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SUMMARY

A two-step conservative level set method is proposed in this study to simulate the gas/water two-phase
flow. For the sake of accuracy, the spatial derivative terms in the equations of motion for an incompressible
fluid flow are approximated by the coupled compact scheme. For accurately predicting the modified level
set function, the dispersion-relation-preserving advection scheme is developed to preserve the theoretical
dispersion relation for the first-order derivative terms shown in the pure advection equation cast in
conservative form. For the purpose of retaining its long-time accurate Casimir functionals and Hamiltonian
in the transport equation for the level set function, the time derivative term is discretized by the sixth-order
accurate symplectic Runge–Kutta scheme. To resolve contact discontinuity oscillations near interface,
nonlinear compression flux term and artificial damping term are properly added to the second-step equation
of the modified level set method. For the verification of the proposed dispersion-relation-preserving
scheme applied in non-staggered grids for solving the incompressible flow equations, three benchmark
problems have been chosen in this study. The conservative level set method with area-preserving property
proposed for capturing the interface in incompressible fluid flows is also verified by solving the dam-
break, Rayleigh–Taylor instability, bubble rising in water, and droplet falling in water problems. Good
agreements with the referenced solutions are demonstrated in all the investigated problems. Copyright �
2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Interface between different phases, where surface tension in the flow plays a key role in affecting
its phenomenal behavior, is commonly found in some areas of practical importance and scien-
tific significance. Typical problems include etching, deposition, lithography, image processing
and crystal growth [1]. Study of the complex phenomena in air–water interfacial dynamics,
breaking surface wave, solidification–melt dynamics, two-phase reacting flow, and flow–structure
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interactions involves determining the temporal surface advancement driven by the carrier flow under
different physical loadings. The necessity of capturing or tracking time-evolving interface with
possible sharply varying topology and front propagation speed can make the numerical analysis of
the differential equations for their respective two-phase fluid flows an even challenging topic. Two
classes of methods, which are known as the interface tracking and interface capturing methods,
are in common use. Interface tracking methods, which employ a deforming mesh that conforms to
the interface, are developed in Lagrangian sense. The mesh, as a result, should explicitly represent
the interface. Interface capturing methods are, on the contrary, belong to the Eulerian type since
interface itself is an implicit function defined on a fixed mesh. In this study, our attention will
be concentrated on the modified level set method, applied together with the incompressible flow
solver in non-staggered grids, to predict the air/water interface, where surface tension needs to be
taken into account.

The most common numerical methods that have been applied to predict the air/water interface
include the vortex method [2], boundary integral method [3], volume of fluid (VoF) method [4],
front tracking method [5], and phase field method [6–8]. One can also combine the level set and
projection methods to avoid an explicit interface tracking [9]. There exist some advantages and
disadvantages of applying these interface capturing methods and it is difficult to conclude that one
method is generally superior to the others. Arbitrary Lagrangian Eulerian [10] and Marker and
Cell [11] methods are the two commonly applied interface tracking methods, which have been
known to be very efficient in modeling a small interface deformation. For the interface undergoing
a large deformation, a fairly expensive re-meshing procedure is needed. If surface tension needs to
be considered in the simulation of incompressible two-phase flows, the VoF and level set methods
are most commonly referred to.

After the pioneering work of Osher and Sethian [12], progress towards refining the level set
method has made this method a good candidate to simulate the fluid flows that involve moving
interfaces. Owing to the smooth nature of the level set function, across the interface both of the
interface and its curvature can be easily transported and accurately calculated, respectively. A signed
distance function for the sake of re-shaping the level set function and a reinitialization procedure
for the purpose of enhancing numerical stability are normally required in the development of
traditional level set methods [13]. Owing to the lack of geometric conservative law [14, 15], there
is no guarantee that the employed reinitialization process can preserve either flow volume or area
in time. In each time step, fluid mass of a small quantity may, therefore, be lost or gained. As
time proceeds, even a negligibly small error can be accumulated to a sufficiently large magnitude
and may, finally, lead the solution to breakdown in the prediction of flow equations under the
incompressible constraint condition (or conservation of mass). To overcome the problem resulting
from the level set methods, the particle level set method [16], level set method with mass correction
procedure [17], coupled level set and VoF method [18], and adaptive tree method [19] have been
proposed. For the details of level set methods, one can refer to the excellent review books of Osher
and Fedkiw [20] and Sethian [21]. A modified level set method with a built-in conservative (or
area-preserving) property will be developed in the current incompressible flow simulation with the
goal to preserve mass [22].

The outline of this paper is as follows. In Section 2, the differential equations governing the
motion of two incompressible fluids will be presented. Section 3 describes the conservative level
set method, which involves solving the nonlinear transport equation in two steps. In Section 4,
the coupled compact scheme accommodating the dispersion-relation-preserving property will be
employed to model the advected interface. Regularized incompressible viscous flow solver, which
is developed in non-staggered grids, is also presented to solve the primitive variables explicitly.
While very accurate, stable, and efficient advection schemes have been proposed in the literature
and they can be applied to solve the pure advection equation, which governs the transport of
level set function, none of them have taken the area-preservation property into account [23]. Since
the area of fluids within each contour of the level-set function is preserved in the divergence-
free flow field, we present in section 5 the implicit symplectic-type temporal scheme to solve
the pure advection equation, which appears in the first step of the modified level set method.
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The approximation scheme chosen for the first-order spatial derivative term accommodating the
dispersion relation is also presented. Section 6 is presented to justify the analysis code by solving
the pure convection equation subjected to a sharply varying initial condition and the Navier–Stokes
problem with the benchmark solution for the carrier fluid flow. Section 7 presents the predicted
results for the dam-break, Rayleigh–Taylor instability, bubble rising, and liquid droplet falling
problems. Finally, we will draw some conclusions in Section 8.

