the time-
evolving wave in a single direction and has two competing terms. One is the nonlinear advective term uux that can cause a
steepening of wave to occur and the other nonlinear dispersion term uuxxx is responsible for the spreading of wave. Forma-
tion of solitons in KdV equation is the result of a delicate balance of the narrowing effect due to convective nonlinearity and
the widening effect due to the dispersion in the medium. While KdV equation has many remarkable properties, this equation
has, for example, the non-physically unbounded dispersion relation. The Benjamin–Bona–Mahony (BBM) equation, intro-
duced as one of the alternatives to the KdV equation, replaces the linear dispersion term uxxx with the mixed derivative term
�uxxt . This replacement of the differential term results in a desirable bounded dispersion relation and helps to get some the-
oretical aspects such as the solution existence, uniqueness, and regularity [1].
.: +886 2
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Besides the nonlinear steepening term uux shown in the KdV and BBM equations, the so-called Camassa–Holm (CH) equa-
tion contains one additional dispersion term uuxxx. This nonlinear dispersion term is in contrast to the linear dispersion term
uxxx in KdV equation and the linear dispersion term �uxxt in BBM equation. CH equation derived from the asymptotic expan-
sion of the incompressible Euler equations in shallow water regime is bi-Hamiltonian [2]. Like the KdV equation, the CH
equation can be completely integrable and has therefore an infinite number of conservation laws. This equation permits also
the solution of a soliton type in the non-zero case of linear dispersion. In the absence of this linear dispersion term, CH equa-
tion is amenable to peakon solution, which has jumps in its derivative but not in the solution itself.

Degasperis–Procesi (DP) equation has a strong similarity to CH equation in the sense that they all belong to the b-family
of the integrable equations given by ut � uxxt þ ðbþ 1Þuux ¼ buxuxx þ uuxxx. The CH and DP equations correspond to b ¼ 2,
b ¼ 3, respectively. Besides the peaked solitary wave solutions (or peakons), DP equation admits also the cuspon solution.
The traveling wave solutions for the CH and DP equations are smooth except at the wave crest, at which the spatial deriv-
ative of the wave solution changes sign. This means that peakons have finite jumps in the first derivative of the solution.
Cuspon is known as the other form of the solitons where its solution exhibits cusps at the wave crest. Unlike the peakon
solutions where the derivatives differ only by a sign at the wave peak, at the jump of cuspon the derivatives diverge.

Despite many similarities, the invariants and the bi-Hamiltonian structures in CH and DP equations are substantially dif-
ferent. Besides, the solution nature of the DP equation differs from that of the CH equation. One of the major differences be-
tween the two completely integrable equations is that DP equation permits not only the peakon solution given by
uðx; tÞ ¼ ce�jx�ctj [3] but is also amenable to the shock solution � 1

tþc signðxÞe�jxjðc > 0Þ [4,5]. Besides the solution discontinuity
occurring possibly in the DP equation but not at all in the CH equation, the conservation laws embedded in the DP equation
are much weaker than those in the CH equation [6]. When peakons and antipeakons appear simultaneously in the solution
domain, the issue being referred to as the wave collision may be present. Subsequent to a wave collision, by now the solution
of CH equation is well understood in comparison with that in the DP equation [5]. For this reason, how to numerically cap-
ture shocks in DP equation will be particularly addressed. In addition, both wave propagation scenario and Hamiltonian-pre-
serving nature after a peakon–antipeakon collision will be explored.

In comparison with the CH equation that permits only the peakon solution, the third-order nonlinear dispersive DP equa-
tion supports peakon as well as shock solutions. The increasingly deteriorated smoothness in the DP solution makes the
numerical analysis of this equation an even difficult task than the calculation of CH equation. One can find only few numer-
ical studies of DP equation in the literature. Entropy weak solution to DP equation has been predicted by Coclite et al. [7] and
Feng and Liu [8] by the operator splitting schemes of different kinds. Hoel [9] has captured multi-shockpeakons by applying
the particle method to solve the DP equation. Note that the above three numerical methods in [7–9] were developed mainly
for the purpose of capturing shock solutions. They had no intension to conserve the invariants in their scheme development
for the DP equation. After solving the KdV equation [10] and then the CH equation [11], Xu and Shu applied further the time-
dependent discontinuous Galerkin method detailed in [12] to resolve shockpeakon discontinuity in the DP equation [6].
More recently, on the basis of bi-Hamiltonian structure Miyatake and Matsuo [13] proposed two conservative finite differ-
ence schemes to preserve two invariants H�1ð� � 1

6 u3Þ and H0ð� � 9
2 ðu� uxxÞÞ for the DP equation with sufficiently smooth

solutions.
This paper is organized as follows. In Section 2, some of the distinguished features in the DP equation which are the useful

ingredients to be applied to develop the proposed scheme for the highly dispersive working equation are summarized. Sec-
tion 3 contains the employed two-step u� P formulation. In Section 4, we will detail the development of the proposed sym-
plecticity-preserving time-stepping scheme and then present the three-point seventh-order accurate scheme, which
optimizes also the numerical wavenumber, for the first-order spatial derivative term. Numerical results will be presented
in Section 5 to demonstrate the ability of yielding a better prediction accuracy and the capability of preserving symplectic
geometric structure and the discrete conservation laws for the current investigated non-dissipative differential system. The
scheme capability of resolving shockpeakons will be also numerically demonstrated. Concluding remarks will be given in
Section 6.

