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SUMMARY

We propose in this study a numerically accurate and computationally efficient convection–diffusion–
reaction finite difference scheme to discretize the full-vector and semi-vector optical waveguide equations.
The scheme formulated in a grid stencil of five nodal points for solving the three-dimensional waveguide
equations employs the locally analytic solution. In this three-dimensional study, calculations were carried
out for the investigation of wave propagation in diffused channel, rectangular and rib types of optical
waveguide. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Demand on improving the integrated optical devices remains growing in optical communication
society. Design of an ever-improving modulator, switch, filter, fiber and semiconductor laser in some
geometrically complex settings has prompted scientists to resort to the high-performance simu-
lation approach. For acquiring the precise propagation characteristics in an increasingly complex
waveguide with possibly complex refractive index profiles, it is essential to analyze the Maxwell’s
equations, which theoretically govern the wave propagation in optical devices, by numerical simu-
lations.

The computationally less intensive beam-propagating method (BPM) [1] can be applied to
predict the forward-running wave without the consideration of wave reflection in the device. This
approach can be, in particular, applicable to optical structures which allow only a very small
refractive index change along the axial direction. One can also resort to the differential equation
approach, which seeks direct solution to the Maxwell’s equations, by solving the Faraday’s and
Ampère’s equations in space as well as in time. Time-domain approaches have the advantage of
simulating electromagnetic waves over a wide frequency range [2]. Preservation of the Hamiltonian
property [3] and energy density in Maxwell’s equations poses, however, an academic challenge
regarding the calculation of a long-time accurate waveguide solution. The predicted solution may
be doubtful unless the symplectic property embedded in Maxwell’s equations is conserved all the
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time [4]. In this study, frequency-domain approach will be chosen to avoid the approximation of
time derivative terms. The intrinsic Hamiltonian can, as a result, be preserved all the time in the
waveguide simulation.

Approximation of Maxwell’s equations will inevitably introduce dissipation and dispersion
errors. Dissipation error can attenuate wave amplitude and dispersion error can even cause the
solution to blow up due to an erroneously predicted wave propagation speed. The computed wave
attenuation and incorrect propagation speed are both considered as the obstacles of making an
accurate design of waveguide devices. We are therefore motivated to develop a numerically very
accurate and computationally less expensive frequency-domain waveguide solution solver. When
solving the Maxwell’s equations in frequency domain, it is essential to compute the resulting
eigenvalues effectively. One can find a large body of literatures in [5] for computing the definite-
frequency efficiently in arbitrary periodic dielectric structures.

The remainder of this paper is organized as follows. In Section 2, the waveguide equations cast
in their full-vector, semi-vector, and scalar forms will be presented for the prediction of optical
wave propagation. This is followed by presenting in Section 3 the convection–diffusion–reaction
(CDR) finite difference scheme and in Section 4 the eigenvalue solver for the calculation of
effective refractive index in the three-dimensional waveguide equations. Validation study of several
problems will be presented in Section 5 to justify the integrity of the proposed scheme. In Section
6, some concluding remarks will be drawn.

2. WAVEGUIDE EQUATIONS

To predict the propagation characteristics in optical waveguides, we will numerically solve the three-
dimensional Maxwell’s equations for the EM field in a medium with spatially varying permittivity
�(x ) and constant permeability �. In the absence of free charges and electric currents, the magnetic
field H and the electric field E are governed, respectively, by the following wave equations:

�H/�t= −1

�
∇×E (1)

�E/�t= 1

�
∇×H (2)

Faraday’s law of conduction (or Equation (1)) and Ampère’s law (or Equation (2)) are, in theory,
constrained by the following Gauss’s laws for the respective magnetism and electricity:

∇ ·B=0 (3)

∇ ·D=0 (4)

The above two field vectors B and D are known as the magnetic flux density and the electric
flux density, respectively. To calculate the 12 unknown field variables from the 8 equations given
(1)–(4), another 6 constitutive equations given below for the medium under current investigation
are required for the closure of three-dimensional Maxwell’s equations

B=�H (5)

D= �E (6)

The two material properties � and � shown above determine the local speed of light c, which is
expressed by c= (��)−1/2.

