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In this paper a two-step iterative solution algorithm for solving the Camassa–Holm equa-
tion, which involves only the first-order derivative term, is presented. In each set of the
u � P and u �m differential equations, one is governed by the inviscid nonlinear convec-
tion–reaction equation for the time-evolving fluid velocity component along the horizontal
direction. The other equation is known as the inhomogeneous Helmholtz equation. The
resulting reduction of differential order facilitates us to develop the flux discretization
scheme in a stencil with comparatively fewer points. For accurately predicting the unidi-
rectional propagation of the shallow water wave, the modified equation analysis for elim-
inating several leading discretization error terms and the Fourier analysis for minimizing a
particular type of wave-like error are employed. In this study, the fifth-order spatially accu-
rate combined compact upwind scheme is developed in a three-point stencil for approxi-
mating the first-order derivative term. For the purpose of retaining a long-term accurate
Hamiltonian and multi-symplectic geometric structures in Camassa–Holm equation, the
time integrator (or time-stepping scheme) chosen in this study should conserve symplec-
ticity. Another main emphasis of conducting the present calculation of Camassa–Holm
equation is to shed light on the conservation of Hamiltonians up to the time before wave
breaking. We also intended to elucidate the switching scenario by virtue of the peakon–
peakon interaction problem and the dissipative scenario after the time of head-on collision
in the peakon–antipeakon interaction problem.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The nonlinear Camassa–Holm (CH) equation, which was firstly derived by Camassa and Holm [1] for modeling the uni-
directional propagation of irrotational waterwave over a planar wall, will be numerically investigated in this study. Like the
Korteweg–de Vries (KdV) equation derived by performing the asymptotic expansion on the Euler shallow water equation,
the CH equation given by
ut þ 2jux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx ð1Þ
. All rights reserved.
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was derived by using a different shallow water approximation in the inviscid limit. Based on the shallow-water theory, the
positive constant j was derived to be j = (gh0)1/2, where g stands for the gravity and h0 is denoted as the undisturbed water
depth. When j is equal to 0, Eq. (1) is referred to as the hyperelastic-rod wave equation [2]. As t > 0 and j = 0, Eq. (1) turns
out to be the special case of the b-family partial differential equation ut � uxxt + (b + 1)uux = buxuxx + uuxxx [3]. This equation is
integrable for b = 2 and 3, which correspond respectively to the Camassa–Holm equation and the Degasperis–Procesi equa-
tion [4].

The Camassa–Holm equation has been the subject of intensive investigation because of the possible generation of break-
ing and peaked solitary waves. The initially smooth solution may be evolved to develop singularities in finite time in the
form of a breaking wave [5,1] or peakons [1] due to the embedded nonlinear terms. In the presence of peakon solution,
the CH solution computed at j = 0 is no longer smooth. At the crest, the solution with a discontinuous first derivative will
be exhibited. Besides the mathematical beauty in the investigated third-order dispersive partial differential equation and its
practical relevance to shallow water and scattering wave problems, nonlinear CH equation catches our attention because this
equation permits formation of non-smooth solitary wave solutions. In the limit of j ? 0, breaking of the solution smooth-
ness at the peak of each peakon can result in a sharply changed water wave profile at the cusp of peakon. At these peaks, the
numerically introduced high-frequency dispersion error can considerably deteriorate the simulation quality [6].

The third-order nonlinear dispersive equation (1) has several rich geometric structures. The fact that CH equation can be
completely integrated by means of its associated Lax pair is one of many intriguing properties. Since CH equation is classified

to be multi-symplectic, Eq. (1) can be rewritten as a system of first-order equations given by Mzt + Kzx =rzS(z) for a state-

variable vector z. Note that the scalar function S is smoothly dependent on z. The two square matrices M and K, which are
skew-symmetric, define the symplectic structure given by ð �x; �jÞ, where �x ¼ dz ^Mdz and �j ¼ dz ^ Kdz. According to the

work of Bridges and Reich [7], the derived pair of variables ð �x; �jÞ conserves symplecticity in the sense of @ �x
@t þ @�j