2. Working equation and its fundamentals

Subject to an initial condition, the following DP equation will be solved in a domain with the periodic condition specified
at the two truncated ends
ut � uxxt þ 3j3ux þ 4uux � uuxxx � 3uxuxx ¼ 0: ð1Þ
The above equation is considered as an approximation to the incompressible Euler equations for the modeling of shallow
water propagation in conditions of small amplitude and long wavelength. The solution uðx; tÞ to Eq. (1) denotes the horizon-
tal component of fluid velocity at time t in the x-direction. In the family of the third-order partial differential equation given
by ut þ c0ux þ cuxxx � �2uxxt ¼ ðc1u2 þ c2u2

x þ c3uuxxÞx, only the KdV equation (� ¼ c2 ¼ c3 ¼ 0), CH equation
(c1 ¼ � 3c3

2�2 ; c2 ¼ c3
2 ), and DP equation (c1 ¼ � 2c3

�2 ; c2 ¼ c3) satisfy the asymptotic integrability condition [6].
In the absence of a linear advection term, the resulting highly nonlinear and non-dissipative DP equation (1) admits the

Lax pair given below for the differential system involving the eigenfunction w and its associated eigenvalue k [3].
wx � wxxx ¼ kðu� uxxÞw; ð2Þ
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wt þ
1
k

wxx þ uwx � ux þ
2

3k

� �
w ¼ 0: ð3Þ
Because of the existence of Lax pair, the dispersive equation (1) is completely integrable. In comparison with the second-
order self-adjoint differential operator in CH equation, the non-selfadjoint third-order differential operator in (2) makes
the integrable structure in Eq. (1) more complex than the CH equation [14].

The nonlinear equation (1) under current investigation can be rewritten in its equivalent Hamiltonian form. For the evo-
lution of the momentum variable defined by m ¼ u� uxx, two equations for mtð� @m

@t Þ can be derived as follows [15]
mt ¼ B0
dH�1

dm
¼ B1

dH0

dm
: ð4Þ
In the above, H0 � � 9
2

R
mdx

� �
and H�1 � � 1

6

R
u3dx

� �
are the Hamiltonians corresponding to the respective skew-symmetric

operators B0ð� @xð1� @2
x Þð4� @

2
x ÞÞ and B1ð� m2=3@xm1=3ð@x � @3

x Þ
�1m1=3@xm2=3Þ. Thanks to the compatible bi-Hamiltonian pair

in (4), DP equation has a bi-Hamiltonian structure. How to incorporate this salient Hamiltonian feature of the DP equation
into the numerical framework plays a key role to get a long-term physically accurate DP solution. Note that the conservative
scheme for DP equation in [13] was developed underlying the bi-Hamiltonian structure mt ¼ B0

dH�1
dm .

DP equation investigated at j ¼ 0 can be also cast into the classical evolution equation ut ¼ Fðu;ux;uxx;uxxx; . . .Þ, where
F ¼ 3uxuxx þ uuxxx þ utxx � 4uux. By definition, an evolution equation has its conservation laws provided that there exist a flux
function U and a conserved density q which render the equation qt ¼ Ux [16]. In DP equation, q ¼ mð� u� uxxÞ and
F ¼ 2u2 � 3

2 u2
x � 1

2 u2
x þ uuxx [17]. As a result, DP equation by definition has the conservation law given below
E1ðuÞ ¼
Z

u� uxxdx: ð5Þ
For the other two density functions, which are q ¼ ðu� uxxÞð4� @2
x Þ
�1u and u3, and their respective flux functions U, the

equation qt ¼ Ux holds as well. As a result, two of the infinitely many conservation laws in DP equation are as follows
E2ðuÞ ¼
Z
ðu� uxxÞð4� @2

x Þ
�1udx; ð6Þ

E3ðuÞ ¼
Z

u3dx: ð7Þ
These conservation laws in DP equation are much weaker than those in CH equation. Because of the existing Lax pair in (2)
and (3) and the available bi-Hamiltonian structure in (4), DP equation is completely integrable [3].

Since CH and DP equations accommodate essentially different invariants and bi-Hamiltonian structures, the numerical
methods capable of preserving these invariants are advantageous [13]. In the past, a great deal of effort has been made to
preserve these distinguished conserved quantities within either the finite difference framework [18–20] or the Galerkin
framework [21]. In this study we intend to develop an invariant-preserving finite difference scheme for the DP equation
based on the symplectic scheme given in Section 4.1.

Like the CH equation, the currently investigated third-order equation is also amenable to multipeakon solution cast in an
explicit form [22,23]. Unlike the CH equation, DP equation subject to an initially smooth solution supports shock solution [5].
Entropy weak solution is permitted when peakon collides with antipeakon. While a discontinuity can be formed in the non-
dissipative DP equation, the conservation laws given in (5)–(7) remain valid all the time upon passing over the local discon-
tinuity [6].

3. Solution algorithm of the DP equation

Besides the computationally challenging nonlinear term uux in the DP equation, there exist another two less numerically
explored third-order derivative terms. They are known as the linear space–time dispersive term �uxxt and the nonlinear dis-
persive term �uuxxx that can spread out the localized wave. For getting a numerically more accurate balance of the wave
steepening and spreading, a direct approximation of these third-order dispersion terms will be avoided. One trivial attempt
is to reduce the differential order of the spatial derivative terms by introducing some auxiliary variables. The resulting reduc-
tion of the differential order helps to get a better prediction accuracy in a mesh having the same number of stencil points.