Within the continuous context of differential equations, Maxwell’s equations (1) and (4) are
not independent of each other. One can perform the divergence operation on (1) and (2) to obtain
Equations (3) and (4), respectively. This explains why the hyperbolic equations given in (1) and (2)
are sufficient to close the EM fields for the six unknowns H and E . In mathematics, if the initial
solutions for the field variables E and H are divergence-free, the time-evolving equations given in
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(1) and (2) will automatically satisfy the divergence-free conditions given in (3) and (4) all the time
[6]. In practice, the predicted solution should satisfy the divergence-free conditions exactly or very
accurately in the discrete sense. This necessity poses, however, a great challenge computationally.
From the mathematical point of view, omission of the divergence-free equations (3) and (4) in the
course of conducting EMwave simulation will deteriorate the ellipticity of Maxwell’s equations [7].
This implies that the negligence of two zero-divergence constraints may be accompanied with a
serious defect. In recognition of this computational difficulty, we are motivated to develop a very
accurate scheme by solving Maxwell’s equations in frequency domain. In other words, numerical
simulation of Maxwell’s equations in frequency domain is considered as the compensation of the
omitted Gauss’s laws for magnetism and electricity.

Provided that an electromagnetic wave is propagated along the z-direction in a time depen-
dence fashion given by exp(j�t) in a medium having the spatially varied refractive index n(x),
Equations (1)–(4) can be transformed into the following equations in frequency domain under the
condition of specifying the constant values of � and �, which are �0 and �0 [8]:

∇×E=−j��0H (7)

∇×H = j��0n
2E (8)

∇ ·(�0n2E)=0 (9)

∇ ·(�0H )=0 (10)

By performing the curl operator on Equation (7), the wave equation given below for the electric
field can be derived in frequency domain thanks to Equations (8) and (9)

∇2E+k0
2n2E+∇

(∇n2

n2
·E
)

=0 (11)

We can also derive the wave equation given below for the magnetic field in frequency domain by
performing the curl operator on Equation (8) and using Equations (7), (8) and (10)

∇2H+k0
2n2H+ ∇n2

n2
×(∇×H )=0 (12)

In the above equation, k0 is equal to 2�/�0, where �0 is the wavelength in free space.
For a longitudinally invariant optical structure, �n/�z is equal to zero along the z-direction.

The refractive index n will be varied solely along the transverse directions x and y, implying that
n=n(x, y). The following equations with the mode that is periodic z-dependence (or exp(−j�z))
will be under current investigation:

�
�x

(
1

n2
�n2

�x
Ex

)
+
(

�2Ex

�x2
+ �2Ex

�y2

)
+k20(n

2−n2e)Ex + �
�x

(
1

n2
�n2

�y
Ey

)
=0 (13)

�
�y

(
1

n2
�n2

�y
Ey

)
+
(

�2Ey

�x2
+ �2Ey

�y2

)
+k20(n

2−n2e)Ey+ �
�y

(
1

n2
�n2

�x
Ex

)
=0 (14)

− 1

n2
�n2

�y
�Hx

�y
+
(

�2Hx

�x2
+ �2Hx

�y2

)
+k20n

2Hx =k20n
2
eHx − 1

n2
�n2

�y
�Hy

�x
(15)

− 1

n2
�n2

�x
�Hy

�x
+
(

�2Hy

�x2
+ �2Hy

�y2

)
+k20n

2Hy =k20n
2
eHy− 1

n2
�n2

�x
�Hx

�y
(16)

In the above equation, the effective refractive index ne(= (1/k0)�) is proportional to the propagation
constant �. Equations (13), (14) and (15), (16) are called the full-vector waveguide equations for
the electric and magnetic fields, respectively.
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In this paper, we will solely simulate magnetic field, which is governed by Equations (15) and
(16). Calculation of these two equations, which are cast in the inhomogeneous CDR form, needs
to determine the effective refractive index ne and propose the inhomogeneous CDR scheme for the
spatial derivatives. For this reason, we will present the two-dimensional CDR scheme in Section 3
for the discretization of Equations (15) and (16) and then in Section 4 for the determination of ne.