@x ¼ 0. Thanks
to this multi-symplectic conservation law, one can define, at least, four density functions. The resulting local conservation
laws and the globally conserved quantities have been derived in [8]. Given an initial condition u0(x, t = 0) 2 H1, where H1

is the Sobolev space, the CH equation investigated at j = 0 has been shown to possess the well-known conservation law
M ¼

Rþ1
�1 udx ¼ constant c1. The other two distinguished conservation quantities are known as 1

2

Rþ1
�1 ðu2 þ u2

x Þdx ¼
constant c2 (Hamiltonian H1) [9–11] and 1

2

Rþ1
�1 ðu3 þ uu2

x þ 2ju2Þdx ¼ constant c3 (Hamiltonian H2) [9,12,13]. Note that the

Hamiltonian H1 ¼ 1
2

Rþ1
�1 ðu2 þ u2

x Þdx has an association with the energy density u2 þ u2
x . For a detailed discussion of the

possible conservation laws embedded in the CH equation, we refer the reader to the paper by Lenells [14].
Prior to the breaking of wave, it is essential to numerically conserve H1 since the Camassa–Holm equation satisfies the

least action principle [11,15]. Because Eq. (1) allows formation of a solution that is global in time and permits wave-breaking
solutions, this study will address the solution behavior at a time immediately after wave breaking. We are aiming to gain
some insights into the wave breaking process to clarify if a switching or an annihilation scenario [11,16] will take place
through the analysis of the peakon–antipeakon interaction problems.

At j = 0, Eq. (1) has a bi-Hamiltonian structure [17]. The CH equation admits exact solution, which is represented by the
canonical coordinates p and q as uðx; tÞ ¼

Pn
i¼1piðtÞe�jx�qiðtÞj, where pi(t) and qi(t) are governed by @qi

@t ¼
Pn

i;jpje
�jqi�qj j and

@pi
@t ¼

Pn
i;jpipj sgnðqi � qjÞe�jqi�qj j, respectively. Note that n represents the number of peakons. This system of ordinary differen-

tial equations has the Hamiltonian pair given by _qi ¼ @H
@pi

and _pi ¼ � @H
@qi

, where the Hamiltonian is Hðp; qÞ ¼ 1
2

Pn
i;j¼1pipje

�jqi�qj j

[1]. Also, the CH equation can be expressed in a conservation law form as @=@tðu� uxxÞ þ @=@x 3
2 u2 � 1

2 u2
x � uuxx

� �
¼ 0.

The third-order derivative term and the mixed space–time derivative term in CH equation were less explored numerically
in comparison with the first-order derivative term in CH equation and the pure spatial (or temporal) derivative terms. Hence,
we intend to avoid these derivatives by transforming the third-order CH equation to its equivalent system of equations con-
taining only the first-order spatial and temporal derivative terms. To this end, we will introduce one auxiliary variable later
on. The resulting non-mixed space–time and first-order derivative terms can then be properly approximated by the numer-
ical schemes developed in a stencil of fewer points. The key to success in predicting the resulting CH solution rests very much
on how accurately the first-order derivative term is approximated. Hence the main focal point of this study is to minimize
the dispersion error in the numerical approximation of the first-order derivative term. The other primary goal of the current
study is to understand more about the interaction between the peakons and antipeakon.

The rest of this paper is organized as follows. Section 2 describes the nonlinear CH equation and reiterate some of its
intriguing solution features. We then transform this equation, which contains the third-order derivative term, to its equiv-
alent nonlinear system of equations with the reduced differential order and the inhomogeneous Helmholtz equation. In the
first step of the proposed solution algorithm, the first-order nonlinear advection equation with the production term will be
numerically approximated by the proposed combined compact finite difference scheme detailed in Section 4.2. We will then
present in Section 5 the sixth-order accurate scheme for the Helmholtz equation. In Section 6, the problem with the smooth
travelling solution will be solved at non-zero condition of j to justify the applicability of the proposed spatially fifth-order
accurate upwind scheme to capture the dispersive travelling wave nature. In Section 7 the CH equation will be solved at four
different initial conditions for showing how well the proposed symplecticity-preserving scheme with the minimal phase er-
ror can be applied to predict the transported peakons and antipeakon. The interaction details of the peakons and antipeakon
will be explored by enlightening that the physical scenario after the peakon–antipeakon collision proceeds a total annihila-
tion route. On the contrary, a total recovery (or switching) process will be revealed when the faster moving peakon takes
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over the slower moving peakon without changing the conserved quantities. Finally, we will draw some concluding remarks
in Section 8.