In the literature, two alternatives can be chosen to recast the DP scalar equation of a higher differential order form to its
equivalent system of equations with the differential order being reduced by one. Two auxiliary momentum variables m and
q3

x , which are both equal to u� uxx, can be defined to get their respective set of equations. In [16], the following set of equa-
tions is identical to the DP equation (1) at j ¼ 0
m ¼ u� uxx; ð8Þ

mt þ umx þ 3uxm ¼ 0: ð9Þ
The other equivalent set of equations is as follows [24]
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q3
x ¼ u� uxx; ð10Þ

qt þ uqx ¼ 0: ð11Þ
While the evolutionary equation (11) in the second set of DP equations is simpler than the convection–reaction equation (9)
shown in the first set of equations, one normally adopts the u�m formulation rather than the u� q formulation mainly be-
cause of its resemblance to the u�m formulation used more frequently in the calculation of CH equation.

The hyperbolic–elliptic equation (1) can be also splitted into the other set of equations, which includes two equations
ut þ uux ¼ �Px and P � Pxx ¼ 3j3uþ 3

2 u2, by introducing a Helmholtz operator for P [8]. This set of equations is referred to
as the u� P formulation. Because of the lack of solution smoothness and the possible formation of shock peakons for the
case involving an initially smooth data, it is difficult to devise a good means to correctly compute the non-oscillatory values
of ux shown in the right-hand side of equation ut þ uux ¼ �Px. This motivated the modification of u� P formulation by using
a conservative variable to suppress numerical instability. At some locations where a peakon, at which ux diverges, or even
worse a shockpeakon, at which u has a jump (or discontinuity) appears, a physical flux term remains smooth. In this light,
we will replace the term uux with the term ðu2Þx shown in the u� P formulation. In summary, the working set of equations
chosen to avoid dealing with the computationally challenging terms uxxx, uxxt , and ux (in case of a non-smooth solution) is as
follows
ut þ
1
2
ðu2Þx ¼ �Px; ð12Þ

P � Pxx ¼ 3j3uþ 3
2

u2: ð13Þ
4. Discretization schemes

In the literature, much progress has been made on the theoretical study of DP equations. Most notably, the efforts have
been devoted to prove well-posedness, explore blow-up and wave-breaking phenomena, demonstrate existence of the global
weak solution, and derive exact traveling wave solution. Fewer numerical studies have been performed and this reason moti-
vates the current numerical simulation of DP equation. While an apparent similarity exists between the CH and DP equa-
tions, Miyatake and Matsuo [13] pointed out that it is not proper to simply apply the comparatively well-developed CH
schemes to solve the DP equation and vice versa [13]. The reason is that the invariants and their corresponding bi-Hamilto-
nian structures in CH equation are substantially different from those in DP equation. Our aim is to numerically reveal some of
its salient mathematical features and the theoretical issues presented in Section 2.

For the approximation of the time-dependent differential equation (12), in this study the classical semi-discretization
method is adopted. We will approximate the time derivative term before approximating the spatial derivative terms.

4.1. Symplectic time integration scheme for the time derivative term

Since Eq. (12) has a multi-symplectic structure, the time-stepping scheme cannot be chosen arbitrarily. To get a long-term
accurate solution, a symplectic structure-preserving numerical integrator should be employed so as to properly conserve
symplecticity in the currently investigated non-dissipative Hamiltonian system.

The sixth-order accurate symplectic Runge–Kutta scheme [25] is applied in this study for performing a long-time integra-
tion of the DP equation:
uð1Þ ¼ un þ Dt
5

36
Fð1Þ þ 2

9
þ 2~c

3

� �
Fð2Þ þ 5

36
þ

~c
3

� �
Fð3Þ

� �
; ð14Þ

uð2Þ ¼ un þ Dt
5

36
� 5~c

12

� �
Fð1Þ þ 2

9

� �
Fð2Þ þ 5

36
þ 5~c

12

� �
Fð3Þ

� �
; ð15Þ

uð3Þ ¼ un þ Dt
5

36
�

~c
3

� �
Fð1Þ þ 2

9
� 2~c

3

� �
Fð2Þ þ 5

36
Fð3Þ

� �
; ð16Þ

unþ1 ¼ un þ Dt
5

18
Fð1Þ þ 4

9
Fð2Þ þ 5

18
Fð3Þ

� �
: ð17Þ
where ~c ¼ 1
2

ffiffi
3
5

q
and FðiÞ ¼ FðuðiÞ; PðiÞÞ; i ¼ 1;2;3.

Based on the applied symplectic Runge–Kutta method, in order to calculate unþ1 from Eq. (17) we need to solve Eqs. (14)–
(16) simultaneously (or implicitly) for obtaining the values of uð1Þ; uð2Þ and uð3Þ. The Helmholtz equation (13) is then solved to
get Pð1Þ; Pð2Þ and Pð3Þ. Upon reaching the convergence criteria, we can get the solution unþ1 and then the solution Pnþ1. The
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above iterative procedures will be repeated until the difference, cast in a L2-norm form, of the solutions calculated from two
consecutive iterations falls below the user’s specified tolerance (10�9 in the current study).

