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I. INTRODUCTION

Techniques available for solving the flow equations can be divided into the Eulerian and
Lagrangian formulation types. In the Eulerian class of methods, the governing equations are
solved at a fixed mesh system. In Lagrangian methods, which can be subdivided into the mesh
and meshfree two subgroups, the generated mesh points are not fixed in the domain but will be
advected with the flow field. As a result, Lagrangian methods have an apparent advantage of
simulating flow equations as we have no need to approximate the convection terms shown in
the transport equations. In the literature, another mathematically rigorous arbitrary Lagrangian-
Eulerian method [1] employs both Lagrangian and Eulerian solution steps in the course of changing
the meshes with time.

Besides the well-known grid-based methods, such as the marker-and-cell [2], volume-of-fluid
[3], and level-set [4] methods, that have been successfully applied to predict free surface flows,
there existed another major class of meshfree methods known as the particle methods. Particle
methods are featured with the prescribed particles moving in a Lagrangian sense such that the
convection terms can be directly calculated from the motion of particles without incurring any
numerical diffusion. Particle methods can be also separated into the Eulerian particle method, such
as the particle-in-cell method [5] and the Lagrangian particle methods, which include the well-
known smoothed particle hydrodynamics (SPH) and the moving particle semi-implicit (MPS)
methods. SPH method, introduced firstly by Lucy [6] and Gingold and Monaghan [7] at about
the same time, was developed for the simulation of compressible fluid flows based on the inter-
polation theory through the introduced kernel function (or smoothing kernel). SPH method was
later extended to simulate the incompressible free surface flow [8].

In MPS method developed to simulate the incompressible Navier-Stokes fluid flows [9], the
motion of each particle is calculated through the interaction with its neighboring particles by means
of the kernel (or weight) function. This means that all the spatial derivatives can be approximated
by the deterministic particle interaction without the need of generating a mesh in the flow domain.
This explains why MPS method has gradually become very effective for use in simulating many
practical problems which have either complicated geometry or complex physics. For the prob-
lems with the inflow–outflow boundaries, this method was however found to have the difficulty
to trace fluid particles easily. In addition, MPS method requires extra computational time to find
all neighboring points. One point worthy to address here is that the power of Graphic Process
Unit, which has been recently implemented to accelerate many nongraphic calculations, has not
been fully explored mainly because of the inefficient search of the neighbors in particle-based
methods [10].

While MPS method has been proposed more than a decade to simulate the low-speed complex
flow physics with great success, its computational insight has been comparatively less explored.
Questions about the deteriorated solution accuracy in some cases with the increasingly refined
mesh and the slow convergence of solution for the calculation carried out at a slightly higher Peclet
number have been often raised. For this reason, we will simplify the analysis in this study by con-
sidering first the stationary particle method to get some theoretical insights through a rigorous
analysis of the proposed particle method.

The rest of this article will be organized as follows. In Section II, we will present the Navier-
Stokes and passive scalar equations, which involve both of the convection and diffusion flux terms.
This is followed by presenting the particle interaction model for approximating the gradient and
Laplacian differential operators. We will address in Section IV the kernel function that is needed
in the particle method. In Section V, we will validate the proposed particle model by solving
the convection-diffusion equation that is amenable to the analytic solution. Problems involving
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the smoothly varying interior layer and the boundary layer solutions will be also investigated for
the validation sake. In the final section, some conclusions will be drawn based on the predicted
results.

II. WORKING EQUATION

We will consider in this study the following Navier-Stokes equations in a simply connected domain
� for modeling the motion of an incompressible fluid flow.

u
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In Eqs. (1) and (2), Re = UL

ν
stands for the Reynolds number, where L is the characteristic length,

U is the reference velocity, and ν is the kinematic viscosity.
The following model equation will be used to develop the kernel function because it is the key

equation in the simulation of momentum equations for an incompressible fluid flow.

u
∂φ

∂x
+ v

∂φ

∂y
= µ

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
(4)

Both of the velocity components u, v and viscosity µ in Eq. (4) are assumed to have the constant
values to facilitate the following development of kernel function.

III. DETERMINISTIC PARTICLE INTERACTION MODELS FOR
DIFFERENTIAL OPERATORS

It has been known for a long time that it is difficult to apply the grid-based methods to predict some
viscous flow problems involving the multiphase, fluid mixing, and sedimentary. Particle-based
methods, on the other hand, become gradually popular in the simulation of incompressible viscous
fluid flows with either a free surface or an interface. In particle methods, the differential opera-
tors for the mass and momentum conservations shown in Section II need to be replaced by their
corresponding particle interaction operators. In other words, partial differential equations will be
transformed to their corresponding particle interaction equations so that the transport equation
under investigation can be approximated by a finite number of moving or stationary particles and
their interactions. The key to success is the chosen kernel (or weighting) function for the particles
that are apart from each other by a user’s prescribed finite distance.