2. Working equation

In this paper the nonlinear partial differential equation (1), cast in the space–time independent variables (x, t), is consid-
ered for modeling the time-evolving horizontal fluid velocity u within the inviscid hydrodynamic context. The constant coef-
ficient j in the equation is related to the critical shallow water wave speed [1]. Note that the solution u(x, t) corresponds
equivalently to the water’s free surface for the two-dimensional shallow water wave over a flat bottom. Subsequent to
the work of Fuchssteiner and Fokas [18], Camassa and Holm derived Eq. (1) by performing an asymptotic expansion on
the Euler system of equations in terms of the aspect and amplitude ratios. Owing to the use of these two small expansion
parameters, the derived CH equation falls into the weakly nonlinear and dispersive class of equations for the modeling of
propagating water wave.

Besides the CH equation, the other two celebrated partial differential equations belonging to this weakly nonlinear and
dispersive differential class are known as the Korteweg–de Vries (KdV), which models a small-amplitude long wave over the
water surface in a channel, and the Benjamin–Bona–Mahony (BBM) equation, which was known as the regularized long-
wave equation [19], were derived by means of the relative ordering instead of by exploiting the power law relation [20].
It is worthy to point out that Eq. (1) contains two other higher order derivative terms, owing to the use of a small amplitude
expansion on the incompressible Euler’s equation shown in the right-hand-side of CH equation, than those in the KdV and
BBM equations [20]. Unlike the KdV and CH equations which possess the complete integrability property, BBM equation is
not integrable and becomes therefore less attractive. The CH equation has the bi-Hamiltonian structure [18] and admits Lax
pair of differential operators (or matrices) defined in the Hilbert space. In addition, CH equation permits smooth wave solu-
tion, traveling wave solution with the singularities of different kinds (peakon, cuspon, stumpon solutions), and infinitely
many conserved integrals [1]. Note that peakon is a weak solution of the CH equation that may become non-smooth at some
spatial points.

3. Two-step solution algorithm

The Camassa–Holm equation under current investigation is both nonlinear and dispersive. While CH equation has only
one scalar variable, it contains many remarkable features for the cases investigated at different initial conditions. An initial
solution can be evolved, for example, to form a wave of permanent form and, on the other hand, to a wave that can be broken
in finite time. In case when wave breaks, the solution remains bounded while its derivative may be very large. The embedded
bi-Hamiltonian structure and the theoretical existence of an infinite number of conservation laws result in the formal inte-
grability of the equation [1]. In addition, at the peak of peakons the deterioration of smooth solution can lead to a high-fre-
quency dispersive error when approximating the CH equation [6]. The complex dispersiveness present in such a non-smooth
nonlinear system motivates us to develop a numerically stable and dispersively more accurate scheme for the investigated
equation.

In the literature, much fewer numerical investigations of the Camassa–Holm equation have been made in comparison
with the approximation of KdV equation. Camassa and Lee [20] reformulated Eq. (1) and introduced several ‘‘particles’’ along
the characteristic curve of travelling wave throughout the physical domain. In particle method, the propagation solutions can
be effectively calculated from the integral–differential system of nonlinear equations under different specified boundary
conditions [20–23]. Two finite difference schemes proposed by Holden and Raynaud [24,25] contain the rigorous conver-
gence proofs. A pseudospectral scheme developed by Kalisch and Lenells [26] was proven to be an effective means to predict
the travelling wave solution from the CH equation. Both of the semi-discretized Fourier–Galerkin and Fourier-collocation
methods are applicable to get a convergent CH solution [27]. Within the adaptive upwinding context, peakon solutions have
been well predicted by Artebrant and Schroll [28] using the finite volume discretization method. The local discontinuous
Galerkin method was also applied to solve the CH equation with success [6]. Other numerical methods, known as the mul-
ti-symplectic method [8], particle method [22–24], energy-conserving Galerkin method [29], self-adaptive mesh method
[30] and minimized dispersion-error method [31], have also been proposed to solve the CH equation. To get a better pre-
dicted result for the soliton–cuspon or the cuspon–cuspon interaction problem, integrable discretizations of the soliton
equation have been recently proposed. One can refer to [32] for additional details.