4.2. Three-point seventh-order accurate upwinding combined compact difference scheme

To achieve the goal of accurately solving the equation over a longer simulation time, one can either employ a high-
order finite-difference scheme or an optimized scheme [26]. In this study, the combined compact scheme presented in
[27] is implemented in a smaller grid stencil for the approximation of derivative terms by considering the flux deriva-
tives as the dependent variables at each grid point. Three derivative terms ux, uxx and uxxx at each grid point are all -
considered as the dependent variables so as to get a spectral-like resolution. We will describe below the proposed
non-centered combined compact difference scheme in a stencil of three grid points when approximating the derivative
terms @u

@x,
u2u
@x2 and @3u

@x3 	 	 	 	 	

@u
@x

				
i

þ a1
@u
@x

				
i�1
þ h b1

@2u
@x2

				
i�1

þ b2
@2u
@x2

				
i

þ b3
@2u
@x2

				
iþ1

 !
þ h2 c1

@3u
@x3

				
i�1

þ c3
@3u
@x3

				
iþ1

 !
¼ 1

h
ðd1ui�1 þ d2ui þ d3uiþ1Þ; ð18Þ

@2u
@x2

					
i

þ 1
h
�29

16
@u
@x

� 				
i�1
þ 29

16
@u
@x

				
iþ1

�
þ � 5

16
@2u
@x2

					
i�1

� 5
16

@2u
@x2

					
iþ1

 !
þ h � 1

48
@3u
@x3

					
i�1

þ 1
48

@3u
@x3

					
iþ1

 !

¼ 1

h2 ð4ui�1 � 8ui þ 4uiþ1Þ; ð19Þ

@3u
@x3

					
i

þ 1

h2 �105
16

@u
@x

� 				
i�1
�105

16
@u
@x

				
iþ1

�
þ 1

h
�15

8
@2u
@x2

 					
i�1

þ 15
8
@2u
@x2

					
iþ1

!
þ � 3

16
@3u
@x3

					
i�1

� 3
16

@3u
@x3

					
iþ1

 !

¼ 1

h3

105
16

ui�1 �
105
16

uiþ1

� �
: ð20Þ
Both of the second-order derivative term @2u
@x2 and the third-order derivative term @3u

@x3 are approximated using the center
scheme. The coefficients shown in (18)–(20) can be determined simply by applying the Taylor series expansions for getting
rid of the respective leading truncation error terms in their derived modified equations. The resulting orders of the formal
accuracies become eighth and sixth, respectively [28].

For the description of the proposed upwinding compact difference scheme, only the case involving a positive-valued u
will be described. The coefficients for the case involving a negative u value can be similarly derived. Determination of the
eight weighting coefficients in (18) gets started by applying the Taylor series expansion for the terms ui�1, uiþ1, @u

@x

		
i�1, @u

@x

		
i,

@2u
@x2

			
i�1

, @
2u
@x2

			
i
, @

2u
@x2

			
iþ1

, @
3u
@x3

			
i�1

, and @3u
@x3

			
iþ1

with respect to ui and then eliminating the leading error terms shown in the modified

equation for @u
@x. For the wave-like term, the weighting coefficients in (18) determined solely by performing the truncation

error analysis (or modified equation analysis) is insufficient to exhibit its characteristics. Besides the modified equation anal-
ysis applied to eliminate several leading discretization error terms, we need at the same time to perform Fourier analysis on
(18) for the sake of getting the inherent wave-like characteristics.

The leading eight truncation error terms in the derived modified equation are eliminated first to get the following set of
algebraic equations
d1 þ d2 þ d3 ¼ 0; ð21Þ

�a1 � d1 þ d3 ¼ 1; ð22Þ

2a1 þ d1 þ d3 � 2b1 � 2b2 � 2b3 ¼ 0; ð23Þ

d1 � d3 � 6b1 þ 6b3 þ 6c1 þ 6c3 þ 3a1 ¼ 0; ð24Þ

d1 þ d3 � 12b1 � 12b3 þ 24c1 � 24c3 þ 4a1 ¼ 0; ð25Þ

d1 � d3 � 20b1 þ 20b3 þ 60c1 þ 60c3 þ 5a1 ¼ 0; ð26Þ

d1 þ d3 � 30b1 � 30b3 þ 120c1 � 120c3 þ 6a1 ¼ 0; ð27Þ

d1 � d3 � 42b1 þ 42b3 þ 210c1 þ 210c3 þ 7a1 ¼ 0: ð28Þ
We are still short of one algebraic equation for uniquely determining all the nine introduced coefficients shown in (18) for ux.
For getting a better approximation of the first-order derivative term from Eq. (18), one should retain the dispersive nature
embedded in @u

@x as much as possible [29].
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The expressions of the actual wavenumber for Eqs. (18)–(20) can be derived as
ibhða1 expð�ibhÞ þ 1Þ ’ d1 expð�ibhÞ þ d2 þ d3 expðibhÞ � ðibhÞ2ðb1 expð�ibhÞ þ b2 þ b3 expðibhÞÞ
� ðibhÞ3ðc1 expð�ibhÞ þ c3 expðibhÞÞ; ð29Þ
ibh �29
16

expð�ibhÞ þ 29
16

expðibhÞ
� �

’ 4 expð�ibhÞ � 8þ 4 expðibhÞ

� ðibhÞ2 � 5
16

expð�ibhÞ þ 1� 5
16

expðibhÞ
� �

� ðibhÞ3 � 1
48

expð�ibhÞ þ 1
48

expðibhÞ
� �

; ð30Þ
ibh �105
16

expð�ibhÞ � 105
16

expðibhÞ
� �

’ 105
16

expð�ibhÞ � 105
16

expðibhÞ

� ðibhÞ2 �15
8

expð�ibhÞ þ 15
8

expðibhÞ
� �

� ðibhÞ3 � 3
16

expð�ibhÞ þ 1� 3
16

expðibhÞ
� �

: ð31Þ
Our strategy of reducing dispersion error for the approximated first-order derivative term is to get an excellent match of the
exact wavenumber with the numerical wavenumber. This amounts to equating the effective wavenumbers b, b00 and b000 to
those shown in the right-hand sides of Eqs. (32)–(34) [29]. We can, as a result, express b, b00 and b000 as follows
ib0hða1 expð�ibhÞ þ 1Þ ¼ d1 expð�ibhÞ þ d2 þ d3 expðibhÞ � ðib00hÞ2ðb1 expð�ibhÞ þ b2 þ b3 expðibhÞÞ