3. CONVECTION–DIFFUSION–REACTION SCHEME

In the frequency domain, the waveguide Equations (15) and (16) in (x, y) domain take the time-
independent CDR differential form. We will therefore employ the following two-dimensional
inhomogeneous equation as the model equation to describe the discretization method for the
investigated waveguide equations:

u�x +v�y−k∇2�+c�= f (17)

In what follows, the values of u, v, k and c are assumed to be constant for the description of the
proposed CDR scheme given below. In Equation (17), f =k20n

2
eHx −((1/n2)(�n2/�y))(�Hy/�x)

for Equation (15) and f =k20n
2
eHy−((1/n2)(�n2/�x))(�Hx/�y) for Equation (16). In this study,

we are aimed to obtain the solution with higher accuracy by employing the following general
solution for Equation (17):

�(x, y)= A1e
�1x +A2e

�2x +A3e
�3y+A4e

�4y+ f

c
(18)

In the above equation, A1–A4 are the four constants. By substituting Equation (18) into Equation
(17), �1–�4 can be derived as follows in [9]:

�1,2= u±√
u2+4ck

2k
and �3,4= v±√

v2+4ck

2k
(19)

For the model equation (17), we can write the discrete equation at an interior node (i, j ) in
terms of the numerical diffusion coefficient m as follows:

u

2h
(�i+1, j −�i−1, j )+

v

2h
(�i, j+1−�i, j−1)−

m

h2
(�i+1, j +�i−1, j −4�i, j +�i, j+1+�i, j−1)

+ c

12
(�i+1, j +�i−1, j +8�i, j +�i, j+1+�i, j−1)= fi, j (20)

Note that the derivative terms �x , �y , �xx, �yy and the unknown � are all approximated by the
center schemes with the replacement of the physical diffusivity k in Equation (17) by its numerical
counterpart m, which will be determined below to enhance scheme stability and improve numerical
accuracy. Equation (20) can be further rewritten to the following five-stencil discrete form:

(
− u

2h
− m

h2
+ c

12

)
�i−1, j +

( u

2h
− m

h2
+ c

12

)
�i+1, j +4

(
m

h2
+ 2c

12

)
�i, j

+
(
− v

2h
− m

h2
+ c

12

)
�i, j−1+

( v

2h
− m

h2
+ c

12

)
�i, j+1= fi, j (21)

In the above equation, h is the uniform grid size.
Given the above discrete representation, which is Equation (21) for the model equation

(17), the prediction quality depends solely on the introduced diffusion coefficient m. By virtue
of Equation (18), the exact solutions given by �i, j = A1e�1xi +A2e�2xi +A3e�3y j +A4e�4y j +
( f/c), �i±1, j = A1e±�1he�1xi +A2e±�2he�2xi +A3e�3y j +A4e�4y j +( f/c) and �i, j±1= A1e�1xi +
A2e�2xi +A3e±�3he�3y j +A4e±�4he�4y j +( f/c) are substituted into Equation (21). This substitution
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of the nodal exact solutions enables us to obtain the expression for the coefficient m shown in
(21) as follows [9]:

m =
[
uh

2
sinh�1 cosh�2+ vh

2
sinh�3 cosh�4+ ch2

12
(cosh�1 cosh�2+cosh�3 cosh�4+10)

]/

(cosh�1 cosh�2+cosh�3 cosh�4−2) (22)

In the above equation

(�1,�2)=
⎛
⎝uh

2k
,

√(
uh

2k

)2

+ ch2

k

⎞
⎠ and (�3,�4)=

⎛
⎝vh

2k
,

√(
vh

2k

)2

+ ch2

k

⎞
⎠

4. DETERMINATION OF Hx AND Hy

Define the coefficients u, v, k, c shown in Equation (17) as u=0, v=−(1/n2)(�n2/�y) , k=−1,
c=k20n

2. Given that f =k20n
2
eHx −((1/n2)(�n2/�y))(�Hy/�x), we can then apply the CDR scheme

proposed in the previous section to approximate Equation (15) in a grid of five stencil points. The
resulting discrete equation is given below