Consider a particle, at which some of its physical quantities fi are defined, at the location i.
One can approximately represent fi at a point r as follows by virtue of the kernel function w(r)

〈f (r)〉 ·
∑

i

w(|ri − r|) =
∑

i

fiw(|ri − r|) (5)
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It is important to point out here that the smoothed quantity 〈f 〉i at the particle location ri turns out
to be exactly identical to the local value fi if the chosen kernel function is the Dirac delta func-
tion. This implies that the kernel function w(r), which should be constrained by

∫
V

w(r)dV = 1,
shown in (5) determines the prediction quality using the particle method. One can find different
variants of the kernel function in [11].

For a scalar φ at a location rj , one can get its value by performing a Taylor series expansion
of φ with respect to its value at ri as follows:

φj = φi + ∇φ|ij · (rj − ri) + H .O.T . (6)

By dropping the higher-order terms shown above, we can get the first-order approximated equa-
tion φj − φi = ∇φ|ij · (rj − ri). By multiplying (rj − ri)

−1 on both hand sides of the above
equation, the following gradient operator can be derived.

∇φ|ij = (φj − φi)(rj − ri)

|rj − ri ||rj − ri |
(7)

Let ∇φ|ij be f and substitute it into Eq. (5), we can get the following smoothed representation
of ∇φ, which is denoted by 〈∇φ〉 at a node ij, in a d-dimensional space

〈∇φ〉|ij = d

n0

∑
j �=i

φj − φi

|rj − ri |
(rj − ri)w(rj − ri) (8)

In the above equation,n0 denotes the particle number density and it is defined as
∑

j �=i w(|rj − ri |).
Under the incompressible flow condition, ni = n0 will be used in the current flow simulation.

One can similarly derive the following Laplacian operator for a scalar function φ, which has
been derived before in [9]

〈∇2φ〉|i = 2d

λn0

∑
j �=i

(φj − φi)w(|rj − ri |) (9)

where

λ =
∫

V ′ |rj − ri |2w(|rj − ri |)dV∫
V ′ w(|rj − ri |)dV

(10)

Note that V ′ is the volume excluding of a small interval that includes a point at ri . Another
smoothed Laplacian operator 〈∇2φ〉i has been derived as follows from the divergence of ∇φ [12]

〈∇2φ〉|ij = 2d

n0

∑
j �=i

φj − φi

|rj − ri |
w(|rj − ri |) (11)

The advantage of employing particle methods becomes clear in that all of the spatial derivative
terms can be calculated from the chosen kernel function without invoking grids. Considerable
effort in the generation of good-quality meshes for the numerical simulation in a stationary or in
a moving domain is therefore avoided.

Unlike the SPH particle method, calculations of ∇φ and ∇2φ in Eqs. (8)–(9), and (11) involve
only the kernel function w(r) itself. As the derivative of kernel function needs not to be calculated
in the approximation of these two differential operators, numerical oscillations, which may be
generated in the traditional fixed grid Eulerian approach for the cases involving high solution
gradients, can be completely avoided. As a result, one can have a greater flexibility to choose
proper kernel function that has a slope as steep as the Dirac delta function.
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IV. DEVELOPMENT OF THE KERNEL FUNCTIONS

Owing to Eqs. (8) and (9)–(11), we know that the quality of the approximated operators 〈∇φ〉ij

and 〈∇2φ〉i depends entirely on the chosen kernel function w(r) and the number of the prescribed
particles, which will affect ri . Moreover, the chosen particle locations and kernel function will
determine the subsequent particle locations using the moving particle methods. The prediction
quality depends therefore highly on the chosen kernel function, which will be derived below in
detail.

In the light of Eq. (5), the Dirac delta function δ(r), which is constrained by
∫ ∞

−∞ δ(r)dr = 1, is
an ideal candidate for the kernel function. This kernel function is, unfortunately, not implementable
in computational practice. We have therefore to resort to the smoothed Dirac delta function when
carrying out simulations based on the particle method. The smoothed Dirac delta function is
sometimes called as the nascent delta function δε(r), which is defined as lim

ε → 0
δε(r) = δ(r). In the

literature, several nascent delta functions, such as the Gaussian function, Lorentz line function,
impulse function, and sinc function, can be found. There exists also a different class of kernel
functions which were developed irrelevantly to the nascent delta functions. Typical examples
include the exponential, cubic spline, and quadratic spline functions proposed by Belytschko
et al. [13] and the kernel functions proposed by Koshizuka and Oka in 1996 [14] and Koshizuka
et al. in 1998 [15].

