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In the current particle method, we propose a new semi-implicit particle method for more

effectively solving the incompressible Navier-Stokes equations at a high Reynolds number.

Within the Lagrangian framework, the convective terms in the equations of motion are
15eliminated, without the problem of convective numerical instability. Also, the crosswind dif-

fusion error generated normally in the case of a large angle difference between the velocity

vector and the coordinate line disappears. Only the Laplacian operator for the velocity com-

ponents and the gradient operator for the pressure need to be approximated on the basis of

particle interaction through the currently proposed kernel function. As the key to getting
20better predicted accuracy, the kernel function is derived subject to theoretical constraint

conditions. In the conventional moving-particle method, it is almost impossible to get con-

vergent solution at a high Reynolds number. To overcome this simulation difficulty so that

the moving-particle method is applicable to a wider range of flow simulations, a new solution

algorithm is proposed for solving the elliptic-parabolic set of partial differential equations.
25In the momentum equations, calculation of the velocity components is carried out in the

particle-moving sense. Unlike the traditional moving-particle semi-implicit method, the

pressure values are not calculated at the particle locations being advected along the flow-

field. After updating the fluid particle locations within the Lagrangian framework, we

interpolate the velocities at uniformly distributed pressure locations. In the current semi-
30implicit solution algorithm, pressure is governed by the elliptic differential equation with

the source term being contributed entirely to the velocity gradient terms. The distribution

of particle locations can become highly nonuniform in cases involving a high Reynolds num-

ber and under conditions having an apparently vortical flow. As a result, the elliptic nature

of the pressure can be considerably destroyed in the course of Lagrangian motion. To retain
35the embedded ellipticity in the incompressible viscous flow equations, the Poisson equation

adopted for the calculation of pressure is solved in a mathematically more plausible fixed

uniform mesh so as to get not only fourth-order accuracy for the pressure but also to

enhance ellipticity in the pressure Poisson equation. Moreover, the velocity–pressure coup-

ling can be more enhanced in the semi-implicit solution algorithm. The proposed moving and
40stationary mixed particle semi-implicit solution algorithm and the particle kernel will be
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demonstrated to be suitable to simulate high-Reynolds number fluid flows by investigating

the lid-driven cavity flow problem at Re¼ 100 and Re¼ 1,000. Besides the validation of the

proposed semi-implicit particle method in the fixed domain, the broken-dam problem is also

solved to demonstrate the ability of accurately capturing the time-evolving free surface
45using the proposed semi-implicit particle method.

1. INTRODUCTION

Numerical methods developed for performing flow simulations can be divided
into three major classes, Eulerian, Lagrangian, and mixed Eulerian=Lagrangian. In
the Eulerian class of numerical methods, flow equations are solved for a fixed mesh

50system. On the cother hand, in the Lagrangian class of numerical methods, which
can be further subdivided into two subgroups, mesh-based and mesh-free, either
the mesh points or the fluid particles are allowed to advect with the fluid flow. As
a result of permitting the particles to move in the Lagrangian sense, we no longer
need to approximate these convective terms in the transport equations. The resulting

55avoidance of approximating the convective terms and thus the elimination of nume-
rical instability terms turns out to be one of the apparent advantages of employing
the Lagrangian approach in flow simulations. Numerical errors of the cross-wind
diffusion type can also be well eliminated. Another mathematically rigorous arbi-
trary Lagrangian-Eulerian (ALE) method [1] involves using both the Lagrangian

60and Eulerian solution steps in the course of moving the mesh points from one time
to another.

Several well-known grid-based methods such as the marker-and-cell (MAC)
[2], volume-of-fluid (VOF) [3], and level-set [4] methods have been developed to pre-
dict free surface flows. Another class of mesh-free methods known as the particle

65methods was developed on the basis of the prescribed particles being allowed to
move in the Lagrangian sense. As a result, approximation of the convective terms
can be avoided without incurring any numerical instability and thus generating dif-
fusion error. Particle methods are separated into the Eulerian particle method, such
as the particle-in-cell (PIC) method [5], and the Lagrangian particle methods, which

70include the smoothed particle hydrodynamics (SPH) and the moving-particle
semi-implicit (MPS) meshless types. The SPH method was first introduced by Lucy
[6] and Gingold and Monaghan [7] in 1977 in their simulation of compressible fluid
flows. The SPH method was developed on the basis of interpolation theory through

NOMENCLATURE

d number of dimensions

f dependent variable

h distance between two particles

i, j particle indices

n0 particle number density

q gravitational acceleration

r particle location

re radius of a small circle

u velocity component in the x direction

v velocity component in the y direction

w kernel function

d delta function

n kinematic viscosity

q density

/ scalar function
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the use of a kernel function (or smoothing kernel). This method was later extended
75to simulate incompressible free-surface flow [8].