Since the investigated nonlinear equation (1) has the less familiar space–time mixed derivative term and third-order dis-
persive term, we intend to reformulate the CH equation and cast it to the equation having only the first-order derivatives.
Two means can be chosen to reduce the differential order of the CH equation. One can rewrite (1) to the following first-order
inhomogeneous linear equation
mt þ umx þ 2uxm ¼ �2jux ð2Þ
The momentum variable given below is adopted in the so-called u �m formulation of CH equation [31,33]
m ¼ u� uxx ð3Þ
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One can also transform the original CH equation to its equivalent u � P formulation. In the current study, the intermediate
solution u will be firstly computed from the following nonlinear convection equation, subject to the prescribed boundary
conditions mentioned later in Sections 6 and 7 and the initial condition u(x, t = 0) = f 2 H1:
ut þ uux ¼ �Px ð4Þ
The scalar variable P in the u � P formulation is governed by
P � Pxx ¼ u2 þ 1
2

u2
x þ 2ju ð5Þ
In the light of Eqs. (4), (5), we know that Eq. (1) is classified to be elliptic–hyperbolic provided that the CH solution remains
smooth.

4. Discretization schemes

For approximating the time-dependent differential equation (4), in this study the classical semi-discretization method is
adopted. We choose to approximate the time derivative terms before approximating the spatial derivative terms.

4.1. Symplectic time integration scheme

Since Eq. (1) has a multi-symplectic structure, the time-stepping scheme cannot be chosen arbitrarily. To get a long-term
accurate solution, one should apply the symplectic structure-preserving numerical integrator to conserve symplecticity in
the currently investigated Hamiltonian system. The sixth-order accurate symplectic Runge–Kutta scheme [34] is used in this
study for performing a long-time integration of the CH equation:
uð1Þ ¼ un þ Dt
5

36
Fð1Þ þ 2

9
þ 2~c

3

� �
Fð2Þ þ 5

36
þ

~c
3

� �
Fð3Þ

� �
ð6Þ

uð2Þ ¼ un þ Dt
5

36
� 5~c

12

� �
Fð1Þ þ 2

9

� �
Fð2Þ þ 5

36
þ 5~c

12

� �
Fð3Þ

� �
ð7Þ

uð3Þ ¼ un þ Dt
5

36
�

~c
3

� �
Fð1Þ þ 2

9
� 2~c

3

� �
Fð2Þ þ 5

36
Fð3Þ

� �
ð8Þ

unþ1 ¼ un þ Dt
5

18
Fð1Þ þ 4

9
Fð2Þ þ 5

18
Fð3Þ

� �
ð9Þ
where ~c ¼ 1
2

ffiffi
3
5

q
and FðiÞ ¼ FðuðiÞ; PðiÞÞ; i ¼ 1;2;3. In this applied symplectic Runge–Kutta method, in order to calculate un+1

from Eq. (9), we need to solve Eqs. (6)–(9) simultaneously (or implicitly) for obtaining u(1), u(2) and u(3). We then solve
the Helmholtz equation (5) to get Pð1Þ; Pð2Þ and Pð3Þ. Upon reaching the convergence criteria, we can get the solution un+1

and then the solution Pnþ1. The above iterative processes will be repeated until the L2-norm difference of two solutions cal-
culated at consecutive iterations falls below the user’s specified tolerance (10�12 in the current study).

4.2. Combined compact scheme with minimized phase error

When solving the problem involving either a high wavenumber (or high frequency) or a small amplitude wave compo-
nent, the number of grid points per wavelength required to resolve the shortest wave component becomes a practical con-
sideration. We will therefore develop a combined compact finite difference scheme that has a higher-order accuracy and a
better phase resolution in a stencil of fewer points. The first derivative term @u