A. Center-Type Kernel Function for the Pure Diffusion Equation

In this study, we intend to develop a new kernel function so that it can be rigorously applied to sim-
ulate the incompressible Navier-Stokes equations based on the particle methods. Our guidelines
of developing the proposed kernel function will be given below. The kernel function w(r) chosen
in the current development falls into the category of the nascent delta function. This implies that
lim

re → 0
w(r , re) = δ(r), where re is the radius of a small circle. The weight between any two arbitrary

particles that are apart by a distance r will be forced to be zero as r ≥ re. For the sake of accuracy,
the kernel function will be developed to retain the following inherent feature

∫ ∞

−∞
w(r , re)dr = 1 (12)

Development of the current kernel function starts with representing w(r) in terms of the
dimensionless length ratio r

re
as

w(r) =




a

re

+ b

re

(
r

re

)
+ c

re

(
r

re

)2

+ d

re

(
r

re

)3

+ e

re

(
r

re

)4

; 0 ≤ r ≤ re

0; re < r

(13)

Derivation of w(r) is followed by imposing the constraint conditions given by w(r = re) =
∂w

∂r

∣∣
r=re

= ∂w

∂r

∣∣
r=0

= 0 and
∫ r

re
=1

0 w(r)dr = 1
2 . Imposition of the above four conditions enables

us to get the algebraic equations given below

a + b + c + d + e = 0 (14)

b + 2c + 3d + 4e = 0 (15)
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a + b

2
+ c

3
+ d

4
+ e

5
= 1

2
(16)

b = 0 (17)

Having derived the above four algebraic equations, one can then easily express the free parameters
a, b, c, and d in terms of e as a = 1 − 1

15e, b = 0, c = −3 + 6
5e, and d = 2 − 32

15e.
By substituting the resulting kernel function into Eq. (11) for ∇2φ, the following discrete

equation for ∂2φ

∂x2 + ∂2φ

∂y2 = 0 can be derived from the particle method

1

[w(h) + 2w(
√

2h)]h2
{(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi)w(h)

+ (φi+1,j+1 + φi−1,j+1 + φi+1,j−1 + φi−1,j−1 − 4φi)w(
√

2h)} = 0 (18)

In the above equation, h denotes the grid size. The detailed derivation of the above equation
is given in Appendix A. By performing the modified equation analysis on Eq. (18), we get the
following modified equation

∂2φ

∂x2
+ ∂2φ

∂y2
= −

[
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√
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w(h) + 2w(
√
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∂4φ

∂y4
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h2

−
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√
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√
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(
∂6φ

∂x4∂y2
+ ∂6φ

∂x2∂y4

)
+ 1

360

∂6φ

∂x6
+ 1

360

∂6φ

∂y6

]
h4 + · · · (19)

Let w(
√

2h) = 1
4w(h), the first term on the right-hand side of the above equation turns out to be

zero due to ∂2φ

∂x2 + ∂2φ

∂y2 = 0.
Provided that re = 2h, we can easily know from the following nine-point stencil equation that

the approximated equation for (4) investigated at µ = ∞ has the accuracy order of fourth.

φi+1,j+1 + φi−1,j+1 + φi−1,j+1 + φi+1,j−1 + 4φi+1,j + 4φi−1,j + 4φi,j+1 + 4φi,j−1 − 20φi,j

6h2

+ O(h4) = 0 (20)

Note that Eq. (20) is derived under the condition given by

3a +
(

2
√

2 − 1

2

)
b +

(
2 − 1

4

)
c +

(√
2 − 1

8

)
d +

(
1 − 1

16

)
e = 0 (21)

The resulting five free parameters can then be uniquely calculated from Eqs. (14)–(17) and (21)
as a = 480

√
2−705

512
√

2−745
, b = 0, c = −960

√
2+1515

512
√

2−745
, d = −210

512
√

2−745
, e = 480

√
2−600

512
√

2−745
.
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In summary, the kernel function developed for the prediction of a pure diffusion equation is as
follows

w(r) =




480
√

2 − 705

512
√

2 − 745

1

re

+ −960
√

2 + 1515

512
√

2 − 745

1

re

(
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re
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1

re

(
r
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+ 480
√

2 − 600

512
√

2 − 745

1

re

(
r

re

)4

; 0 ≤ r ≤ re

0; re < r

(22)

Note that this kernel function is derived under the condition of

w(
√

2h) = 1

4
w(h) (23)

Unlike the kernel function w(r) = re
r

−1 proposed in [14], which approaches infinity as the value
of r becomes zero, this newly developed kernel function has its maximum value at r = 0. It is
also worthy to restate that the developed kernel function for solving the pure diffusion equation
satisfies the following constraint condition, which is also embedded in the Dirac delta function

∫ r
re

=1

r
re

=−1
w(r)dr = 1 (24)

B. Upwind-Type Kernel Function for the Convection-Diffusion Equation

According to Fig. 1, which plots w(r) shown in Eq. (22), we know that the kernel function
developed within the framework of Dirac delta function can be used to get the center-type approx-
imation as the particles distanced from the reference node with the same length will impose the
same influence (or weight) on that reference node. Such an interaction model is applicable only
to the diffusion dominant case (or Pe(≡ |u|h

µ
) < 2), where h and µ denote the grid size and the

fluid viscosity, respectively. In most of the science and practical engineering problems, the value
of Peclet number Pe is much larger than two. Application of the kernel function developed in the
previous subsection and other published kernel functions in [13–15] to simulate the practical flow
problems may result in non-physical oscillations. To resolve this notorious convective instability
problem, we must take the physics of fluid flow into consideration in the course of developing the
kernel function in particle methods.