� ðib000hÞ3ðc1 expð�ibhÞ þ c3 expðibhÞÞ; ð32Þ
ib0hB �29
16

expð�ibhÞ þ 29
16

expðibhÞ
� �

¼ 4 expð�ibhÞ � 8þ 4 expðibhÞ

� ðib00hÞ2 � 5
16

expð�ibhÞ þ 1� 5
16

expðibhÞ
� �

� ðib000hÞ3 � 1
48

expð�ibhÞ þ 1
48

expðibhÞ
� �

; ð33Þ
ib0h �105
16

expð�ibhÞ � 105
16

expðibhÞ
� �

¼ 105
16

expð�ibhÞ � 105
16

expðibhÞ

� ðib00hÞ2 �15
8

expð�ibhÞ þ 15
8

expðibhÞ
� �

� ðib000hÞ3 � 3
16

expð�ibhÞ þ 1� 3
16

expðibhÞ
� �

: ð34Þ
By solving Eqs. (32)–(34), the derived expression of b0h can be written in a complex function form.
The above derived numerical modified (or scaled) wavenumber b0h will be used in the analysis of numerical errors com-

puted from the proposed combined compact finite difference scheme. The real and imaginary parts of the numerical mod-
ified wavenumber b0h are responsible respectively for the dispersion error (phase error) and the dissipation error (amplitude
error). To get a better dispersive accuracy for b0, it is therefore demanded that bh be close to R½b0h�, where R½b0h� denotes the
real part of b0h. This means that the magnitude of the integrated error function EðbÞ defined below should be a very small
positive magnitude over the integration range � p

2 6 bh 6 p
2

EðbÞ ¼
Z p

2

�p
2

W bh�R½b0 h�ð Þ½ �2dðbhÞ: ð35Þ
The weighting function W in (35) is the denominator of bh�R½b0 h�ð Þ [30]. Inclusion of the function W makes EðbÞ to be ana-
lytically integrable.

To make the error function defined in� p
2 6 bh 6 p

2 to be positive and minimal, the extreme condition @E
@d1
¼ 0 is enforced to

minimize the numerical wavenumber error. This constraint equation will be solved together with another eight previously
derived algebraic equations by way of performing modified equation analysis to get a higher dissipation accuracy as well as
an improved dispersion accuracy. The resulting nine introduced unknown coefficients can be uniquely determined as
a1 ¼ 1:1875, b1 ¼ 0:23643236, b2 ¼ �0:27774699, b3 ¼ �0:01356764, c1 ¼ 0:01894044, c3 ¼ 0:00189289, d1 ¼ �2:33613227,
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d2 ¼ 2:48476453 and d3 ¼ �0:14863227. The above upwinding scheme developed in a stencil of three grid points i� 1, i and
iþ 1 for @u

@x has the spatial accuracy order of seventh according to the following derived modified equation
@u
@x
¼ @u
@x

				
exact

� 0:65175737� 10�5h7 @
8u
@x6 þ 0:81653294� 10�7h9 @

10u
@x10 þ H:O:T: ð36Þ
When u < 0, the proposed non-centered combined compact difference scheme can be similarly derived below in a three-
point grid stencil for the approximation of the derivative term @u

@x
@u
@x

				
i

þ 1:1875
@u
@x

				
iþ1
þ h 0:01356764

@2u
@x2

					
i�1

þ 0:27774699
@2u
@x2

					
i

� 0:23643236
@2u
@x2

					
iþ1

 !

þ h2 0:00189289
@3u
@x3

					
i�1

þ 0:01894044
@3u
@x3

					
iþ1

 !
¼ 1

h
ð0:14863227ui�1 � 2:48476453ui þ 2:33613227uiþ1Þ: ð37Þ
4.3. Discretization of ðu2Þx and Px

It has been well known that it is proper to approximate the convective term shown in Eqs. (18) and (37) in conservative
form for the sake of enhancing numerical stability. In this light we are aimed to conserve the convective flux term fx ¼ ðu2Þx
across a cell of length h by means of
@f
@x

				
i

¼
fiþ1

2
� fi�1

2

h
: ð38Þ
Define first the values of f� at the half nodal points i� 1
2 as follows for u P 0
f�iþ1
2
¼ d�1fi þ d�2fiþ1 � a�1fi�1

2
þ h b�1

@f
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i�1

2

þ b�2
@f
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2
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iþ3

2

 !
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@f 2

@2x

				
iþ3

2

 !" #
ð39Þ
and
f�i�1
2
¼ d�1fi�1 þ d�2fi � a�1fi�3

2
þ h b�1

@f
@x

				
i�3

2

þ b�2
@f
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2

þ b�3
@f
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iþ1

2

 !
þ h2 c�1
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2
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iþ1

2

 !" #
: ð40Þ
The coefficients a�i ; b
�
i ; c
�
i and d�i are then derived by comparing the coefficients derived in Eq. (18) for @f

@x

			
i
. After a term-by-

term comparison of the coefficients, we can get the coefficients shown in (39) and (40) as a�1 ¼ 1:1875, b�1 ¼ 0:23643236,
b�2 ¼ �0:27774699 , b�3 ¼ �0:01356764, c�1 ¼ 0:01894044, c�2 ¼ 0:00189289, d�1 ¼ �2:33613227 and d�2 ¼ �0:14863227.