2. GOVERNING EQUATIONS

For the two immiscible fluids under current investigation, liquid and gas are both assumed to be
incompressible. The resulting equations of motion for these two fluids in a gravitational vector
field g can be represented by the following incompressible Navier–Stokes equations:

Du

Dt
= 1

�
[−∇ p+∇ ·(2�D)−T +�g] (1)

∇ ·u =0 (2)

where Du/Dt(≡ (�u/�t)+(u ·∇)u) is the material derivative of velocity vector u. Two physical
properties � and �, which are varied with time and space, represent the fluid density and viscosity,
respectively. The tensor D shown above with the components given by Di j = 1

2 (ui, j +u j,i ) denotes
the rate of deformation.

In addition to the stress tensor −pI+2�D, where I is the identity matrix, the other surface
tension vector T per unit interfacial area concentrated solely on the two-fluid interface is given
below

T =���n (3)

In the above, � is the Dirac delta function, � is denoted as the surface tension coefficient, and �
is the curvature of time-evolving interface. The unit outward normal vector n along the interface
is pointed to the surrounding liquid. One can then express the unit normal and the curvature of
interface in terms of the phase field function �, respectively, as

n = ∇�

|∇�| and �=∇ · ∇�

|∇�|
The need that Equations (1)–(2) should be solved within the framework of level set method is
enlightened.

Take ur, lr, tr, pr(≡�rglr),�r,�r as the referenced values for the respective velocity, length, time,
pressure, density, and viscosity, the normalized (or dimensionless) continuity equation remains
unchanged. The other dimensionless vector equation for conserving the momentum components
can be formulated as

ut +(u ·∇)u = 1

�

[
−∇ p+ 1

Re
∇ ·(2�D)− 1

W e
�(�)�(�)∇�

]
+ 1

Fr2
eg (4)

where eg denotes the unit gravitational vector and the Reynolds number is given by Re=�rurlr/�r.
Another characteristic parameter W e shown above is known as the Weber number, which is
defined as W e=�ru

2
r lr/�. Both of the fluid density and viscosity will be smoothly approximated

by �=�1 +(�2 −�1)� and �=�1 +(�2 −�1)�, where �i and �i (i =1,2) are the dimensionless
densities and viscosities of the two investigated fluids, respectively.

3. TWO-STEP INTERFACE CAPTURING SOLUTION ALGORITHM

For the two investigated immiscible fluids, both � and � are assumed to be uniform all the time
in their respective phases, implying that (D�/Dt)= (D�/Dt)=0. In other words, the transport
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equations for the fluid density and viscosity depend only on the flow velocity u by means of
�t +(u ·∇)�=0 and �t +(u ·∇)�=0. Across an interface there exists, however, an abrupt change
in the magnitudes of � and �. The air/water interface, denoted by the level set function �, will be
advected in a fluid flow following the linear advection equation given by:

�t +u ·∇�=0 (5)

It is noted that the magnitude of � across the interface has a sharp change from zero to one. The
interface is represented by the contour value of �=0.5 which is suggested by Olsson and Kreiss
[22] for getting a better volume conservation. To avoid numerical instabilities near the interface,
Equation (5) will be further transformed to its equivalent conservative form given below by taking
into account the fact that the velocity vector u under current investigation is always divergence-free

�t +∇ ·(u�)=0 (6)

Over each time step �t , � will be first computed from the pure advection equation �t +∇ ·(u�)=
0, which is normally employed in the traditional level set method to advect the level set function
�. The solution of � computed from Equation (6) is then employed as the initial solution to
solve the following nonlinear equation for purposes of enhancing numerical stability and enabling
compression of the solution across interface [22]:

��+∇ ·[�(1−�)n]=�∇ ·(∇�) (7)

Note that the employment of the explicitly added nonlinear flux term, which is �(1−�)n, in the
above equation helps to compress the solution and this addition can, thus, resolve the contact
surface. Furthermore, the artificial damping term is introduced into the current formulation to damp
out the numerical oscillations generated by the discontinuities in the vicinity of interface. Note
that the introduced damping mechanism for resolving oscillations near interface may deteriorate
the mass conservation.

In the present calculation of Equation (7), the time increment is chosen as ��=0.1�t . As
a criterion of examining whether or not the time accurate solution has been computed, we use
|�m+1 −�m |<TOL where TOL is the problem-dependent specified tolerance. In practice, only few
iterations are needed for all the computations carried out in this study. Besides, the value of � will
be chosen as 1.1�x in all calculations.

4. INCOMPRESSIBLE FLOW SOLVER IN NON-STAGGERED GRIDS

4.1. Dispersion-relation-preserving coupled compact scheme for the spatial derivative terms in
momentum equations

The first-order derivative term �u/�x and the second-order derivative term �2u/�x2, for example,
will be approximated in the three-point grid stencil by the following compact scheme:

a1
�u

�x

∣∣∣∣
i−1

+ �u

�x

∣∣∣∣
i
= 1

h
(c1ui−1 +c2ui +c3ui+1)

−h

(
b1

�2u

�x2

∣∣∣∣∣
i−1

+ b2
�2u

�x2

∣∣∣∣∣
i

+ b3
�2u

�x2

∣∣∣∣∣
i+1

)
(8)

b1
�2u

�x2

∣∣∣∣∣
i−1

+ �2u

�x2

∣∣∣∣∣
i

+ b3
�2u

�x2

∣∣∣∣∣
i+1

= 1

h2
(c1ui−1 +c2ui +c3ui+1)

−1

h

(
a1

�u

�x

∣∣∣∣
i−1

+ a2
�u

�x

∣∣∣∣
i
+ a3

�u

�x

∣∣∣∣
i+1

)
(9)
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As for the terms �u/�y and �2u/�y2 along the y-direction, they can be similarly approximated as
�u/�x and �2u/�x2. Note that the compact schemes for (�u/�x)|i and (�2u/�x2)|i are coupled
through (�u/�x)|i−1, (�u/�x)|i , (�u/�x)|i+1, (�2u/�x2)|i−1, (�2u/�x2)|i , (�2u/�x2)|i+1, ui−1, ui ,
ui+1. For the sake of description, only the case involving the positive convective coefficient will be
considered. For the case with the negative convective coefficient, the derivation will be the same.