The moving-particle semi-implicit gridless method was recently developed to
simulate incompressible Navier-Stokes fluid flows [9]. The particle method is based
on the interaction of each reference particle with its neighboring particles by means
of the kernel (or weight) function. All the spatial derivatives can be calculated solely

80by means of the deterministic particle interaction, without the need to generate a
mesh in the flow. The freedom of allowing particles to advect with the fluid without
the cost of a time-consuming mesh generation explains why the MPS method has
gradually become effective for use in simulating many practical problems involving
either complicated geometry or complex physics. For flow problems investigated at a

85higher Reynolds number, this method, however, has difficulty getting a convergent
solution [10, 11]. In addition, the MPS method has been blamed for a deterioration
accuracy of when increasing the number of particles. These two numerical draw-
backs motivate the present formulation of the moving and stationary mixed particle
method.

90The rest of this article is organized as follows. In Section 2 the Navier-Stokes
equations for predicting the incompressible fluid flow are presented. In Section 3, the
new interaction kernel is presented for the approximation of the gradient and
Laplacian differential terms. This is followed by presentation of the solution algor-
ithm formulated within a moving mesh framework for the momentum equations and

95a stationary mesh framework for the pressure Poisson equation. In Section 4 our
emphasis is on the derivation of the kernel function used in the present particle
method. In Section 5, the proposed particle method is validated by solving the ana-
lytical, lid-driven cavity and dam-break problems at low as well as high Reynolds
numbers. In Section 6, conclusions are drawn based on the predicted results.

1002. WORKING EQUATIONS

The following Navier-Stokes equations for the motion of an incompressible
fluid flow will be considered in a simply connected domain X.

Du

Dt
¼ � 1

q
rpþ nr2uþ q ð1Þ

1

q
Dq
Dt

¼ �r � u ð2Þ

105where

Dg

Dt
¼ qg

qt
þ ðu � rÞg ð3Þ

Note that g¼ u in (1) and g¼ q in (2). In the above momentum equations, q
stands for the density of the fluid, n for the kinematic viscosity, and q for the

110gravitational acceleration vector.
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3. DEVELOPMENT OF THE KERNEL FUNCTION FOR THE SPATIAL
DIFFERENTIAL OPERATORS

In comparison with the grid-based methods, particle-based methods have
gradually become popular for simulating the incompressible Navier-Stokes equations

115that are subject to either a free surface or an interface. In particle methods, one needs
to transform the differential operators shown in the mass and momentum conser-
vation equations to their corresponding particle interaction operators. In other
words, Eqs. (1–2) written in the continuous differential context are transformed to
their corresponding discrete particle interaction context. The transport equations

120under current investigation can then be approximated by the chosen moving particles
and their interaction. The success of applying a particle method depends on the kernel
(or weighting) function chosen for the particles that are distanced from each other by
the user’s prescribed finite length for the approximation of the incompressible flow
velocity vectors and the pressure around these particles.

125Given a particle at which its physical quantity fi is defined at a position ri. The
value of fi can be approximated as follows by virtue of the employed kernel function
w(r):

f ðrÞh i �
X
i

wðjri � rjÞ ¼
X
i

fi wðjri � rjÞ ð4Þ

130In the above equation, the smoothed quantity hfii for fat the point ri is exactly
identical to the local value of fi provided that the kernel function shown in (4) is cho-
sen as the Dirac delta function. This implies that the chosen kernel function w(r),
which should be constrained by the integral constraint equation

R
Vw(r) dV¼ 1,

determines the simulation quality using the particle method. Different kernel
135functions have been discussed in [12].