When u < 0, the values of fþ at the half nodal points i� 1
2 are as follows
fþ
iþ1

2
¼ 0:14863227f i þ 2:33613227f iþ1 � 1:1875f iþ3

2
þ h 0:01356764
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and
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2
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2
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Two flux terms fi�1
2

shown in (38) are given below
fiþ1
2
¼

f�
iþ1

2
;

fiþ1�fi
uiþ1�ui

P 0;

fþ
iþ1

2
;

fiþ1�fi
uiþ1�ui

< 0

8<
: ð43Þ
and
fi�1
2
¼

f�
i�1

2
; fi�fi�1

ui�ui�1
P 0;

fþ
i�1

2
; fi�fi�1

ui�ui�1
< 0:

8<
: ð44Þ
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To resolve the possible discontinuities predicted in the solution, the ULTIMATE conservative finite difference strategy pre-
sented in [31] is employed.

A central-type three-point combined compact difference (CCD) scheme [32] with the sixth-order accuracy is used to
approximate the gradient term Px shown in (12) as follows
7
16

@P
@x

				
i�1
þ @P
@x

				
i

þ 7
16

@P
@x

				
iþ1
¼ 15

16h
ð�Pi�1 þ Piþ1Þ �

h
16
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@x2
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� h
16
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 !
; ð45Þ
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8
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þ @
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i

� 1
8
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@x2

					
iþ1

¼ 1

h2 ð3Pi�1 � 6Pi þ 3Piþ1Þ �
1
h
�9

8
@P
@x

				
i�1
þ 9

8
@P
@x

				
iþ1

� �
: ð46Þ
The above CCD scheme developed in the stencil of three grid points i� 1, i and iþ 1 for @P
@x is sixth-order accurate.

4.4. Three-point sixth-order accurate compact Helmholtz scheme

To get a more accurate solution P from the inhomogeneous Helmholtz equation (13), one can always introduce more grid
points in the domain of interest. While the prediction accuracy can be easily improved in this way, the computational cost
becomes considerable because of the required matrix calculation. For developing an efficient and accurate numerical
scheme, the following sixth-order accurate compact difference scheme is proposed in a three-point stencil.

The prototype inhomogeneous equation with G � 3j3uþ 3
2 u2

� �
given below will be considered
@2P
@x2 � kP ¼ GðxÞ: ð47Þ
The values of @2P
@x2 , @

4P
@x4 and @6P

@x6 at an interior point i are denoted as @2P
@x2 ji ¼ si, @

4P
@x4 ji ¼ v i, @

6P
@x6 ji ¼ wi. Development of the compact

finite difference equation for (47) at the node i starts with relating the derivative terms v, s and w with P by means of the
equation given below
d0 h6wi þ c0 h4v i þ b0 h2si ¼ a1 Piþ1 þ a0 Pi þ a�1 Pi�1: ð48Þ
The elliptic nature of the Eq. (47) motivates us to set a1 ¼ a�1. By expanding the terms Pi�1 with respect to Pi in Taylor series
and then substituting these two expansion equations into Eq. (48), we have
d0 h6wi þ c0 h4v i þ b0 h2si ¼ a0 þ 2a1ð ÞPi þ 2a1
h2

2!

@2Pi

@x2 þ
h4

4!

@4Pi

@x4 þ
h6

6!

@6Pi

@x6 þ
h8

8!

@8Pi

@x8 þ � � �
" #

: ð49Þ
Through a term-by-term comparison of the derivative terms shown in Eq. (49), a set of five algebraic equations can be de-
rived. Hence, the introduced free parameters are determined as a1 ¼ a�1 ¼ �1, a0 ¼ 2; b0 ¼ �1; c0 ¼ � 1

12 and d0 ¼ � 1
360.

Since wi ¼ k3Pi þ k2Gi þ k @2Gi
@x2 þ @4Gi

@x4 , v i ¼ k2Pi þ kGi þ @2Gi
@x2 and si ¼ kPi þ Gi, Eq. (48) can then be further expressed as
Piþ1 � 2þ h2 kþ 1
12

h4k2 þ 1
360

h6k3
� �

Pi þ Pi�1 ¼ h2Gi þ
1

12
h4 kGi þ

@2Gi

@x2

 !
þ 1

360
h6 k2Gi þ k

@2Gi

@x2 þ
@4Gi

@x4

 !
: ð50Þ
The corresponding modified equation for (47) shown below confirms that the current three-point compact difference
scheme is indeed sixth-order accurate
@2P
@x2 � kP ¼ Gþ h6

20160
@8P
@x8 þ

h8

1814400
@10P
@x10 þ � � � þ H:O:T: ð51Þ
The V-cycle multigrid method is implemented in this study by using the fully-weighted projection/ prolongation operators.
The red–black Gauss–Seidel smoother is employed to solve the system of algebraic equations using the proposed scheme.