Approximation of �2u/�x2 normally introduces dissipative error. Owing to this physical reason,
the weighting coefficients shown in Equation (9) will be determined solely from the modified
equation analysis for getting a higher solution accuracy. Along the line of this thought, we can derive
the coefficients in Equation (9) as a1 =− 9

8 ,a2 =0,a3 = 9
8 ,b1 =− 1

8 ,b3 =− 1
8 ,c1 =3,c2 =−6, and

c3 =3. Note that these derived coefficients shown in Equation (9) have the same values as those
given in Chu and Fan [24]. It is remarkable to point out here that the use of these derived coefficients
for �2u/�x2 can render the following modified equation, from which the spatial accuracy order is
known to be sixth in a grid involving only three nodal points

�2u

�x2
= �2u

�x2

∣∣∣∣∣
exact

+ h6

20160

�8u

�x8
+ h8

604800

�10u

�x10
+O(h12)+·· ·

For the coefficients a1, b1 ∼b3, c1 ∼c3, they are partly determined by applying the Taylor series
expansions for ui±1, (�u/�x)|i−1 and (�2u/�x2)|i±1 with respect to ui , (�u/�x)|i and (�2u/�x2)|i .
This is followed by eliminating the leading error terms derived in the modified equation, from
which the following set of algebraic equations for Equation (8) can be derived

c1 +c2 +c3 =0 (10)

−a1 −c1 +c3 −1=0 (11)

−a1 +b1 +b2 +b3 − c1

2
− c3

2
=0 (12)

a1

2
−b1 +b3 + c1

6
− c3

6
=0 (13)

−a1

6
+ b1

2
+ b3

2
− c1

24
− c3

24
=0 (14)

a1

24
− b1

6
+ b3

6
+ c1

120
− c3

120
=0 (15)

One more algebraic equation is in need to uniquely determine the seven introduced coefficients
shown in Equation (8).

For accurately approximating the first-order derivative term from Equation (8), it is legitimate
to preserve the dispersive nature embedded in �u/�x as best as one can since dispersion relation
defines the relation between the angular frequency and the wavenumber of the first-order dispersive
term [25]. In other words, the solution can be accurately calculated provided that the dispersion
relation is well preserved. It is therefore important for us to develop a scheme which accommodates
the dispersion relation for the first-order spatial derivative term.

The Fourier transform and its inverse of u given below will be employed to preserve the
dispersion relation

ũ(	)= 1

2


∫ +∞

−∞
u(x)exp(−i	x)dx (16)

u(x)=
∫ +∞

−∞
ũ(	)exp(i	x)d	 (17)

where the notation i shown above is equal to
√−1. Development of the proposed dispersion-

relation-preserving scheme is followed by performing the Fourier transform on each term shown
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in Equations (8) and (9). The actual wavenumber 	 for Equations (8) and (9) can therefore be
derived as

i	h(a1 exp(−i	h)+1) � c1 exp(−i	h)+c2 +c3 exp(i	h)−(i	h)2(b1 exp(−i	h)+b2

+b3 exp(i	h)) (18)

and

(i	h)2(− 1
8 exp(−i	h)+1− 1

8 exp(i	h)) � 3exp(−i	h)−6+3exp(i	h)

−i	h(− 8
9 exp(−i	h)+ 8

9 exp(i	h)) (19)

Thanks to the above two equations, the effective wavenumbers 	′ and 	′′ will be derived to get
the same expressions as those shown in the right-hand sides of Equations (18) and (19) [25]. We
are then led to get 	′ and 	′′ as follows:

i	′h(a1 exp(−i	h)+1) = c1 exp(−i	h)+c2 +c3 exp(i	h)−(i	′′h)2(b1 exp(−i	h)+b2

+b3 exp(i	h)) (20)

i	′h(− 8
9 exp(−i	h)+ 8

9 exp(i	h)) = 3exp(−i	h)−6+3exp(i	h)−(i	′′h)2(− 1
8 exp(−i	h)+1

− 1
8 exp(i	h)) (21)

The expressions given below for 	′ and 	′′ can be derived by solving Equations (20) and (21)
simultaneously

	′h = −i(24b1 exp(−2i	h)+c1 exp(−2i	h)+c3+c1 +24b1 +c2 exp(−i	h)
+24b2 exp(−i	h)+24b3−48b1 exp(−i	h)−8c1 exp(−i	h)
−48b3 exp(i	h)+24b2 exp(i	h)+24b3 exp(2i	h)−48b2

+c2 exp(i	h)+c3 exp(2i	h)−8c3 exp(i	h)−8c2)/
(−8+exp(i	h)−8a1 exp(−i	h)+a1 exp(−2i	h)−9b1 exp(−2i	h)
−9b2 exp(−i	h)+9b2 exp(i	h)+9b3 exp(2i	h)+a1 +9b1 −9b3 +exp(i	h)) (22)

	′′h =
√√√√−3exp(−i	h)−6+3exp(i	h)− i	′h(− 8

9 exp(−i	h)+ 8
9 exp(i	h))

− 1
8 exp(−i	h)+1− 1

8 exp(i	h)
(23)

To get a better dispersive accuracy for 	′, it is demanded that 	h ≈ �(	′h), where �(	′h) denotes
the real part of 	′h. This implies that E(	) defined below should be a small value of positive sign

E(	)=
∫ 
/2

−
/2
[W (	h−�(	′h))]2d(	h)=

∫ 
/2

−
/2
[W (�−�(�′))]2d� (24)

where �=	h and �′ =	′h. Note that Equation (24) is analytically integrable provided that the
weighting function W shown above is chosen as:

W = −16+72b3+72b1 −81b2
1 −81b2

3 −81b2
2 −162b2b3 cos(�)−144a1b3 cos(�)−162b1b2 cos(�)

−a2
1 cos(�)2+8a2

1 cos(�)−18b3 cos(�)3+18b1 cos(�)3+81b2
2 cos(�)2+162b1b3−72b1 cos(�)2

+81b2
3 cos(�)2 +81b2

1 cos(�)2 −72a1b2 −18b1 cos(�)+16a1 cos(�)2 −2a1 cos(�)3

+72b3 cos(�)2+18b3 cos(�)−32a1 cos(�)−36a1b3 cos(�)4−18a1b2 cos(�)3+162b2b3 cos(�)3

+162b1b2 cos(�)3 +324b1b3 cos(�)4 +72a1b2 cos(�)2 +144a1b3 cos(�)3 −486b1b3 cos(�)2

+36a1b3 cos(�)2 +18a1b2 cos(�)+8cos(�)−16a2
1 −cos(�)2 (25)
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Note that the integration interval shown in Equation (24) should be sufficiently large and can, as
a result, take a complete period of sine (or cosine) wave into account.

To make E defined in Equation (24) a positive and minimum value, the following extreme
condition is enforced

�E

�c3
=0 (26)

The above equation, which is employed to preserve the dispersion relation, will be solved together
with the six previously derived algebraic equations, by virtue of the modified equation anal-
ysis to retain a smaller dissipation error as well as an improved dispersion accuracy. The seven
introduced unknowns can then be uniquely determined as a1 =0.875, b1 =0.125128234160, b2 =
−0.24871765840, b3 =0.000128234160, c1 =−1.935961190081, c2 =1.9969223801622 and c3 =
−0.0609611900811. Given these coefficients, the resulting upwinding scheme for �u/�x can be
shown to have the spatial accuracy order of fifth according to the derived modified equation given
below

�u

�x
= �u

�x

∣∣∣∣
exact

−0.0007008561524398922475h5 �6u

�x6
+0.0001984126984126984127h6 �7u

�x7

−0.0000498830507458330390h7 �8u

�x8
+O(h8)+·· · (27)

4.2. Solution algorithm

Thanks to the Helmholtz–Hodge decomposition theorem [26], the vector field u for Equation
(1) can be decomposed into the zero-curl and zero-divergence two components. The intermediate
velocity un+1/2 can then be calculated from the fully implicit equation along with the prescribed
velocity vector un+1/2|��(≡b) along the boundary �� for the following Navier–Stokes equations
written in the vector form

un+1/2 −un

�t
=−(un+1/2 ·∇)un+1/2 + 1

�Re
∇ ·(2�Dn+1/2)+ f n+1 (28)

where f is expressed as −(1/�)(1/W e)�(�)�∇�+1/Fr2eg . Note that the pressure variable has
been eliminated from the momentum equations. Analysis of the incompressible viscous flow
equations becomes thus much simplified.

The above equation can be solved sequentially from the advection step, given by

un+1/2
a −un

�t
+(un ·∇)un =0

and the diffusion step, given by

un+1/2 −un+1/2
a

�t
= 1

�Re
∇ ·(2�Dn+1/2)+ f n+1/2

The intermediate velocity solution un+1/2 calculated from the above two steps does not necessarily
satisfy the divergence-free constraint condition. As a result, the intermediate vector un+1/2 is
decomposed into the sum of the solenoidal velocity un+1 and the gradient of the currently chosen
scalar function, which is proportional to �t∇ pn+1. The integrity of employing the following two
equations in the projection step is enlightened:

un+1 −un+1/2

�t
=−∇ p

�

n+1

(29)
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∇ ·un+1 =0 (30)

According to Equation (29), the calculation of un+1 needs a pressure solution. By applying the
divergence operator to both hand sides of u =w−∇ p, the Poisson equation given by ∇ ·∇ p/�=
∇ ·un+1/2 can be derived.

There exists a necessity of specifying the pressure boundary value in this formulation. However,
in theory pressure boundary value needs not to be specified when solving the primitive-variable
Navier–Stokes equations. In addition, analysis of the Poisson equation for p is normally expensive.
For these two reasons, the regularization method will be adopted. Development of the regularization
method for (�u/�t)+(u ·∇)u =−(∇ p/�)+(1/Re)∇2u+ f starts with substituting

un+1 −un+1/2

�t
=−∇ p

�

n+1

(or Equation (29)) into the semi-discretized momentum equation given below

un+1 −un

�t
+(u∗ ·∇)u∗− 1

�Re
∇2u∗+ ∇ p

�

∗
=−∇ p

�

′
+ M1 + M2 − f n+1 (31)

where ‘*’ denotes the most updated value. In the above, M1 = [(u∗ ·∇)(∇ p/�)′+((∇ p/�)′ ·
∇)u∗]�t −(1/�Re)∇(∇ ·u∗), M2 =−[((∇ p/�)′ ·∇)∇ p/�′]�t2 and [27]

p′
i, j = p′∗

i, j +
(

p′∗
i−1, j

�i−1/2�x2
+

p′∗
i+1, j

�i+1/2�x2
+

p′∗
i, j−1

� j−1/2�x2
+

p′∗
i, j−1

� j−1/2�x2

)/
(

1

�i+1/2�x2
+ 1

�i−1/2�x2
+ 1

� j+1/2�y2
+ 1

� j−1/2�y2

)

5. NUMERICAL SCHEME FOR THE MODIFIED LEVEL SET EQUATION

5.1. Dispersion-relation-preserving compact scheme for the advection term

It has been well known that the convective flux term shown in Equation (6) is recommended to
be approximated in conservative form for the sake of enhancing scheme stability. The guideline
behind approximating (�(u�)/�x)|i , for example, is to conserve the flux term u� across a cell of
length h by means of

�(u�)