@x and the second derivative term @2u
@x2 shown in

Eq. (4) are approximated respectively by the following three-point combined compact finite difference scheme, which is
developed in the mesh of uniform grid size Dx = h
a1
@u
@x

				
i�1
þ @u
@x

				
i

¼ 1
h
ðc1ui�1 þ c2ui þ c3uiþ1Þ � h b1

@2u
@x2

					
i�1

þ b2
@2u
@x2

					
i

þ b3
@2u
@x2

					
iþ1

 !
ð10Þ

�b1
@2u
@x2

					
i�1

þ @
2u
@x2

					
i

þ �b3
@2u
@x2

					
iþ1

¼ 1

h2 ð�c1ui�1 þ �c2ui þ �c3uiþ1Þ �
1
h

�a1
@u
@x

				
i�1
þ �a2

@u
@x

				
i

þ �a3
@u
@x

				
iþ1

� �
ð11Þ
The above two combined compact schemes for @u
@x

		
i and @2u

@x2

			
i

are not independent of each other. They are rather strongly

coupled through the terms @u
@x

		
i�1;

@u
@x

		
i
; @u
@x

		
iþ1;

@2u
@x2

			
i�1
; @2u
@x2

			
i
; @2u
@x2

			
iþ1
; ui�1; ui and ui+1. For the sake of description, we consider the

case involving only the positive-valued convective coefficient. The scheme for the case with negative convective coefficient
can be similarly derived.
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4.2.1. Combined compact scheme for the second-order derivative term
We will approximate @2u

@x2 by a center scheme owing to its dissipative nature. To get a higher spatial accuracy, the weighting
coefficients shown in Eq. (11) can be, as a result, determined solely from the modified equation analysis. Derivation of the
coefficients �a1; �a2; �a3;

�b1;
�b3; �c1; �c2 and �c3 starts by performing the Taylor series expansions on the terms ui�1;

@u
@x

		
i�1 and

@2u
@x2

			
i�1

with respect to ui;
@u
@x

		
i and @2u

@x2

			
i

and, then, eliminating the leading error terms derived in the modified equation. We

can then derive the coefficients in Eq. (11) as �a1 ¼ � 9
8 ; �a2 ¼ 0; �a3 ¼ 9

8 ;
�b1 ¼ � 1

8 ;
�b3 ¼ � 1

8 ; �c1 ¼ 3; �c2 ¼ �6 and �c3 ¼ 3
[35]. In view of the following derived modified equation, employment of this set of coefficients renders the approximated
@2u
@x2 with the spatial accuracy order of sixth
@2u
@x2 ¼

@2u
@x2

					
exact

þ h6

20;160
@8u
@x8 þ

h8

604;800
@10u
@x10 þ Oðh12Þ þ � � �
4.2.2. Optimized combined compact scheme for the first-order derivative term
In this study we will combine the traditional truncated Taylor series analysis with the Fourier analysis proposed in the

work of Tam and Webb [36] to develop a scheme with better dispersive resolution. Following this line of thought, the coef-
ficients a1, b1, b2, b3, c1, c2 and c3 are partly determined by performing Taylor series expansions on ui�1;

@u
@x

		
i�1 and @2u

@x2

			
i�1

with
respect to ui;

@u
@x

		
i

and @2u
@x2

			
i
, respectively. By eliminating the leading six discretization error terms derived in the modified

equation, the following set of six algebraic equations for Eq. (10) can be derived as
c1 þ c2 þ c3 ¼ 0 ð12Þ
� a1 � c1 þ c3 ¼ 1 ð13Þ

� a1 þ b1 þ b2 þ b3 �
c1

2
� c3

2
¼ 0 ð14Þ

a1

2
� b1 þ b3 þ

c1

6
� c3

6
¼ 0 ð15Þ

� a1

6
þ b1

2
þ b3

2
� c1

24
� c3

24
¼ 0 ð16Þ

a1

24
� b1

6
þ b3

6
þ c1

120
� c3

120
¼ 0 ð17Þ
After performing the above modified equation analysis, we will adopt the minimization method described below to get the
seventh algebraic equation in the wavenumber space.