4.5. Final solution algorithm

For the sake of clearness, the procedures of getting the solution unþ1 from un using the proposed solution algorithm are
summarized as follows:

Step 1 : Start from the initial guess for uðiÞ, denoted as u½0�;ðiÞ for i ¼ 1;2;3, which is set at un.
Step 2 : The Helmholtz equation (13) is solved to get P½0�;ðiÞ for i ¼ 1;2;3 by the proposed three-point sixth-order accu-

rate compact Helmholtz scheme described in Section 4.2.
Step 3 : Discretize f ½0�;ðiÞx and P½0�;ðiÞx by the scheme given in Section 4.3 so as to get F ½0�;ðiÞ; i ¼ 1;2;3.
Step 4 : Based on the applied symplectic Runge–Kutta method presented in Section 4.1 for (12), Eqs. (14),(15),(16) are

solved simultaneously (or implicitly) for getting the values of u½1�;ðiÞ; i ¼ 1;2;3.



Table 1
The predicted L2-error norms at t ¼ 1 for the calculations obtained in �40 6 x 6 6 and at Dt ¼ 0:0005
using three different mesh sizes. This problem is described in Section 4.2.

Grid number L2 error norms Rates of convergence

64 7.99681E�3
512 1.95223E�7 5.10734

1024 1.82633E�9 6.74003
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Fig. 1. Comparison of the predicted and exact peakon solutions [6] computed in 2048 grids at different times. (a) t ¼ 5:0; (b) t ¼ 9:0; (c) t ¼ 13:0; (d)
t ¼ 17:0.
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Step 5 : Repeat the calculation from Step2 to Step4 until the residuals, cast in the maximum norms, of Eqs.
(14),(15),(16) satisfy the convergence criterion Maxxj;j¼1;N

ju½kþ1�;ðiÞ � u½k�;ðiÞj 6 10�9, where N denotes the number
of grid points and k is the k-th iteration number.

Step 6 : Use Eq. (17) to update unþ1.

5. Numerical results

The problems under current investigation include the simulations of a single peakon, peakon–peakon, peakon–antipea-
kon, shock peakon, and peakon–antipeakon–shockpeakon triple interaction. Periodic boundary condition is prescribed at
two ends for all the test problems investigated at j ¼ 0.
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5.1. Single peakon travelling solution

A delicate balance between the nonlinear and dispersive effects in DP equation leads to a confined solitary traveling wave
solution uðx; tÞ ¼ ce�jx�ctj. This type of traveling wave solution exists even in the absence of linear dispersion term (or j ¼ 0 in
Eq. (1)). In the above traveling wave solution, c denotes the constant wave speed. It is worthy to note that the completely
integrable KdV, CH and the currently investigated DP equations possess solitons as the traveling wave solutions. Note also
that this traveling wave solution is smooth everywhere except at the wave crest. We call, as a result, such a solution as a
peakon (peaked soliton).

A single peakon propagated at c ¼ 1 will be predicted in the domain [-40, 40] with the total number of 2048 uniformly
distributed grid points. To begin with, the applied method is validated in view of the predicted L2-error norms and the spatial
rates of convergence shown in Table 1.

The waveforms predicted at t ¼ 5, t ¼ 9, t ¼ 13 and t ¼ 17 are plotted together with the exact solution. We can see
clearly from Fig. 1 that the moving peakon is well resolved without generating any numerical oscillation. In addition, the
conserved laws given in (5)–(7) are numerically confirmed, thereby giving an indirect validation of the proposed sym-
plectic scheme for solving the non-dissipative DP equation. In Fig. 2, all the values of E1, E2 and E3 are decreased by
negligibly small amounts.
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Fig. 3. Comparison of the predicted and numerical peakon–peakon solutions computed in 2048 grids at different times. (a) t ¼ 0:0; (b) t ¼ 4:0; (c) t ¼ 8:0;
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5.2. Peakon–peakon interaction

Soliton (or solitary wave) by definition can asymptotically preserve its shape and velocity upon encountering a nonlinear
interaction with other solitary waves. In DP equation, we will numerically reveal that one peakon can interact with the other
peakon through an elastic process.

Two peakons propagating along the same direction will be investigated subject to the following initial data [5,6,8] in a
domain of �40 6 x 6 40
uðx; t ¼ 0Þ ¼ c1e�jx�x1 j þ c2e�jx�x2 j: ð52Þ
These two investigated peakons move rightwards at the speeds of c1 ¼ 2 and c2 ¼ 1. At j ¼ 0, the Degasperis–Procesi equa-
tion will be solved at x1 ¼ �13:792 and x2 ¼ �4. In Fig. 3, we can see that the time-evolving two-peakon solutions predicted
in a domain of 2048 uniformly discretized grids compare excellently with the numerical results given in [6]. In addition to
the predicted oscillation-free solutions, the Hamiltonians plotted in Fig. 4 confirm that the proposed scheme is applicable to
simulate the transport phenomenon of a moving pair of peakon–peakon waves.
5.3. Peakon–antipeakon interaction problem

DP equation admits peakons as well as shock peakons. Peakon solution normally has jumps in ux but not in the solution u
itself. Shockpeakon forms naturally in the DP equation in case of a peakon–antipeakon collision. In CH equation, peakon and
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Fig. 5. Comparison of the predicted and numerical peakon–antipeakon solutions computed in 1024 and 8192 grids at different times. (a) t ¼ 0:0; (b)
t ¼ 2:0; (c) t ¼ 3:0; (d) t ¼ 3:3626; (e) t ¼ 4:0; (f) t ¼ 6:0.
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antipeakon pass through each other after the peakon–antipeakon collision. DP solution develops, however, a jump discon-
tinuity in u. The presence of shockpeakon solution means that DP equation admits solution that is less regular than the CH
equation. This novel peakon–antipeakon interaction feature, which makes in fact a dramatic difference between the DP and
CH equations, will be numerically demonstrated in this study.