�x

∣∣∣∣
i
= ui+1/2�i+1/2 −ui−1/2�i−1/2

h
(32)

Define first the values of � at the half nodal points i ± 1
2 as follows:

�i+1/2 =�1�i +�2�i+1 −
(

	1�i−1/2 +h

(
�1

��

�x

∣∣∣∣
i−1/2

+ �2
��

�x

∣∣∣∣
i+1/2

+ �3
��

�x

∣∣∣∣
i+ 3

2

))
(33)

and

�i−1/2 =�1�i−1 +�2�i −
(

	1�i−3/2 +h

(
�1

��

�x

∣∣∣∣
i−3/2

+ �2
��

�x

∣∣∣∣
i−1/2

+ �3
��

�x

∣∣∣∣
i+1/2

))
(34)
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One can then substitute them into (��/�x)|i = (�i+1/2 −�i−1/2)/h to get the algebraic equation
for ��/�x at the node i . Derivation of 	i , �i and �i is then followed by comparing the coefficients
derived in Section 4.1 for (��/�x)|i . After a term-by-term comparison of these two equations, we
are led to get the coefficients, shown in (33) and (34), as follows:

	1 =0.875 (35)

�1 =0.125128234159909 (36)

�2 =−0.248717658400910 (37)

�3 =0.000128234159909 (38)

�1 =−1.935961190081093 (39)

�2 =−0.060961190081093 (40)

To eliminate the spurious oscillations in the vicinity of high gradient solutions, the ULTIMATE
strategy proposed in [28] is employed.

5.2. Sixth-order accurate symplectic time-stepping scheme for the pure advection equation

Calculation of the level set equation is followed to approximate the remaining time derivative
term shown in the ordinary differential equation for (6), where the spatial derivatives have been
approximated in Section 5.1. The pure advection equation (6) has been well known to possess the
following generalized enstrophies [23]:

Cn =
∫

�ndx dy (41)

where n =0,1,2, . . .. Take n =1 as an example, C1 =∫ �dx dy =��(�x�dy) should be conserved
exactly. Thanks to constant values of �1, �2 and, thus, �1 +(�2 −�1)�(≡�), the value

∫
�dx dy

will be also conserved.
Define the area enclosed by the set as �c ={(x, y) :�(x, y)�c}, where c is 0.5 for the represen-

tation of free surface. Thanks to the existing Casimir, defined by Equation (41), holding at n =0,
we are led to know that the following area function for the field variable � with the magnitude
larger than c is preserved [23]:

C0(c)=
∫

�c

dx dy (42)

This implies that the area (for the two-dimensional case) or the volume (for the three-dimensional
case) enclosed by an interface, which is denoted by �=c, remains unchanged all the time. Devel-
opment of an advection scheme for Equation (6) that possesses the conserved quantity C0(c)
becomes therefore important in the prediction of interface in an incompressible fluid flow.

Equation (6) subjected to the constraint condition ∇ ·u =0 is also known to have the following
Hamiltonian [23]:

H = 1

2

∫
�

�d� (43)

where  denotes the stream function governed by u =�/�y and v=−�/�x . Employment of a
scheme that accommodates the above Hamiltonian property is also essential in the prediction of
interface using the level set method [29].

For the purpose of preserving the long-time accurate Hamiltonian and Casimir properties
embedded in Equation (6), the time derivative term will be discretized by the symplectic scheme. In
this paper, the following sixth-order temporally accurate implicit symplectic Runge–Kutta scheme
[30] will be employed to solve the ordinary differential equation.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:109–134
DOI: 10.1002/fld



118 T. W. H. SHEU, C. H. YU AND P. H. CHIU

Given the time accurate solution �n at t =n�t , we will calculate �n+1 by marching the calcu-
lation by a time step �t using the following iterative method. We start with the guessed values
�(i) for �n , where i =1∼3, and then calculate the values of F (i). This is followed by substituting
F (i)(i =1∼3) into the following three equations to get the updated values of �(i)(i =1∼3).

�(1) =�n +�t

[
5

36
F (1)+

(
2

9
+ 2̃c

3

)
F (2)+ 5

36
+ c̃

3

)
F (3)

]
(44)

�(2) =�n +�t

[(
5

36
− 5̃c

12

)
F (1)+ 2

9
F (2)+

(
5

36
+ 5̃c

12

)
F (3)

]
(45)

�(3) =�n +�t

[(
5

36
− c̃

3

)
F (1) +

(
2

9
− 2̃c

3

)
F (2) + 5

36

]
(46)

where c̃= 1
2

√
3
5 . Note that F (i)(≡−∇ ·(u�(i))), which is shown in the right-hand side of Equation

(6), for (i =1∼3) represent the values of F evaluated, respectively, at t =n+( 1
2 + c̃)�t , t =n+ 1

2�t

and t =n+( 1
2 − c̃)�t . Unless the difference of �(i) between two consecutive iterations becomes

negligibly small, we continue the calculation of F (i) according to Equations (44)–(46). Upon
reaching the user-specified tolerance, we can calculate the solution at the time (n+1)�t from the
following equation:

�n+1 =�n +�t[ 5
18 F (1)+ 4

9 F (2) + 5
18 F (3)] (47)

6. VERIFICATION STUDIES

For the sake of assessment of the symplectic DRP scheme proposed for solving the level
set equation, we defined below the computed error cast in its percentage form for the
conserved quantities CError

n = ((Cn(t)−Cn(t =0))/Cn(t =0))×100% (n =0,1) and HError =
((H (t)− H (t =0))/H (t =0))×100%.

6.1. Rotation of a Gaussian profile in an inviscid flow

To verify the proposed fifth-order spatially accurate DRP advection scheme, the problem with the
smooth Gaussian profile e(−((x+3)/22)−(y+3)/22) for Equation (5) will be investigated in −1�x�1
and −1�y�1 with the prescribed rotating velocity field u =−2
y/9 and v=2
x/9. The L2 error
norms predicted at different grids are given in Table I, from which the proposed method is justified
and the rates of convergence are known from the results calculated at the times after 10 and 20
rotations.