Our idea of suppressing oscillatory solutions generated by the convective instability is to
implicitly add an appropriate amount of the damping along the flow direction. Consider a flow
with a local velocity vector (u, v), the damping term φss along its local tangential direction, which
is s(≡ tan−1( v

u
)), given below is derived in Appendix B

φss = u2

u2 + v2
φxx + v2

u2 + v2
φyy + 2uv

u2 + v2
φxy (25)

Thanks to the above relation, we know that the kernel function derived for the high Peclet num-
ber flow case must implicitly generate a sufficient amount of numerical dissipation along the
streamline direction so as to stabilize the discrete equation in (4).

In this study, we will modify the kernel function (22) that has been developed for the simulation
of low Peclet number flow equation by adding a stabilization term to the kernel function (22).
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FIG. 1. The plots of the center-type kernel function given in Eq. (22) for the Laplace equation. (a) Plotted
in r/re-coordinate. (b) Plotted in xy plane. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

For the stabilization sake, we need to change the center-type kernel function w(r), which is given
in (26), to its non-centered counterpart W(r) by adding a term B(r) that can bring the required
numerical stabilization into the particle method. The upwinding-type kernel function is therefore
proposed as follows

W(r) = w(r) + B(r) (26)

The stabilization kernel function B given below has a form similar to that used in the streamline
upwind Petrov Galerkin finite element model [16, 17]

B(r) = τuk|i ∂w|i
∂xk

(27)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1582 HUANG AND SHEU

Inclusion of the velocity vector u and the gradient of kernel function can be shown to be able
to render a second-order damping term φss along the flow direction s. Note that the so-called
crosswind diffusion term φxy is also introduced in this formulation. Owing to the inclusion of φxy

in the approximation, we are motivated to develop a scheme that is as accurate as possible so that
the false diffusion error can be reduced or even minimized. The consequence is that τ , which is
known to determine the degree of upwinding, needs to be rigorously derived.

For the sake of accuracy, the upwinding coefficient τ shown in Eq. (27) will be developed
in the limiting one-dimensional condition since the following equation is amenable to an exact
solution.

u
∂φ

∂x
= µ

∂2φ

∂x2
(28)

One can substitute Eqs. (8), (11), (22), and (26)–(27) into Eq. (28) to derive the following discrete
equation at a node i

u
φi+1 − φi−1

2h
− µ

(
1 + τhu2w′(h)

2µw(h)

)
φi+1 − 2φi + φi−1

h2
= 0 (29)

By comparing the following exact equation for (28)

u
φi+1 − φi−1

2h
− uh

2
coth

(
uh

2µ

)
φi+1 − 2φi + φi−1

h2
= 0 (30)

we can derive the upwinding coefficient τ , which is expressed in terms of γ (≡ uh

2µ
), as follows

τ = w(h)

uw′(h)

γ coth(γ ) − 1

γ
(31)

By expanding the terms φi+1,j+1, φi+1,j−1, φi−1,j+1, φi−1,j−1, φi−1,j , φi+1,j , φi,j+1, and φi,j−1 in a
Taylor series about φi,j and then substituting them into the discrete equation for (4), one can easily
derive the following modified equation

u
∂φ

∂x
+ v

∂φ

∂y
− µ

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
= a

∂2φ

∂x2
+ b

∂2φ

∂x∂y
+ c

∂2φ

∂y2
+ · · · (32)

Let m = 4(−512
√

2+745)

1125(32
√

2−47)

γ coth(γ )−1
γ

h2, the coefficients of the leading error terms shown above can be
expressed as

a = 9u2 + v2

√
u2 + v2

m (33)

b = 4uv√
u2 + v2

m (34)

c = u2 + 9v2

√
u2 + v2

m (35)

Through the above modified equation analysis, we know from the value of m and Eqs. (32)–(35)
that the enhanced stability along the streamline direction is at the cost of deteriorating the solution
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FIG. 2. The developed upwinding kernel function, given in Eqs. (26, 27, 31), is plotted at u = 1, v = 1
for the cases investigated at different Peclet numbers 0, 0.01, 0.1, 1, and 10. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

accuracy by two orders of magnitude, in comparison with the fourth-order accurate center-type
interaction model.

For making a clear comparison of the developed center and upwinding kernel functions, the
upwind-type kernel function recommended for use in the high Peclet number flow simulation
will be also plotted. In Fig. 2, W(r) in (26) is plotted for the case investigated, for example, at
u = v = 1 and different values of µ that render the respective Peclet numbers with the values of
Pe = 0, 0.01, 0.1, 1, and 10. Note that

∫ re

−re
W(r)d� is, as before, equal to one for the upwinding

kernel derived in (26).

V. NUMERICAL RESULTS

Several problems regarding the transport of φ, governed by Eq. (4), will be solved to analytically
verify the proposed particle method. We first solve the Laplace equation in a unit square, which
has been uniformly discretized at different mesh sizes 
x = 
y = 0.25, 0.1666, 0.125, 0.1.
Calculation of this elliptic equation, subject to the analytic boundary condition φ = T an−1[ x−2

y−2 ],
will be carried out. The predicted L2-error norms are tabulated in Table I, from which we can see

TABLE I. The predicted L2-error norms and their corresponding rates of convergence in different meshes
when solving the Laplace equation based on the center-type kernel function.