Since the equation under current investigation permits a wave-like solution, application of the modified equation analysis
(or truncation error analysis) is not enough to get all the characteristics in the CH solution. As a result, we need to reduce
another type of errors instead of reducing only the truncation error. In this study we adopt the Fourier analysis method
to provide some additional information about the resolution characteristics. In Fourier analysis, we demand that the Fourier
transform of the partial derivative terms on the right hand side of (10) is a close approximation to that of the partial deriv-
atives on the left hand side. Since Fourier transform is involved in the development of the following optimized spatial dis-
cretization scheme, we define the Fourier transform and its inverse for u given below
~uðaÞ ¼ 1
2p

Z þ1

�1
uðxÞ expð�iaxÞdx; ð18Þ

uðxÞ ¼
Z þ1

�1
~uðaÞ expðiaxÞda ð19Þ
where i is equal to
ffiffiffiffiffiffiffi
�1
p

. Development of the approximation scheme for @u
@x is followed by performing Fourier transform on

each term shown in Eqs. (10) and (11). The expressions of the wavenumber a for these two equations can be therefore de-
rived as
iahða1 expð�iahÞ þ 1Þ ’ c1 expð�iahÞ þ c2 þ c3 expðiahÞ � ðiahÞ2ðb1 expð�iahÞ þ b2 þ b3 expðiahÞÞ ð20Þ

ðiahÞ2 �1
8

expð�iahÞ þ 1� 1
8

expðiahÞ
� �

’ 3 expð�iahÞ � 6þ 3 expðiahÞ � iah �8
9

expð�iahÞ þ 8
9

expðiahÞ
� �

ð21Þ
To get the same expressions as those shown in the right-hand sides of Eqs. (20) and (21), we express the numerical (or
effective) wavenumbers a0 and a00 as follows [36]:
ia0hða1 expð�iahÞ þ 1Þ ¼ c1 expð�iahÞ þ c2 þ c3 expðiahÞ � ðia00hÞ2ðb1 expð�iahÞ þ b2 þ b3 expðiahÞÞ ð22Þ

ia0h �8
9

expð�iahÞ þ 8
9

expðiahÞ
� �

¼ 3 expð�iahÞ � 6þ 3 expðiahÞ

� ðia00hÞ2 �1
8

expð�iahÞ þ 1� 1
8

expðiahÞ
� �

ð23Þ
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By solving Eqs. (22) and (23), we get the following two expressions for a0 and a00
a0h ¼ � ið24b1 expð�2iahÞ þ c1 expð�2iahÞ þ c3 þ c1þ 24b1 þ c2 expð�iahÞ þ 24b2 expð�iahÞ
þ 24b3 � 48b1 expð�iahÞ � 8c1 expð�iahÞ � 48b3 expðiahÞ þ 24b2 expðiahÞ þ 24b3 expð2iahÞ � 48b2

þ c2 expðiahÞ þ c3 expð2iahÞ � 8c3 expðiahÞ � 8c2Þ=ð�8þ expðiahÞ � 8a1 expð�iahÞ þ a1 expð�2iahÞ
� 9b1 expð�2iahÞ � 9b2 expð�iahÞ þ 9b2 expðiahÞ þ 9b3 expð2iahÞ þ a1 þ 9b1 � 9b3 þ expðiahÞÞ ð24Þ

a00h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

3 expð�iahÞ � 6þ 3 expðiahÞ � ia0h � 8
9 expð�iahÞ þ 8

9 expðiahÞ
� �

� 1
8 expð�iahÞ þ 1� 1

8 expðiahÞ

s
ð25Þ
Note that the real part R½a0h� and the imaginary part I½a0h� of the modified (or scaled) wavenumber a0h are associated
respectively with the dispersion (or phase) error and the dissipation (or amplitude) error [33]. The above Fourier transform
analysis performed on the combined compact finite-difference equations gives us a good approximation to the CH equation
as ah is equal to the real part of a0 h. This implies that the function E(a) defined below should be a very small and positive
magnitude within a particular wavenumber range
EðaÞ ¼
Z p

2

�p
2

Wðah�R½a0h�Þ½ �2dðahÞ ¼
Z p

2

�p
2

½Wðc�R½c0�Þ�2dc ð26Þ
In the above, c = ah and c0 = a0 h. Note that Eq. (26) can be analytically integrated provided that the weighting function W is
chosen as the denominator of ðc�R½c0 �Þ, which is
W ¼ � 16þ 72b3 þ 72b1 � 81b2
1 � 81b2