6.2. Two-vortex flow in a box

The two-vortex problem is then investigated in a square domain, within which the velocity field
is given by u =−sin2(
x) sin(2
y) and v=sin2(
y) sin(2
x). Two centers of the rotating velocity

Table I. The predicted L2-error norms and the spatial rates of convergence (R.O.C.) after
10 and 20 rotations in the domains of three chosen meshes and at �t = 1

1000 for the
rotating of a smooth Gaussian profile.

10 rotations 20 rotations

Grids L2 error norms R.O.C. Grids L2 error norms R.O.C.

20×20 1.5097E−002 20×20 2.0968E−002
40×40 7.0508E−004 4.42 40×40 1.3297E−003 4.02
60×60 9.7930E−005 4.87 60×60 1.7779E−004 4.96
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Figure 1. The predicted interfaces at the four chosen times in a domain of 120×120 grids: (a) t =0.4;
(b) t =0.8; (c) t =1.2; and (d) t =1.6.

field, defined in a circle of radius 0.15, are located at (0.5,0.75) and (0.5,0.25). This test problem
has a nonzero vorticity and will be solved at �t = 1

1000 in a domain of 120×120 and 240×
240 grids. The predicted results plotted, respectively, in Figures 1 and 2 at t =0.4, t =0.8, t =
1.2 and t =1.6 are seen to get distorted and form two long filamentary shapes owing to the
specified stretching and tearing flow. We plot the predicted values of Casimir percentage error
CError

n (n =0,1) and Hamiltonian percentage error HError against time in Figure 3, from which
the values of CError

1 , CError
2 and HError are all seen to conserve fairly well. To verify the proposed

conservative spatially accurate DRP advection scheme, at a time t =T (T =1.6) we reverse the
flow field so that the exact solution at t =2T should be identical to the initial solution. For
this reason, we plot Figure 4, which consists of the initial solution profile and the predicted
solution profile at t =2T . The predicted L1 error norms at t =2T and the corresponding spatial
rates of convergence are tabulated in Table II. Note that the convergence rate is determined from
the computed error norms [17], defined by

∫
� |�numerical(x,2T )−�exact(x, t =0)|/L d�, where

L(=0.3
) represents the circumference. We also plot the predicted values of Casimir percentage
error CError

n (n =0,1) and Hamiltonian percentage error HError against time in Figure 5. Our
currently predicted vortex shape and mass conservation are seen to be better than those of Olsson
et al. in [22].
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Figure 2. The predicted interfaces at the four chosen times in a domain of 240×240 grids: (a) t =0.4;
(b) t =0.8; (c) t =1.2; and (d) t =1.6.

6.3. Rotation of a Zalesak’s slotted disk

To verify the proposed spatially accurate DRP advection scheme with sharply varying solution, the
initial profile of a notched disc type with the slot width of 15, which is rotated about the point at
(50,75) in an inviscid flow with the velocity field given by (u,v)= (
(50− y)/314,
(x −50)/314),
will be considered [31, 32]. Calculation will be carried out in 100×100 and 200×200 grids
to get the solutions at times after one and five revolutions. The computed solutions shown in
Figures 6 and 7 were seen to be in good agreement with the exact (or initial) solution. The
computed Casimir error CError

n (n =0,1) and Hamiltonian error HError shown in Figure 8 at
the time after the initial profile being rotated by five revolutions demonstrate that the conser-
vative properties are indeed embedded in the approximated equation for the transport of level
set function. The computed L1 error norms and the corresponding spatial rates of convergence
are tabulated in Table III. While our predicted results are superior to those predicted by S. P.
van der Pijl et al. [31] in 100×100 and 200×200 grids, it is comparatively expensive to carry
out the coupled compact calculation owing to the necessity of performing a triangular matrix
calculation.
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Figure 3. Comparison of three conserved quantities in percentage error form for the cases investigated in
120×120 and 240×240 grids: (a) CError

0 ; (b) CError
1 ; and (c) HError.
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Figure 4. Comparison of the initial solution and the solution predicted at t =2T (T =1.6) in the two
chosen grids: (a) 120×120 grids and (b) 240×240 grids.
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Table II. The predicted L1 error norms at t =2T and the spatial rates of convergence
(R.O.C.), for the case with T =1.6, in the five chosen meshes and �t = 1

1000 .

Grids L1 error norms R.O.C.

40×40 7.560E−002
60×60 4.752E−002 1.16
80×80 2.673E−002 2.00
120×120 1.188E−002 2.00
240×240 2.761E−003 2.10
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Figure 5. Comparison of three conserved quantities in percentage error form for the cases investigated in
120×120 and 240×240 grids: (a) CError

0 ; (b) CError
1 ; and (c) HError.

6.4. Lid-driven cavity flow problem

The flow driven by a constant upper lid velocity ulid(=1) in the square cavity is then investigated
at Re=100,1000,5000 and 7500. The simulated grid-independent mid-plane velocity profiles for
u(0.5, y) and v(x,0.5) are plotted in Figure 9. Good agreement with the benchmark solution of
Ghia [33] validates the proposed incompressible flow solver implemented in the two-dimensional
non-staggered grids. The applicability of the proposed scheme to predict the incompressible fluid
flow at high Reynolds numbers is therefore confirmed.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:109–134
DOI: 10.1002/fld



DEVELOPMENT OF LEVEL SET METHOD 123

X

Y

30 40 50 60 70
50

60

70

80

90

Initial condition
Present

φ=0.95

φ=0.5

φ=0.05

(a) X

Y

30 40 50 60 70
50

60

70

80

90

Initial condition
Present

φ=0.95

φ=0.5

φ=0.05

(b)

Figure 6. The predicted solutions for � in a mesh of 100×100 nodal points using the proposed two-step
symplectic DRP scheme: (a) after one rotation and (b) after five rotations.
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Figure 7. The predicted solutions for � in a mesh of 200×200 nodal points using the proposed two-step
symplectic DRP scheme: (a) after one rotation and (b) after five rotations.