(a1)i, j Hx |i, j−1+(a2)i, j Hx |i−1, j +(a3)i, j Hx |i, j +(a4)i, j Hx |i+1, j +(a5)i, j Hx |i, j+1= fi, j (23)

where (a1)i, j =−(vi, j/2h)−(mi, j/h2)+(ci, j/12), (a2)i, j =−(ui, j/2h)−(mi, j/h2)+(ci, j/12),
(a3)i, j = (mi, j/h2)+(2ci, j/12), (a4)i, j = (ui, j/2h)−(mi, j/h2)+(ci, j/12) and (a5)i, j = (vi, j/2h)−
(mi, j/h2)+(ci, j/12). By substituting the following second-order accurate approximated equation:

− 1

n2
�n2

�y
�Hy

�x
= (e1)i, j

{
≡
(

− 1

n2
�n2

�y

)
i, j

}
Hy

∣∣∣∣∣
i−1, j

−(e2)i, j

{
≡
(

− 2

n2
�n2

�y

)
i, j

}
Hy

∣∣∣∣∣
i, j

+(e3)i, j

{
≡
(

− 1

n2
�n2

�y

)
i, j

}
Hy

∣∣∣∣∣
i+1, j

(24)

into Equation (23), we are led to derive

(a1)i, j Hx |i, j−1+(a2)i, j Hx |i−1, j +(a3)i, j Hx |i, j +(a4)i, j Hx |i+1, j +(a5)i, j Hx |i, j+1

+(e1)i, j Hy |i−1, j +(e2)i, j Hy|i, j +(e3)i, j Hy |i+1, j =k20n
2
eHx |i, j (25)

For Equation (16), it can be similarly approximated as follows:

(b1)i, j Hy |i, j−1+(b2)i, j Hy |i−1, j +(b3)i, j Hy |i, j +(b4)i, j Hy |i+1, j +(b5)i, j Hy |i, j+1

+( f1)i, j Hx |i−1, j +( f2)i, j Hx |i, j +( f3)i, j Hx |i+1, j =k20n
2
eHy |i, j (26)

where (b1)i, j =−(vi, j/2h)−(mi, j/h2)+(ci, j/12), (b2)i, j =−(ui, j/2h)−(mi, j/h2)+(ci, j/12),
(b3)i, j = (mi, j/h2)+(2ci, j/12), (b4)i, j = (ui, j/2h)−(mi, j/h2)+(ci, j/12), (b5)i, j = (vi, j/2h)−
(mi, j/h2)+(ci, j/12), and ( fk )i, j = (vi, j/2h)−(mi, j/h2)+(ci, j/12), k=1,2,3.

The above two algebraic equations can be cast in the following matrix form:

[A](2N×M)×(2N×M)

[
Hx

Hy

]
(2N×M)×(N×M)

≡ [�](2N×M)×(2N×M)

[
Hx

Hy

]
(2N×M)×(N×M)

(27)
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where N and M represent the number of mesh points along the x-axis and y-axis, respectively.
Note that � (≡diag{�1,�2, . . . ,�(2N×M)}), X (≡ [Hx Hy]T) and

[A]=
[
(A1)(N×M)×(2N×M)

(A2)(N×M)×(2N×M)

]
(2N×M)×(2N×M)

(28)

The components A1 in the above matrix are expressed as (A1)r1,r1−N = (a1)i, j , (A1)r1,r1−1=
(a2)i, j , (A1)r1,r1 = (a3)i, j , (A1)r1,r1+1= (a4)i, j , (A1)r1,r1+N = (a5)i, j , (A1)r1,r1+N ·M−1= (e1)i, j ,
(A1)r1,r1+N ·M = (e2)i, j , (A1)r1,r1+N ·M+1= (e3)i, j , where r1= i+( j−1)N . As for the compo-
nents of A2 in the matrix shown in (28), they can be similarly derived as (A2)r2,r2−N = (b1)i, j ,
(A2)r2,r2−1= (b2)i, j , (A2)r2,r2 = (b3)i, j , (A2)r2,r2+1= (b4)i, j , (A2)r2,r2+N = (b5)i, j ,
(A2)r2,r2−N ·M−N = ( f1)i, j , (A2)r2,r2−N ·M = ( f2)i, j , (A2)r2,r2−N ·M+N = ( f3)i, j , where r2= i+( j−
1)N+(N ·M).