For a scalar at an arbitrary interior location rj, its value /j can be expanded in
Taylor series with respect to the value of / at ri as follows:

/j ¼ /i þr/jij � ðrj � riÞ þH:O:T: ð5Þ

140By neglecting the higher-order terms (H.O.T.) shown above, the first-order
approximated equation /j�/i¼r/jij � (rj� ri) is obtained. Multiplication of
(rj� ri)

�1 on both sides of the resulting simplified Taylor series expansion equation
yields

r/jij ¼
ð/j � /iÞðrj � riÞ
jrj � rijjrj � rij

ð6Þ
145

Let r/jij be fand substitute it into Eq. (4). This substitution enables us to get
the following smoothed representation of r/, which is denoted by hr/i, at the node
ij in a domain of d (¼ 2) dimension

r/h ijij ¼
d

ni

X
j 6¼i

/j � /i

jrj � rij
ðrj � riÞ wðrj � riÞ ð7Þ

150
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In the above, ni ¼
P

j 6¼i wðjrj � rijÞ
� �

denotes the particle number density.
Under the incompressible flow condition, ni is equal to the initial value of the particle
number density n0.

The following Laplacian operator applied to a scalar function / can be
155similarly derived as [9]

r2/
� �

ji ¼
2d

kn0
X
j 6¼i

ð/j � /iÞ wðjrj � rijÞ ð8Þ

where

k ¼
R
V 0 jrj � rij2 wðjrj � rijÞ dVR

V 0 wðjrj � rijÞ dV
ð9Þ

160Note that V0shown above is the volume that is excluded of a small interval
containing the point at i. One can also have the freedom to employ the following
Laplacian operator given in [13]:

r2/
� �

jij ¼
2d

n0

X
j 6¼i

/j � /i

jrj � rij
2
wðjrj � rijÞ ð10Þ

165It is now easy to see the advantage of applying the particle method, since all the
spatial derivatives can be calculated solely from the kernel function without the need
to generate a time-consuming mesh in the physical domain. Much of the computa-
tional effort needed to generate a good-quality mesh for performing an accurate
numerical simulation in a domain possibly involving moving boundaries is therefore

170avoided. Note also that calculations of the values of r/ and r2/ by Eqs. (7), (8),
and (10) involve using only the kernel function w(r) rather than employing the
derivative of kernel function as used in the SPH particle method. As a result, we have
greater flexibility to choose the kernel function, which may have a slope as steep as
the Dirac delta function.

1754. DEVELOPMENT OF THE PROPOSED KERNEL FUNCTIONS

According to Eqs. (7) and (8–10), the quality of approximating the operators
hr/iijand hr2/ii is known to depend very much on the chosen kernel function
w(r) and the number of the user’s prescribed particles. Moreover, where to place
the particles and what kind of kernel function is used determine the subsequent

180particle locations in a moving fashion. For this reason, the chosen kernel function
will be derived below in detail.

The Dirac delta function d(r), which is shown in (4) and is constrained byR1
�1 dðrÞ dr ¼ 1; is a mathematically rigorous kernel function. This ideal function
is unfortunately not implementable in computational practice, and we have to resort

185to its corresponding smoothed delta function so as to be able to carry out flow simu-
lations based on the particle method. The smoothed function is sometimes called the
nascent delta function de(r), which is defined as e�!lim 0 deðrÞ ¼ dðrÞ. Other nascent
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delta functions such as the Gaussian function, Lorentz line function, impulse func-
tion, and sinc function can be found in the literature. One can also use other kinds

190of kernel function which were developed irrelevantly to the nascent delta functions.
The exponential, cubic spline and quadratic spline, functions proposed by
Belytschko et al. [14] and the kernel functions proposed by Koshizuka and Oka
[15] and Koshizuka et al. [16] are three typical examples.

The kernel function w(r) under current development follows the mathema-
195tical identity given by re �!

lim
0wðr; reÞ ¼ dðrÞ, where re is the radius of a small circle.