7. NUMERICAL RESULTS

After verifying the advection scheme and the incompressible flow solver, we are proceeded to
justify the proposed conservative level set method by virtue of the following five problems, which
all involve predicting the time-varying interfaces. The first test problem, known as the dam break
problem, is chosen to demonstrate the ability of applying the proposed interface capturing method to
solve the problem without taking the surface tension into account. Another well-known Rayleigh–
Taylor problem is also solved in this study for the validation sake. The third and fourth simulations
are known as the air bubble rising in two- and three-dimensional water tanks, and the fifth problem
simulates the droplet falling into water, respectively. Since surface tension along the gas/water
interface has an ineligible impact on the time-evolving air bubble or water droplet interface, this
interfacial force will be considered in both cases.
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Figure 8. Comparison of three conserved quantities in percentage error form for the cases investigated in
100×100 and 200×200 grids: (a) CError

0 ; (b) CError
1 ; and (c) HError.

Table III. The predicted L1 error norms and the spatial rates of convergence (R.O.C.) after one and five
revolutions in the four chosen meshes and �t = 1

2 .

1 Revolution 5 Revolutions

Grids L1 error norms R.O.C. Grids L1 error norms R.O.C.

100×100 0.286 100×100 0.325
150×150 0.122 2.11 150×150 0.138 2.12
200×200 5.163E−002 2.25 200×200 6.835E−002 2.44
300×300 2.705E−002 1.29 300×300 3.244E−002 1.84

7.1. Interface prediction without surface tension

7.1.1. Dam break problem. The first problem without taking surface tension into account simulates
a sudden collapse of a rectangular water column onto a planar surface. This classical problem,
known as the dam break problem, has been frequently employed to validate the computer code
developed for the prediction of free surface. In addition to the hydraulic importance of this problem,
experimental [34] and numerical results [35] are both available for properly making a direct
comparison study.
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Figure 9. Comparison of the predicted mid-plane velocity profiles for the case investigated at four Reynolds
numbers: (a) Re=100; (b) Re=1000; (c) Re=5000; and (d) Re=7500.

In the current calculation, the fluid properties are assumed to be the same as those studied in
[35]. The results will be predicted at Re=42792 in the domain containing 300×75 nodal points.
The predicted heights of the collapsed water column are plotted against the dimensionless time,
defined in [35], for the comparison sake. Good agreement with the experimental result given in
[34] is clearly demonstrated in Figure 10 for the simulated surge front location and the water
column height. The predicted time-evolving free surfaces in Figure 11 are also compared favorably
with the finite element solutions of Kelecy and Pletcher [35].

For making a further indirect verification of the predicted results, we plot the values of Casimir
errors CError

n (n =0,1) against time in Figure 12. Both of them are seen to be well conserved in
the sense that both mass and area remain almost identical to their corresponding values prescribed
at the initial time.

7.1.2. Rayleigh–Taylor problem. Rayleigh–Taylor instability arises due to the penetration of a
heavy fluid into a light fluid along the direction of gravity. Such a phenomenon has been observed
in many scientific and environmental fields and has, therefore, been intensively studied [8]. Two
incompressible fluids with the densities and viscosities given by �h =1, �l = 1

3 , �h =1, and �l =1
will be simulated in the rectangle of 0�x�1, 0�y�4. The initial condition is given by y(x)=
2.0+0.1cos(2
x) and the Reynolds number is 3000.

According to the referenced paper [8], we carry out the current simulation without considering
surface tension for a fluid flow starting from rest in the domain where free slip boundary condition
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Figure 10. Comparison of the predicted surge front location and the water column height with the
experimental data: (a) height of the wetted wall and (b) location of the water front.
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Figure 11. Comparison of the predicted free surfaces at the three chosen times for the dam-break problem
investigated in 300×75 grids: (a) t =0.6; (b) t =1.8; and (c) t =2.4.

and non-slip boundary condition are imposed at the two vertical walls and at the horizontal
top/bottom walls, respectively. The predicted interface plotted in Figure 13 and the Casimir errors
CError

n (n =0,1) plotted in Figure 14 justify again the proposed two-step level set method and the
spatial/temporal discretization schemes.

7.2. Interface prediction with surface tension

7.2.1. Two-dimensional rising bubble in a partially filled container. The time-evolving interface
problem where surface tension needs to be taken into account is then investigated. The problem
under current investigation analyzes the evolution of a stationary bubble, that is driven by surface
tension, in a partially filled container. This container is partially filled with the viscous fluid of
height 7.0 and width 7.0.
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Figure 12. The predicted Casimir percentage errors (n = 0, 1), which are plotted against the dimensionless
time for the cases carried out in two chosen grids: (a) 200×50 grids and (b) 300×75 grids.
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Figure 13. The predicted time-evolving interfaces at the four chosen times for the Rayleigh–Taylor problem
investigated in 100×400 grids: (a) t =1.5; (b) t =1.75; (c) t =2.0; and (d) t =2.5.

The fluid–gas density and viscosity ratios are specified, respectively, as �l/�g =1000 and �l/�g =
100. The subscripts l and g correspond to the fluid surrounding the air bubble and the fluid inside
the air bubble, respectively. Initially, the bubble center is stationarily located at (3.5,1.5) in the
water container, which is at rest everywhere. As usual, no-slip conditions are specified along the
horizontal and vertical walls.