From the eigenvalue equation A X=� X , we apply Matlab to compute the eigenvalues from
the diagonal matrix � and then the solution matrix X . Amongst the predicted eigenvalues

{�1,�2, . . . ,�(2N×M)}, only the eigenvalues (�i =k20n
2
ei , i =1,2,3, . . . ,2N×M) within the range

of k20n
2
cladding and k20n

2
core will be under investigation. Starting from the largest eigenvalue, we can

calculate the corresponding fundamental mode solution. This is followed by employing the rest
of the smaller eigenvalues to get their corresponding eigenvectors.

5. NUMERICAL RESULTS

The proposed CDR scheme will be first justified through the following two-dimensional constant-
coefficient scalar equation in a square domain 0�x , y�1:

a�x +b�y+c∇2�+d�= f (29)

This equation is amenable to the exact solution given by �exact= sinx cos y provided that f is
chosen as f =cosx cos y−sinx sin y+2sinx cos y. Solutions will be computed at a=1, b=1,
c=−1 and d=0 in the five chosen grids with the uniform mesh sizes of h=0.1, 0.05, 0.025,
0.0125, 0.00625. The computed errors cast in their L2-error norms are then plotted against the grid
size of �x=�y=h in Figure 1. These computed errors are seen to decrease with the decreasing
grid sizes at an approximated rate of 1.955, thereby confirming the integrity of the proposed two-
dimensional CDR scheme. Having justified the employed CDR scheme, which will be used to
approximate the waveguide equations in three-dimensional waveguide structures, we will consider
below the problems with the spatially varying refractive index profiles.

The first three-dimensional problem under current investigation is the optical wave propagation
in the diffused channel schematic in Figure 2. The refractive index profile in this waveguide is the
result of diffusing Ti+2 into LiNbO3 in the x–y plane, thereby yielding the graded profile given
below [10]

n(x, y)=
{
[ns

2+2ns�n f (y)g(x)]
1/2, y�0

nc, y<0
(30)

where f (y)= ((erf[(y+a)/
√
2D]−erf[(y−a)/

√
2D])/2erf(a

√
2D)) and g(x)=exp(−x2/2D2).

The notation ‘erf’ denotes the error function. The refractive index of the diffused channel, which
has been divided into two different parts with the jump at y=0, under current investigation
involves the coefficients specified at a=3�m, D=3.35�m, �=1.3�m, nc=1.0, ns =2.203 and
�n=0.01091.

Subject to an incident light source, wave propagating in the diffused channel with the refractive
index described above will be predicted. In Table I, the magnitudes of k0ne predicted at different
grids agree well with 10.666679 shown in [10]. In addition, the predicted amplitude profile in
Figure 3 is also seen to have the similar profile predicted in the work of [8]. We plot in Figure 4
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Figure 1. The predicted spatial rate of convergence for the two-dimensional analytic test
problem chosen for the validation sake.
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n

Dy=0

n(y)
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(b)
x=0 a-a

x

n

n(x)

(c)

Figure 2. The refractive index profile for the diffused channel waveguide considered in the
result section: (a) schematic of the waveguide structure and the refractive index profile;
(b) plot of the computed value of n along the y-axis at x=0; and (c) plot of the computed

value of n along the x-axis at y=0.
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Table I. The propagation constants predicted at different grids
for the diffused channel waveguide schematic in Figure 2.

k0ne

M=20, N =12 10.6729059871051
M=40, N =24 10.6695968029455
M=80, N =48 10.6679630380804
M=120, N =72 10.6674623979537
M=160, N =96 10.6672313273201
M=170, N =102 10.6671923498354

The computed value of k0ne in [10] is 10.666679.
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Figure 3. The predicted field intensity for the investigated diffused channel waveguide
problem schematic in Figure 2.