The weight between any two particles that are a distance r apart from each other
become negligibly small as r� re. Also, for the sake of accuracy, the kernel function
will be developed to retain the following constraint condition in the Dirac delta
function:

Z 1

�1
wðr; reÞ d r ¼ 1 ð11Þ

The proposed kernel function will be represented in terms of the dimensionless
length r=re as follows

wðrÞ ¼
a

re
þ b

re

r

re

� �
þ c

re

r

re

� �2

þ d
re

r
re

� �3
þ e

re
r
re

� �4
0 � r � re

0 re < r

8<
: ð12Þ

205

By imposing the constraint conditions given by w(r¼ re)¼ðqw=qrÞjr¼re
¼

ðqw=qrÞjr¼0 ¼ 0 and
R r=re¼1

0 wðrÞ dr ¼ 1
2, the algebraic equations given below can be

derived

aþ bþ cþ d þ e ¼ 0 ð13Þ

bþ 2cþ 3d þ 4e ¼ 0 ð14Þ

aþ b

2
þ c

3
þ d

4
þ e

5
¼ 1

2
ð15Þ

b ¼ 0 ð16Þ

By solving the above four algebraic equations, one can easily express the
215coefficients a, b, c, d in terms of e as a ¼ 1� ð1=15Þe; b ¼ 0; c ¼ �3þ ð6=5Þe;

d ¼ 2� ð32=15Þe.
We will develop the kernel function for r2p, where p represents the pressure, in

the uniform mesh. The reason is that in the incompressible flow simulation the press-
ure Poisson equation will be solved in a stationary grid so as to be able to properly

220simulate a higher-Reynolds-number incompressible fluid flow within the semi-
implicit framework. A similar viewpoint was also mentioned previously in [10, 11].
By substituting the resulting kernel function into Eq. (10) for /(¼ p), the correspond-
ing discrete equation for the Laplace equation, ðq2p=qx2Þ þ ðq2p=qy2Þ ¼ 0 can be

6 C. HUANG AND T. W. H. SHEU



derived using the proposed particle kernel:

q2p
qx2

þ q2p
qy2

¼ 1

½wðhÞ þ 2wð
ffiffiffi
2

p
hÞ�h2

½ðpiþ1;j þ pi�1;j þ pi;jþ1 þ pi;j�1 � 4piÞwðhÞ

þ ðpiþ1;jþ1 þ pi�1;jþ1 þ piþ1;j�1 þ pi�1;j�1 � 4piÞwð
ffiffiffi
2

p
hÞ�

ð17Þ

Through the modified equation analysis performed on the above equation, the
modified equation can be derived as

q2p
qx2

þ q2p
qy2

¼ � wð
ffiffiffi
2

p
hÞ

wðhÞ þ 2wð
ffiffiffi
2

p
hÞ

q4p
qx2qy2

þ 1

12

q4p
qx4

þ 1

12

q4p
qy4

" #
h2

�
�

wð
ffiffiffi
2

p
hÞ

12ðwðhÞ þ 2wð
ffiffiffi
2

p
hÞÞ

q6p
qx4qy2

þ q6p
qx2qy4

 !

þ 1

360

q6p
qx6

þ 1

360

q6p
qy6

	
h4 þ � � �

ð18Þ

230

It is worthy of note that the first term on the right-hand side of (18) becomes
zero provided that wð

ffiffiffi
2

p
hÞ ¼ 1

4wðhÞ [17].
When choosing re¼ 2h, where h denotes the grid size, the nine-point discrete

equation (17) has fourth-order accuracy under the condition

3aþ 2
ffiffiffi
2

p
� 1

2

� �
bþ 2� 1

4

� �
cþ

ffiffiffi
2

p
� 1

8

� �
d þ 1� 1

16

� �
e ¼ 0 ð19Þ

The resulting five free parameters can then be uniquely determined from
Eqs. (13)–(16) and (19) as

a ¼ 480
ffiffiffi
2

p
� 705

512
ffiffiffi
2

p
� 745

b ¼ 0 c ¼ �960
ffiffiffi
2

p
þ 1515

512
ffiffiffi
2

p
� 745

d ¼ �210

512
ffiffiffi
2

p
� 745

e ¼ 480
ffiffiffi
2

p
� 600

512
ffiffiffi
2

p
� 745

5. MOVING AND STATIONARY MIXED PARTICLE SOLUTION
ALGORITHM

While the MPS method is an effective method to predict complex flow physics
in a time-varying domain, this method is applicable only to a very-low-Reynolds-
number flow simulation. For this reason, we are motivated to extend the MPS
method so that it can be applicable to predict a higher-Reynolds-number flow.
Revision of the traditional MPS method so as to solve the elliptic-parabolic equa-
tions at high Reynolds numbers is based on the splitting of the solution algorithm
into two steps. In the first advection step, the velocity solutions are computed
explicitly from the momentum equations using the moving-particle method without