The interaction of peakon c1e�jx�x1 j ðc1 > 0Þ and antipeakon c2e�jx�x2 j ðc2 < 0Þ will be numerically investigated. This pea-
kon–antipeakon interaction problem is solved in the domain �20 6 x 6 20 with the initial condition given by [5,6,8]
uðx; t ¼ 0Þ ¼ c1e�jx�x1 j þ c2e�jx�x2 j: ð53Þ
In the above, we specify c1 ¼ 2, c2 ¼ �1, x1 ¼ 2, and x2 ¼ �1. The numbers of cells used in this simulation study are 1024 and
8192.

Fig. 5 shows the comparison of the solution computed from the proposed scheme and the solution given in [6]. In this
calculation, the ULTIMATE conservative finite difference limiter given in [31] in adopted to suppress oscillations possibly
occurring near the discontinuity when the shockpeakon is formed. We can see clearly from Fig. 5 that no oscillation has been
found during the peakon and anti-peakon interaction. After the collision at the time t ¼ 3:3626, the solution of DP equation is
found to develop into a discontinuity in u, known as the shockpeakon. Note that no shockpeakon can arise from the CH equa-
tion is case of the peakon–antipeakon collision. Fig. 6 shows that all the computed Hamiltonians defined in (5)–(7) remain
unchanged prior to the collision time at t ¼ 3:3626. After the time at t ¼ 3:3626, when peakon collides with the antipeakon,
the Hamiltonian E1 remains unchanged but the Hamiltonians E2 and E3, which contain u, of the DP equation shown in Fig. 6
are no longer preserved. This computational finding has been pointed out perviously by Lundmark without giving a
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Fig. 9. The predicted shock-formation solutions in a domain of 4096 grids at different times. (a) t ¼ 0:1; (b) t ¼ 0:12; (c) t ¼ 0:18; (d) t ¼ 0:3; (e) t ¼ 0:5; (f)
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computational evidence [5]. Whether or not the DP equation can truly remain non-dissipative in case of peakon–antipeakon
collision is still an open question [13].
5.4. Shock peakon solution

In this example, the analytic problem regarding the evolution of the shockpeakon given below will be studied numerically
in ½�30;30� [6]
uðx; tÞ ¼ � 1
t þ 1

signðxÞe�jxj: ð54Þ
The shockpeakon profiles are shown in Fig. 7 at different times. In this study, the simulations carried out in 1024 and 8192
grids are aimed to resolve shock peakon. We can see clearly that shockpeakon profiles are both well resolved without show-
ing numerical oscillations. As before, three Hamiltonians are calculated and plotted in Fig. 8 to show the ability of employing
the proposed scheme to conserve Hamiltonians even for the case involving a shock solution.
5.5. Shock formation

An example with the initial condition given below is also studied
uðx; t ¼ 0Þ ¼ e0:5x2
sinðpxÞ: ð55Þ
The time-evolving shock formation was predicted in a domain of 4096 uniformly discretized grids. Fig. 9 shows the com-
puted solution that was seen to agree with the numerical results presented in [7,6,8] up to t ¼ 0:9. Only a single transition
point is predicted to appear at the position of shock and no numerical oscillation has been observed. As before, the Hamil-
tonians E1 and E3 plotted in Fig. 10 show good discrete conservation against time for the investigated non-dissipative DP
equation.
5.6. Peakon–antipeakon–shockpeakon interaction

The interaction among a pair of symmetric peakon–antipeakon and one stationary shock peakon was studied theoreti-
cally by Lundmark in [5] and numerically by the authors in [7,6,8]. The initial condition for this peakon–antipeakon–shock-
peakon problem is as follows
uðx; t ¼ 0Þ ¼ e�jxþ5j þ signðxÞe�jxj � e�jx�5j: ð56Þ
A total number of 16,384 grids is used in this study to resolve the peakon–antipeakon–shockpeakon interaction details in the
domain ½�25;25�. In Fig. 11, we can see clearly that the complex wave interaction has been resolved quite well. Good con-
servation of the Hamiltonians E1 and E3 can be also seen as before in Fig. 12.
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6. Concluding remarks

To reduce the differential order, the Degasperis–Procesi equation is recast to its equivalent conservative form. In the cur-
rent u� P formulation, the space–time mixed derivative term in the DP equation is eliminated and this elimination simpli-
fies our computation. The time derivative term is approximated by the sixth-order accurate implicit symplectic Runge–Kutta
scheme so that the scheme is unconditionally stable and the conserved properties in the non-dissipative DP equation can be
numerically retained. As for the approximation of the first-order spatial derivative terms shown in the equation, a seventh-
order accurate upwinding combined compact difference scheme is developed to minimize the numerical dispersion error.
For the single peakon problem, the Hamiltonians in DP equation can be perfectly conserved all the time. For the peakon–pea-
kon interaction problem, our simulation results clearly exhibit that peakons are interacted with each other elastically. For
the peakon–antipeakon problem, a jump discontinuity known as the shockpeakon arises and it has been well resolved
numerically at the time upon collision. All the Hamiltonians remain, however, unchanged before the time of collision. The
DP equation, which permits a globally non-dissipative solution, is therefore numerically demonstrated before the time of
collision. After the collision, only the Hamiltonians involving the solution itself are dissipative.
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