Meshes L2-error norms Rates of convergence

5 × 5 1.811 × 10−8

7 × 7 1.571 × 10−9 7.26584
9 × 9 2.681 × 10−10 7.03544
11 × 11 6.674 × 10−11 6.92954
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FIG. 3. Comparison of the exact solution with the predicted solution at Pe = 1×10−3 for the problem with
the exact solution given in Eq. (36). The predicted solutions are computed by the proposed center-type kernel
function. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

that the predicted rate of convergence is surprisingly higher than its theoretical value of fourth
due probably to the machine error.

The next problem under current investigation has the following smoothly distributed analytic
solution, defined in 0 ≤ x, y ≤ 1, for Eq. (4).

φ = (1 − e(x−1)u/µ)(1 − e(y−1)v/µ)

(1 − e−u/µ)(1 − e−v/µ)
(36)

Calculation will be carried out first at the fixed Peclet number Pe(≡ uh/µ) = 0.00001, where h

denotes the grid size, to justify the developed center-type kernel function. The solutions predicted
at µ = 10, 000 using the center-type kernel function given in (22) are seen to agree excellently
with the exact solution plotted in Fig. 3. The proposed kernel function is therefore confirmed to
be applicable to solve the problem with a Peclet number smaller than 2. Calculation is followed
by solving Eq. (4) in different meshes. As Table II shows, the predicted solutions agree quite well
with the theoretical solution for the case investigated at µ = 10, 000 using the center-type kernel
function.

TABLE II. The predicted L2-error norms at different meshes when solving the convection-diffusion
equation at µ = 10, 000 based on the center-type kernel function.

Meshes L2-error norms

10 × 10 3.890 × 10−14

20 × 20 9.455 × 10−15

30 × 30 5.511 × 10−15

40 × 40 5.350 × 10−15

50 × 50 2.406 × 10−15
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TABLE III. The predicted L2-error norms and their corresponding rates of convergence using the upwinding
kernel function to solve the Eq. (4) at µ = 0.01.

Meshes L2-error norms Rates of convergence

60 × 60 1.612 × 10−2

70 × 70 1.188 × 10−2 1.97991
80 × 80 9.088 × 10−3 2.00628
90 × 90 7.163 × 10−3 2.02089
100 × 100 5.788 × 10−3 2.02298

The upwinding-type kernel function is then applied to solve the same problem but with a much
smaller value of µ, say at µ = 0.01, for making the equation to be convection dominated. The
rates of convergence, tabulated in Table III, are computed from the L2-error norms of the solutions
calculated from the upwinding-type kernel function. Under our expectation, the predicted rates
of convergence are approximately equal to 2 owing to the numerical damping terms shown in
(32)–(35).

Verification of the proposed particle model is followed by solving the following two analytic
problems under higher Peclet number flow conditions. One problem has an interior layer and the
other problem has the interior as well as the boundary layers.

A. Convection Dominated Scalar Transport Problems

We will then apply the developed upwinding kernel function to simulate the high-Peclet number
flow problems. Three problems with different solution natures will be considered below.

A.1 Convection-Diffusion Problem of Smith and Hutton

The problem of Smith and Hutton [18] will be investigated in a divergence-free flowfield defined
by u = 2y(1 − x2) and v = −2x(1 − y2), which are shown in Eq. (4). Along the inlet
schematic in Fig. 4, the boundary value of φ along −1 ≤ x ≤ 0, y = 0 is prescribed by
φ = 1 + tanh[10(2x + 1)]. Along the lines x = −1, y = 1, and x = 1, φ is prescribed to have

FIG. 4. Schematic of the boundary conditions and the initially prescribed velocity vectors for the Smith and
Hutton problem. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 5. Illustration of the predicted oscillatory solution using the center-type kernel function to solve the
Smith and Hutton problem at µ = 0.00001. (a) The plot of � along the line (x, y = 0.5). (b) Three dimen-
sional plot of the predicted value of �. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

the magnitude 1 − tanh (10), while along the outlet (0 ≤ x ≤ 1, y = 0) a zero gradient condition
is specified.