MIXED PARTICLE METHOD FOR NAVIER-STOKES EQUATIONS 7



invoking the approximation of the advective spatial operator. This eliminates both
of the numerical problems of convective instability and the erroneous false diffusion
error that is normally encountered in the Eulerian formulation. Upon obtaining the
new particle locations and the updated particle number density, we proceed to
compute the pressure from the pressure Poisson equation implicitly, based on the
currently available velocity values for the calculation of the source term on the
right-hand side of the equation.

In contrast to the conventional MPS method, in the current semi-implicit sol-
ution algorithm, the pressure values are not calculated at the velocity locations. All
the pressure solutions computed from the pressure Poisson equation are at uniformly
redistributed locations. The underlying idea of not solving the pressure at the same
locations as the velocity components is that moving particles become non-uniformly
distributed in the vortical flow simulation. This is particularly serious in the case of
high Reynolds numbers. As a result of the nonuniformly distributed particle loca-
tions, the elliptic nature of the Poisson equation will be poorly simulated. This moti-
vates us to solve the pressure Poisson equation at regular mesh points rather than at
the particle locations that are changed from time to time in a Lagrangian sense. In
this light, the velocity components computed from the momentum equations will be

Figure 1. Proposed kernel function plottedQ2 (a) against r=re; (b) in xy plane (color figure available online).
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interpolated to their values at the regular pressure nodes. With the computed press-
ure values at the regular mesh points, we can get first the velocity correction values
and then the corrected velocities at the nonuniformly distributed particle locations
through interpolation. This completes the calculation of the primitive variables (u,
p). A detailed flowchart of the proposed moving and stationary mixed particle
semi-implicit solution algorithm is shown schematically in Figure 2.

6. NUMERICAL RESULTS

6.1. Analytical Incompressible Navier-Stokes Problems

TheQ1 developed kernel function will be employed first to solve the analytical
incompressible Navier-Stokes equations for the sake of validating the proposed
kernel function.

u
qu
qx

þ v
qu
qy

¼ � qp
qx

þ q
qx

1

Re

qu
qx

� �
þ q
qy

1

Re

qu
qy

� �
ð20Þ

u
qv
qx

þ v
qv
qy

¼ � qp
qy

þ q
qx

1

Re

qv
qx

� �
þ q
qy

1

Re

qv
qy

� �
ð21Þ

qu
qx

þ qv
qy

¼ 0 ð22Þ

Figure 2. Flowchart of proposed moving and stationary mixed particle method (color figure available

online).
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where Re ¼ UL=n stands for the Reynolds number. The following problem, which is
amenable to analytic solution in a square domain of unit length, will be investigated.

285The exact pressure for Eqs. (20–22) takes the form

p ¼ �2

ð1þ xÞ2 þ ð1þ yÞ2
ð23Þ

provided that the boundary velocities are specified analytically according to the exact
velocities given below:

u ¼ �2ð1þ yÞ
ð1þ xÞ2 þ ð1þ yÞ2

ð24Þ

v ¼ 2ð1þ xÞ
ð1þ xÞ2 þ ð1þ yÞ2

ð25Þ

At different meshes, the predicted L2-error norms and their corresponding spatial
rates of convergence, shown in Table 1, justify the newly proposed particle method.

We then solve the second problem, which is also amenable to analytic solution,
295given by

u ¼ 1� ekx cosð2pyÞ ð26Þ

v ¼ k
2p

ekx sinð2pyÞ ð27Þ

p ¼ 1

2
ð1� e2kxÞ ð28Þ

Table 1. Predicted L2-error norms and corresponding rates of

convergence for the Navier-Stokes equations

Mesh L2-error norm of u Rate of convergence

11� 11 9.307� 10�5

21� 21 2.161� 10�5 2.10662

31� 31 1.012� 10�5 1.87104

41� 41 5.865� 10�6 1.89623

Table 2. L2-error norms and corresponding rates of convergence predicted at

Re¼ 1,000 in different meshes

Mesh L2-error norm of u Rates of convergence

11� 11 1.082� 10�3

21� 21 6.948� 10�5 3.96096

31� 31 1.603� 10�5 3.61702

41� 41 6.756� 10�6 3.00342

10 C. HUANG AND T. W. H. SHEU



300In this study, the value of k is chosen to be k ¼ Re=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2=4þ 4p2

q
. For the

calculation carried out at Re¼ 1,000, the L2-error norms predicted in four meshes
and their corresponding rates of convergence are tabulated in Table 2.