Since surface tension is essential in the course of bubble rising, surface tension effect will be
investigated at Re=100, W e=200 and Fr =1 where Re, W e and Fr are denoted as the Reynolds
number, Weber number and Froude number, respectively. In Figure 15 the predicted free surface is
plotted in 180×180 and 240×240 nodal points. Besides the good agreement between the predicted
interfaces, Figures 16(a) and (b) show also the excellent preservation properties embedded in the
Casimir errors CError

n (n =0,1).
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Figure 14. The predicted Casimir percentage errors (n = 0, 1), which are plotted against the dimensionless
time for the cases carried out in the two chosen grids: (a) 100×400 grids and (b) 150×600 grids.
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Figure 15. The predicted time-evolving interfaces at the four chosen times for the bubble rising problem
in 180×180 and 240×240 grids: (a) t =0.0; (b) t =1.5; (c) t =2.0; (d) t =3.0; (e) t =3.5; and (f) t =4.0.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:109–134
DOI: 10.1002/fld



DEVELOPMENT OF LEVEL SET METHOD 129

t

C
0E

rr
o

r
&

 C
1E

rr
o

r

1 2 3 4
-4%

-3%

-2%

-1%

0

1%

2%

3%

4%

(a) t
0 1 2 3 4

-4%

-3%

-2%

-1%

0

1%

2%

3%

4%

(b)

C
0E

rr
o

r
&

 C
1E

rr
o

r

C0
Error

C1
Error

C0
Error

C1
Error

Figure 16. The predicted Casimir percentage errors (n =0,1), which are plotted against the dimensionless
time for the cases carried out in the two chosen grids: (a) 180×180 grids and (b) 240×240 grids.
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Figure 17. Schematic of the initial bubble location with its centroid at (0,−3.2) in the
container, which is defined in −3�x�3,−6�z�6 and partially filled with the water.

Note that the initial free surface is at z =−2.

7.2.2. Three-dimensional bubble rising problem. The time-evolving interface problem is also
investigated in the three-dimensional rectangular box of lengths 6, 6 and 12 (−3�x�−3,

−3�y�−3,−6�z�−6), which is uniformly discretized to yield a mesh of 60×60×120 nodal
points. Initially, a spherical bubble centered at (x, y, z)= (0,0,−3.2) with the unit radius, schematic
in Figure 17 (2D cutting at y =0), is released below the free surface. The fluid–gas density and
viscosity ratios are specified, respectively, at �l/�g =1000 and �l/�g =100. As usual, no-slip
conditions are specified along the walls.
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Figure 18. The predicted 3D free surfaces (in (a), (c), (e), (g)) and their corresponding 2D cutting free
surfaces (y =0) (in (b), (d), (f), (h)) at the four chosen times for the bubble rising problem investigated

in 60×60×120 grids: (a),(b) t =0.2; (c),(d) t =0.6; (e),(f) t =0.74; and (g),(h) t =1.0.

Since surface tension will be generated during bubble rising, such an effect will be investigated
at Re=474, W e=1 and Fr =0.64. In Figure 18, the predicted 2D and 3D free surfaces and bubble
interfaces are plotted at the four chosen times. As before, the excellent preserving properties in
view of the predicted Casimir percentage errors CError

n (n =0,1) are shown in Figure 19.

7.2.3. Droplet falling in water. A water droplet falling through the air and hitting on an initially
planar free surface will be investigated in this study. In the two-dimensional rectangular box of
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Figure 18. Continued.

lengths 4 and 8 (0�x�4,0�y�8), at t =0 the semicircle droplet center is stationarily located
at (0.0,5.0) and the container is partially filled with the viscous fluid of width 4(0�x�4) and
height 4(0�y�4). The density and viscosity ratios are specified, respectively, as �l/�g =816 and
�l/�g =71. Since the water droplet is accelerated initially from t =0 with a fictitious gravitational

force 1/Fr2 = 1
2 , three dimensionless parameters for characterizing this flow motion are chosen

as Fr =√
2 (in the time range of 0<t�2), Fr =1633 (in the time range of 2<t�7), Re=3518,

and W e=220. No-slip conditions are specified along the horizontal and right vertical walls, slip
condition is specified along the left vertical wall.
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Figure 19. The predicted Casimir percentage errors (n = 0, 1), which are plotted against the dimensionless
time for the case carried out in 60×60×120 grids.
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Figure 20. The predicted time-evolving interfaces at the six chosen times for the droplet falling problem
investigated in 100×200 grids: (a) t =2.0; (b) t =3.0; (c) t =4.0; (d) t =5.0; (e) t =6.0; and (f) t =7.0.
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Figure 21. The predicted Casimir percentage errors (n =0,1), which are plotted against the dimensionless
time for the cases carried out in the two chosen grids. (a) 60×120 grids; (b) 100×200 grids.

This problem will be solved at �t = 1
1000 in a domain of 100×200 grids. The predicted time-

evolving droplet interface and free surface are plotted in Figure 20. Note that the interface with
�=0.5 is plotted at the dimensionless times t =2.0, t =3.0, t =4.0, t =5.0, t =6.0 and t =7.0.
As Figure 21(a) and (b) shows, the Casimir percentage errors CError

n (n =0,1) remain fairly well
in the case taking into account the surface tension effect.

8. CONCLUDING REMARKS

A dispersion-relation-preserving advection scheme, formulated within the framework of coupled
compact scheme, for approximating the incompressible two-phase flow equations in two dimensions
by conservative level set method is developed in non-staggered grids. The present conservative
level set method is split into the equation, known as the conventional level set method for the
advection of level set function, and the nonlinear inhomogeneous equation with the inclusion of
nonlinear flux term to compress the interface profile. Since the area within each contour of the
level set function is preserved, we employ the symplectic time-stepping scheme to approximate
the time derivative term shown in the first-step of the modified level set method so as to ensure
the area-preserving property. The proposed spatial/temporal scheme with the respective accuracy
orders of fifth and sixth has been used to solve three pure advection problems to demonstrate
that both Hamiltonian and Casimir conservation properties are indeed embedded in the discrete
equation. Also, the chosen five benchmark problems with/without consideration of surface tension
have been numerically investigated with success.
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