For the case investigated at µ = 0.0001, the results will be calculated at 
x = 
y = 1
40 . As

Fig. 5 shows, the predicted oscillatory solution is the result of using the centered scheme that suf-
fers the problem of instability for the convection-dominated problem [19]. To suppress numerical

Numerical Methods for Partial Differential Equations DOI 10.1002/num



DEVELOPMENT OF AN UPWINDING PARTICLE INTERACTION KERNEL 1587

FIG. 6. The plot of the predicted nonoscillatory solution using the upwinding kernel function to solve the
Smith and Hutton problem at µ = 0.0001. (a) The plot of � along the line (x, y = 0.5). (b) Three dimen-
sional plot of the predicted value of �. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

instability, one can damp out these oscillations by the implicitly added damping term introduced
into the upwinding-type particle method. It can be seen from Fig. 6 that the predicted solution is
essentially non-oscillatory. The efficacy of applying the proposed upwind-type particle model to
simulate the high Peclet number flow is therefore demonstrated using the problem involving an
interior sharp layer.
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FIG. 7. Schematic of the skew convection-diffusion problem. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

A.2 Skew Convection-Diffusion Problem. In Fig. 7, a square cavity of unit length is divided
into two subdomains by the straight line passing through (0, 0) with the slope of tan−1(v/u), where
u and v are shown in Eq. (4). We consider in this study the unit velocity vector (u, v), which is
parallel to the dividing line, in the 21×21 (for µ = 0.001 and µ = 0.00001) uniformly discretized
mesh system. Subject to the boundary conditions for φ, one can clearly see from the computed
solution in Fig. 8 that a shear layer exists in the vicinity of the dividing line. No oscillatory solution
is found in regions near and apart from the dividing line for the cases investigated at µ = 0.001
and µ = 0.00001.

A.3 Gartland Problem. The problem involving a sharply varying solution near the boundary
along the downstream edge at x = 1 and two shear layers along the top and bottom edges at y = 0
and y = 1 will be also investigated. This boundary/shear layer problem with µ = 0.01 will be
solved in a square of unit length at (u, v) = (1, 0).

By specifying the boundary condition according to the following exact solution [20]

φ = e
x

2µ sin πy
2e

−1
2µ sinh λx + sinh λ(1 − x)

sinh λ
(37)

our calculation will be performed at u = 1 and λ = π 2 + 1
4µ2 . As Fig. 9 shows, near the bound-

aries at x = 1, y = 0, and y = 1 one can clearly find the predicted non-oscillatory high gradient
solution profile. For completeness, we solve the same problem in different meshes with an aim to
calculate the corresponding rates of convergence, which are approximately equal to the theoretical
rate, tabulated in Table IV.

For the sake of comparison of our computed and the other numerical solutions, we also carry
out the calculation for the case with µ = 0.01 in eight meshes 82, 162, 322, 642, 702, 802, 902,
and 1002. All the predicted maximum errors, tabulated in Table V, are seen to be smaller than
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FIG. 8. The prescribed nonoscillatory solution profiles for the skew advection-diffusion problem investi-
gated at two values of µ. (a) µ = 0.001. (b) µ = 0.00001. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

those predicted by the second-order accurate central scheme CDS but are larger than those by
the DWMA scheme of Gartland [20] and the SCHOS scheme of Gupta et al. [21]. The rates of
convergence based on the computed results in Table V are equal to the theoretical rate as well.
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FIG. 9. Comparison of the exact and predicted solutions for the test problem given in Section V.A.3. (a)
Contour plot of �. (b) The predicted sharp layer near x = 1 and the two boundary layers y = 0 and y = 1.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE IV. The predicted L2-error norms and the corresponding rates of convergence in five meshes
60 × 60, 70 × 70, 80 × 80, 90 × 90, and 100 × 100 using the upwinding particle interaction model to solve
the test problem given in section V.A.3.

Meshes L2-error norms Rates of convergence

60 × 60 7.985 × 10−3

70 × 70 5.901 × 10−3 1.96200
80 × 80 4.534 × 10−3 1.97345
90 × 90 3.592 × 10−3 1.97733
100 × 100 2.918 × 10−3 1.97238

TABLE V. The predicted maximum errors and their corresponding rates of convergence
(O(hrate of convergence)) in eight meshes 82, 162, 322, 642, 702, 802, 902, and 1002 using the upwinding
particle interaction model, to solve the Gartland test problem [20].

DWMA [18] CDS [19] SCHOS [19] Center-type Upwind-type Upwind-type
maximum maximum maximum maximum error maximum error L2-error norm

Meshes error error error (current) (current) (current)

8 × 8 3.685 × 10−2 9.060 × 10−1 4.248 × 10−1 9.143 × 10−1 2.404 × 10−1 7.799 × 10−2

16 × 16 5.812 × 10−2 5.618 × 10−1 1.670 × 10−1 5.633 × 10−1 2.890 × 10−1 5.601 × 10−2

O(h−0.65737) O(h0.689454) O(h1.34694) O(h0.698764) O(h−0.265633) O(h0.477605)

32 × 32 4.993 × 10−2 2.873 × 10−1 3.365 × 10−2 2.876 × 10−1 1.916 × 10−1 2.488 × 10−2

O(h0.219128) O(h0.967499) O(h2.31117) O(h0.969840) O(h0.592972) O(h1.17070)

64 × 64 2.106 × 10−2 9.493 × 10−2 3.151 × 10−3 9.490 × 10−2 7.301 × 10−2 7.038 × 10−3

O(h1.2454) O(h1.59762) O(h3.41672) O(h1.59958) O(h1.39193) O(h1.82175)