6.2. Dam-Break Problem

The investigated dam-break problem is shown schematically in Figure 4, where
305L (¼1) denotes the height and the width of stillwater, in the tank. The computed

results were compared with the results given in [18]. Figures 5a–5f show the results
of the fluid flow investigated at Re¼ 500. Figures 6a–6f are the results predicted at
Re¼ 47,000. The red lines denote the simulated free surfaces, and they agree very
well with those shown in [18].

3106.3. High-Re Lid-Driven Cavity Flow Problem

The final example to be investigated is known as the lid-driven cavity problem,
whose solution has been well documented in the literature. In the past, this problem
received a great deal of attention because of its geometric simplicity and physical
complexity. The boundary velocities u and v are assumed to be zero everywhere

Figure 4. Schematic of the investigated dam-break problem.

Figure 3. Schematic of interpolation from the moving particles to the reference stationary particle (color

figure available online).

MIXED PARTICLE METHOD FOR NAVIER-STOKES EQUATIONS 11
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Figure 6. Comparison of the predicted free surfaces using the proposed particle method and the level set

method at different times for the case with Re¼ 47,000: (a) t¼ 0.0; (b) t¼ 0.5; (c) t¼ 1.0; (d) t¼ 1.5; (e)

t¼ 2.0; (f) t¼ 2.5 (color figure available online).

Figure 7. (a) Particle distribution at steady state. (b) Comparison of the predicted and referenced velocity

profiles of u at x¼ 0.5 and v at y¼ 0.5 for the case investigated at Re¼ 100 (color figure available online).
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315except at the points along the top boundary, where u¼ 1 and v¼ 0. Calculations are
performed at Reynolds numbers 100 and 1,000 in meshes containing 51� 51 and
201� 201 nodal points, respectively.

For the sake of comparison, the results computed at two Reynolds numbers
are plotted along the mid-sectional horizontal and vertical lines in Figures 7 and

3208, respectively. The present results are seen to compare very well with the finite-
difference solutions of Ghia et al. [19].

7. CONCLUDING REMARKS

This article has developed a new particle method for the calculation of the
incompressible Navier-Stokes equations at high Reynolds numbers in a semi-implicit

325sense. When approximating the momentum equations, only the Laplacian and gradi-
ent differential operators are involved for the velocity components. Calculation of
the pressure values from the Poisson equation also involves the Laplacian operator.
It is essential to develop a kernel function for the Laplacian operator in a rigorous
sense within the framework of the moving and stationary particle method. In

330addition, for the pressure Poisson equation this kernel function yields fourth-order
spatial accuracy in the fixed uniform mesh. Note that the pressure Poission equation
is solved in an uniform stationary mesh while the momentum equations are predicted
in the moving sense. The reason for the calculation of the primitive variables u and p
in different meshes is to get a high-Re convergent solution using the moving and

335stationary mixed particle semi-implicit method. Since different meshes are invoked
for the velocity and pressure unknowns, interpolation of the velocity itself and the
velocity correction between two meshes is needed so as to be able to retain the elliptic
nature of the pressure Poisson equation. Through the analysis of the analytical and
two benchmark problems, known as the lid-driven cavity and broken-dam problems,

Figure 8. (a) Particle distribution at steady state. (b) Comparison of the predicted and referenced velocity

profiles of u at x¼ 0.5 and v at y¼ 0.5 for the case investigated at Re¼ 1,000 (color figure available online).
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340the proposed kernel function, which is developed to get a fast convergent pressure
solution, and the newly proposed mixed particle method carried out in two meshes,
are both demonstrated to be correct when solving incompressible viscous flow
equations at high Reynolds numbers.
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