Figure 4. The predicted field intensity for the investigated diffused channel waveguide
problem schematic in Figure 2.
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3.4

-3.4 3.4

x

y

z

Figure 5. Schematic of the three-dimensional rectangular optical waveguide with ncl =2.19, nc =3.50,
W =0.4�m and h=0.4�m.

Table II. The predicted effective refractive indices of the
semi-vector field for the rectangular optical waveguide schematic

in Figure 5.

ne,present |ne,present−ne,ref|
M=17, N =17 3.22931350761208 1.2113507E−2
M=34, N =34 3.21574190359676 1.4580970E−3
M=68, N =68 3.21688807797960 3.1192300E−4

The value of ne,ref in [11] is 3.2172. Note that the computed values
of ne are not monotonically decreased while the computed differ-
ence between the currently predicted and the referenced values are
monotonically smaller with the increasing number of nodes. The rate
of convergence is 2.3019.

Table III. The predicted effective refractive indices of the
full-vector field for the rectangular optical waveguide schematic

in Figure 5.

ne,present |ne,present−ne,ref|
M=25, N =15 1.42239106123268 3.705039E−3
M=50, N =30 1.42418047664807 1.915624E−3
M=75, N =45 1.42524088728935 8.552130E−4

The value of ne,ref is 1.4260961 [12].

the computed normalized field amplitude along the y-axis at x=0. It can be seen that our currently
predicted results agree well with the spectral solution given in [8].

We then solve the full-vector and semi-vector field equations in the rectangular waveguide
schematic in Figure 5. The semi-vector wave simulation is carried out at nc=3.5, ncl =2.19,
W =0.4�m, h=0.4�m and �=1.55�m. As for the analysis of full-vector field equations, we
consider the case with nc=1.5, ncl=1.0, W =3�m, h=1.55�m and �=1.55�m. The computed
effective refractive indices tabulated in Tables II and III for the semi-vector and full-vector fields,
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Figure 6. The predicted field intensity Hy
11 for the rectangular optical waveguide schematic in Figure 5.
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Figure 7. The predicted field intensity Hy
11 for the rectangular optical waveguide schematic in Figure 5.

respectively, are both agreed well with the predicted values tabulated in [11, 12]. Note that the
computed values of ne are not monotonically distributed. The difference between the computed
and the reference values of effective refractive index decreases, however, with the increase of mesh
points. We also plot the Hy

11 mode field amplitudes for the full-vector problem in Figures 6 and 7.
We then proceeded to analyze the optical wave propagation in a geometrically more complex

waveguide schematic in Figure 8 by solving the full-vector waveguide equations at nc=3.44, ns =
3.4, na =1.0, W =3�m, h=0.5�m, t=0.5�m and �=1.55�m. The predicted effective refractive
index ne, tabulated in Table IV, agrees again well with the predicted value given in [12]. The
amplitude for Hy

11 is plotted in Figures 9 and 10.
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Figure 8. Schematic of the semiconductor rib optical waveguide with ns =3.40, nc=3.44, na =1.0,
W =3�m, h=0.5�m and t=0.5�m.

Table IV. The predicted effective refractive indices for the semi-
conductor rib optical waveguide schematic in Figure 8.

ne |ne−ne,exact|
M=36, N =24 3.41154634822330 1.601252E−3
M=54, N =36 3.41195189416494 1.195706E−3
M=72, N =48 3.41221249715367 9.351030E−4

The value of ne is 3.4131476 [12].
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Figure 9. The predicted field intensity Hy
11 for the rib optical waveguide schematic in Figure 8.

6. CONCLUDING REMARKS

We have proposed in this study the CDR finite difference scheme to solve Maxwell’s equations in
frequency domain. The three-dimensional waveguide equations have been investigated within the
full-vector and semi-vector frameworks. All the predicted results have been shown to be compared
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Figure 10. The predicted field intensity Hy
11 for the rib optical waveguide schematic in Figure 8.

well with the benchmark solutions of the three-dimensional waveguides investigated at different
optical properties.
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