70 × 70 N.A. N.A. N.A. 7.980 × 10−2 6.235 × 10−2 5.901 × 10−3

O(h1.93389) O(h1.76129) O(h1.96628)

80 × 80 N.A. N.A. N.A. 6.095 × 10−2 4.870 × 10−2 4.534 × 10−3

O(h2.01802) O(h1.85039) O(h1.97345)

90 × 90 N.A. N.A. N.A. 4.755 × 10−2 3.873 × 10−2 3.592 × 10−3

O(h2.10788) O(h1.94480) O(h1.97733)

100 × 100 N.A. N.A. N.A. 3.779 × 10−2 3.128 × 10−2 2.918 × 10−3

O(h2.18049) O(h2.02766) O(h1.97238)
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TABLE VI. The predicted L2-error norms and their corresponding rates of convergence for the
Navier-Stokes equations.

Meshes L2-error norms of u Rates of convergence

11 × 11 9.307 × 10−5

21 × 21 2.161 × 10−5 2.10662
31 × 31 1.012 × 10−5 1.87104
41 × 41 5.865 × 10−6 1.89623

B. Incompressible Navier-Stokes Problems

With the success of applying the center and upwinding kernel functions to simulate the low and
high Peclet number problems, we will then apply the developed kernel function to predict the
incompressible Navier-Stokes equations.

To begin with, we consider the problem that is amenable to the analytic solutions. For this
problem, a square domain of unit length is discretized into uniform rectangular mesh. The exact
pressure for Eqs. (1)–(3) takes the following form

p = −2

(1 + x)2 + (1 + y)2
(38)

on condition that the boundary velocities are specified analytically as follows:

u = −2(1 + y)

(1 + x)2 + (1 + y)2
(39)

v = 2(1 + x)

(1 + x)2 + (1 + y)2
(40)

The predicted L2-error norms and their corresponding spatial rates of convergence computed at
different meshes are shown in Table VI.

We then solve a more stringent test problem, which is also amenable to the analytic solution
given by

u = 1 − eλx cos(2πy) (41)

v = λ

2π
eλx sin(2πy) (42)

p = 1

2
(1 − e2λx) (43)

In this study, the value of λ is chosen to be λ = Re

2 −
√

Re2

4 + 4π 2. For the calculation per-
formed at Re = 100, the predicted L2-error norms in four meshes and their corresponding rates
of convergence are tabulated in Table VII.

The third example is known to be the lid-driven cavity problem which is well documented in
the literature. This problem has received a great deal of attention mainly because of its geometrical
simplicity and physical complexity. The boundary velocities u and v are zero everywhere except
along the top surface where u = 1 and v = 0. Computations are performed at the Reynolds
numbers 100 and 1000 in the respective regular meshes of 41 × 41 and 151 × 151.

For the sake of comparison, the results for the calculations computed at Re = 100 and 1000
are plotted along the mid-sectional horizontal and vertical lines in Figs. 10 and 11, respectively.
The present results compare well with the finite difference solutions of Ghia et al. [22].
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TABLE VII. The L2-error norms and their corresponding rates of convergence predicted in different
meshes.

Meshes L2-error norms of u Rates of convergence

11 × 11 1.082 × 10−3

21 × 21 6.948 × 10−5 3.96096
31 × 31 1.603 × 10−5 3.61702
41 × 41 6.756 × 10−6 3.00342

We also consider the two-dimensional stationary incompressible channel flow around a circu-
lar cylinder [23]. In Fig. 12, D denotes the cylinder diameter, and H is the channel height. The
parabolic profile schematic in Fig. 12 is prescribed at the channel inlet and outlet, and no-slip con-
ditions are imposed at the solid boundaries. In this flow calculation, Reynolds number is Re = 20,
which is calculated on the basis of choosing the dynamic viscosity µ = 0.001 kg m−1 s−1, density
of the flow ρ = 1 kg m−3, mean inflow velocity U = 0.2 m s−1, and the diameter of the cylinder
D = 0.1 m. The computed pressure and streamline contours are shown in Fig. 13.

The benchmark parameters chosen for the sake of comparison are the drag coefficient Cd of
the cylinder and the pressure difference between the front and the rear of the cylinder. The com-
puted drag coefficient and pressure difference compare well with the reference values given in
[23] (Cd,ref = 5.57953523384 and 
pref = 0.11752016697), and the details of comparison are
tabulated in Table VIII.

The fifth problem under current investigation considers the flow over a square. The blockage
ratio β(=D/H ) is specified as 1/8 (D: the size of square cylinder; H : the height of the channel).
For the Reynolds number defined by Re = ρumaxD

µ
, where umax is the maximum inlet flow velocity

FIG. 10. Comparison of the predicted and referenced velocity profiles of u at x = 0.5 and v at y = 0.5
for the case investigated at Re = 100. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Numerical Methods for Partial Differential Equations DOI 10.1002/num



DEVELOPMENT OF AN UPWINDING PARTICLE INTERACTION KERNEL 1593

FIG. 11. Comparison of the predicted and referenced velocity profiles of u at x = 0.5 and v at y = 0.5
for the case investigated at Re = 1000. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

and µ is the dynamic viscosity, we simulate the flow at Re = 30. The pressure and streamline
contours are shown in Fig. 14. Figure 15 plots the computed recirculation lengths Lr against
the Reynolds number for a square cylinder inside a channel (Lr = −0.065 + 0.0554 Re, for
5 < Re < 60 [24]). As can be seen from this figure, reliable and accurate results have been
obtained by the proposed particle method.