3 � 81b2
2 � 162b2b3 cosðcÞ � 144a1b3 cosðcÞ � 162b1b2 cosðcÞ � a2

1 cosðcÞ2

þ 8a2
1 cosðcÞ � 18b3 cosðcÞ3 þ 18b1 cosðcÞ3 þ 81b2

2 cosðcÞ2 þ 162b1b3 � 72b1 cosðcÞ2 þ 81b2
3 cosðcÞ2 þ 81b2

1 cosðcÞ2

� 72a1b2 � 18b1 cosðcÞ þ 16a1 cosðcÞ2 � 2a1 cosðcÞ3 þ 72b3 cosðcÞ2 þ 18b3 cosðcÞ � 32a1 cosðcÞ � 36a1b3 cosðcÞ4

� 18a1b2 cosðcÞ3 þ 162b2b3 cosðcÞ3 þ 162b1b2 cosðcÞ3 þ 324b1b3 cosðcÞ4 þ 72a1b2 cosðcÞ2 þ 144a1b3 cosðcÞ3

� 486b1b3 cosðcÞ2 þ 36a1b3 cosðcÞ2 þ 18a1b2 cosðcÞ þ 8cosðcÞ � 16a2
1 � cosðcÞ2 ð27Þ
To give a good approximation to the derivative terms, the numerical modified (or scaled) wavenumber should match well
with its corresponding exact modified wavenumber. Since ah is not necessarily equal to R½a0h�, numerical dispersion error
will be produced. In this study we maximize the dispersion accuracy by minimizing the integrated error function E(a) shown
in (26). Instead of imposing the extreme conditions @E

@a1
¼ @E

@c1
¼ @E

@c2
¼ @E

@c3
¼ @E

@b1
¼ @E

@b2
¼ @E

@b3
¼ 0 to get all the algebraic equations

for determining the weighting coefficients by making E a minimum, we adopt here the constrained minimization approach
to minimize the integrated error function E. To make E defined in Eq. (26) to be positive and minimal the following extreme
condition is enforced on the free parameter c3
@E
@c3
¼ 0 ð28Þ
The above equation, which is enforced to optimize the spatial discretization scheme, will be used together with the other six
algebraic equations which are derived previously by way of the modified equation analysis to reduce the dissipation error as
well as to get a higher dispersion accuracy. The resulting seven introduced coefficients given below can be uniquely deter-
mined as
a1 ¼ 0:875 ð29Þ
b1 ¼ 0:12512823 ð30Þ
b2 ¼ �0:24871766 ð31Þ
b3 ¼ 0:00012823 ð32Þ
c1 ¼ �1:93596119 ð33Þ
c2 ¼ 1:99692238 ð34Þ
c3 ¼ �0:06096119 ð35Þ
Based on the modified equation derived below, we know that the proposed upwinding scheme for @/
@x has the spatial accuracy

order of fifth
@/
@x
¼ @/
@x

				
exact

� 0:00070086h5 @
6/
@x6 þ 0:00019841h6 @

7/
@x7 � 0:00004988h7 @8/

@x8 þ Oðh8Þ þ � � � ð36Þ
For the approximation of the gradient term Px, we apply the central-type CCD scheme proposed by Chu and Fan [35].
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5. Three-point sixth-order accurate compact Helmholtz scheme for P

In order to develop a higher-order numerical method for the Helmholtz equation, one can always introduce more grid
points in the computational stencil. The solution accuracy is improved, however, at the cost of an expensive matrix calcu-
lation. For developing an efficient and accurate numerical scheme, we propose the following sixth-order accurate compact
scheme in a three-point stencil.

The following prototype equation with f ð� �u2 � 1
2 u2

x � 2kuÞ will be considered
Fig. 1.
one per
time.
@2P
@x2 � kP ¼ f ðxÞ: ð37Þ
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Verification of the predicted solution for the test problem given in Section 6. (a) comparison of the predicted and exact traveling wave solutions over
iod of time 0 6 t 6 3.1509; (b) plot of the conserved quantities M ¼

Rþ1
�1 udx; H1 ¼ 1

2

Rþ1
�1 ðu2 þ u2

x Þdx and H2 ¼ 1
2

Rþ1
�1 ðu3 þ uu2

x þ 2ju2Þdx against

Table 1
The predicted spatial rates of convergence for the test problem given in Section 6. Note that the time increment
Dt = 0.49233 � 10�3 is much smaller than the grid size Dx ¼ 6:3019

128 .