VI. CONCLUDING REMARKS

As a first step toward our future simulation of unsteady interfacial flow problem by the moving
particle method, we develop a kernel function within the stationary particle framework so as
to facilitate the theoretical derivation. The idea of developing the proposed particle interaction

FIG. 12. Schematic of the channel flow around a circular cylinder.
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FIG. 13. The computed pressure and streamline contours at Re = 20. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

TABLE VIII. Comparison of the values of Cd and 
p obtained in different meshes at Re = 20 with those
in [23] for the flow around a circular cylinder.

Meshes Cd 
p = pf − pb

3528 nodes 5.25778877 0.11912604625
12,368 nodes 5.37865958 0.11880092234
16,368 nodes 5.46402895 0.11837051836
20,000,00 nodes Volker [23] 5.57953523384 0.11752016697

model is to formulate the kernel function, which accommodates the property embedded in the
smoothed Dirac delta function, for the pure diffusion (or Laplace) equation. The center-type ker-

nel function, which is constrained by
∫ r

re
=1

r
re

=−1 w(r)dr = 1 in the users’ chosen particle interaction

region, is by adding a flow-direction dependent term to the center-type kernel function to enhance

FIG. 14. The computed pressure and streamline contours at Re = 30. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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FIG. 15. Comparison of the computed recirculation lengths Lr against the Reynolds number based on the
results obtained in a mesh with 5000 nodal points. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

numerical stability by means of the introduced streamline diffusion in case when the convection
term becomes increasingly larger than the diffusion term. For the purpose of getting this stability
enhancement, we implicitly add the diffusion term mainly along the flow direction so that the
upstream particles can be more weighted. To justify the centered and upwinding kernel functions
developed for simulating the respective low and high Peclet number flows, we investigate several
well-known benchmark problems for the validation sake. These predicted results clearly show
that the second-order accurate upwinding particle interaction model can capture well the interior
as well as the boundary layers without showing numerical oscillations in the region of sharp
gradients.

APPENDIX A: DERIVATION OF THE DISCRETE EQUATION (18)

Derivation is started from the Eq. (9), which is

〈∇2φ〉|i = 2d

λn0

∑
j �=i

(φj − φi)
w(|rj − ri |) (9)

In the domain of uniform meshes with the grid size h, n0(≡ ∑
j �=i w(|rj − ri |)) is equal to

n0 =
∑
i �=j

w(|r0
j − r0

i |) = 4(w(h) + w(
√

2h)) (A1)
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By virtue of Eq. (10), we can get

λ = [w(h) + 2w(
√

2h)]h2

[w(h) + w(
√

2h)] (A2)

By substituting the values n0 and λ shown, respectively, in (A1) and (A2), we can derive the
second-order accurate modified equation for the two-dimensional Equation (9)

1

[w(h) + 2w(
√

2h)]h2
{(φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi)w(h)

+ (φi+1,j+1 + φi−1,j+1 + φi+1,j−1 + φi−1,j−1 − 4φi)w(
√

2h)} = 0 (18)

APPENDIX B: DERIVATION OF THE STREAMLINE DIFFUSION TERM φSS

Given a flow with a velocity vector (u, v), its local tangential direction is given by s = tan−1( v

u
).

By substituting ∂s

∂x
=

√
u2+v2

u
and ∂s

∂y
=

√
u2+v2

v
into the following equation

∂φ

∂s
= ∂φ

∂x

∂x

∂s
+ ∂φ

∂y

∂y

∂s
= ∂φ

∂x

1
∂s

∂x

+ ∂φ

∂y

1
∂s

∂y

(B1)

we can get

∂φ

∂s
= u√

u2 + v2

∂φ

∂x
+ v√

u2 + v2

∂φ

∂y
(B2)

By applying the differential operator ∂/∂s on Eq. (B2), we can get Eq. (25) for φss as follows

∂2φ

∂s2
= ∂

∂s

(
∂φ

∂s

)
= ∂

∂s

(
u√

u2 + v2

∂φ

∂x
+ v√

u2 + v2

∂φ

∂y

)

= ∂

∂x

(
u√

u2 + v2

∂φ

∂x
+ v√

u2 + v2

∂φ

∂y

)
∂x

∂s
+ ∂

∂y

(
u√

u2 + v2

∂φ

∂x
+ v√

u2 + v2

∂φ

∂y

)
∂y

∂s

= u2

u2 + v2

∂2φ

∂x2
+ 2uv

u2 + v2

∂2φ

∂x∂y
+ u2

u2 + v2

∂2φ

∂y2
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