N 32 64 128
L2-error norm 1.939E�3 3.962E�5 9.330E�7
rate of convergence – 5.613 5.408
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We denote the values of @2P/@x2, @4P/@x4 and @6P/@x6 at a nodal point i as
Table 2
The pre

Dt
L2-er
Rate

Table 3
The pre

Num

N = 3
N = 6
N = 1
@2P
@x2

					
i

¼ si ð38Þ

@4P
@x4

					
i

¼ v i ð39Þ

@6P
@x6

					
i

¼ wi ð40Þ
Development of the compact scheme for (37) at the point i starts with relating the derivative terms v, s and w with P by
means of the equation given below
d0h6wi þ c0h4v i þ b0h2si ¼ a1Piþ1 þ a0Pi þ a�1Pi�1: ð41Þ
It is legitimate to set a1 = a�1 because of the elliptic nature of the Helmholtz equation (or Eq. (37)). Having set a1 = a�1, we
expand Pi±1 with respect to Pi in Taylor series. After the substitution of these expansion equations into Eq. (41), we can get
d0h6wi þ c0h4v i þ b0h2si ¼ a0 þ 2a1ð ÞPi þ 2a1
h2

2!

@2Pi

@x2 þ
h4

4!

@4Pi

@x4 þ
h6

6!

@6Pi

@x6 þ
h8

8!

@8Pi

@x8 þ � � �
" #

ð42Þ
Through a term-by-term comparison of the derivative terms shown in Eq. (42), a set of five algebraic equations can be
derived. Hence, the introduced free parameters can be determined as a1 ¼ a�1 ¼ �1; a0 ¼ 2; b0 ¼ �1; c0 ¼ � 1

12 and

d0 ¼ � 1
360. Since wi ¼ k3Pi þ k2fi þ k @2fi

@x2 þ @4fi
@x4 ; v i ¼ k2Pi þ kfi þ @2 fi

@x2 and si = k Pi + fi, Eq. (41) can then be further expressed as
a1Piþ1 þ a0 � b0h2k� c0h4k2 � d0h6k3

 �

Pi þ a1Pi�1 ¼ h2b0fi þ h4c0 kfi þ
@2fi

@x2

 !
þ h6d0 k2fi þ k

@2fi

@x2 þ
@4fi

@x4

 !" #
ð43Þ
or
Piþ1 � 2þ h2kþ 1
12

h4k2 þ 1
360

h6k3
� �

Pi þ Pi�1 ¼ h2fi þ
1

12
h4 kfi þ

@2fi

@x2

 !
þ 1

360
h6 k2fi þ k

@2fi

@x2 þ
@4fi

@x4

 !
ð44Þ
The corresponding modified equation for (37) shown below confirms that the proposed three-point stencil compact scheme
is indeed sixth-order accurate
@2P
@x2 � kP ¼ f þ h6

20;160
@8P
@x8 þ

h8

1;814;400
@10P
@x10 þ � � � þ H:O:T: ð45Þ
6. Verification studies

To begin with, the analytic problem admitting a periodic travelling wave solution u(x, t) = U(x � ct) is chosen to justify the
integrity of the developed scheme for solving the nonlinear CH equation [20]
U0 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�U3 þ ðc � 2jÞU2 þ CðAÞU

c � U

s
ð46Þ
dicted temporal rates of convergence for the test problem given in Section 6 with N = 128 nodal points.

1.125E�1 1.086E�1 1.050E�1
ror norm 4.115E�05 3.404E�05 2.833E�05
of convergence – 5.400 5.413

dicted spatial rates of convergence for the problem given in Section 6 based on the solutions calculated at the fixed value of c Dt
Dx ¼ 1=4.

ber of nodal points L2-error norm Rate of convergence

u � P formulation u �m formulation u � P formulation u �m formulation

2 1.939E�3 6.446E�3 – –
4 3.962E�5 1.498E�4 5.613 5.426
28 9.330E�7 3.635E�6 5.408 5.365
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Note that A and U are implicitly related to the independent variable x by x ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ða2�a3Þ
p ða1 � a2ÞP, where P is the elliptic

function, a1 ¼ c; a2 ¼ 1
2 ðc � 2jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc � 2jÞ2 þ 4C

q
Þ and a3 ¼ 1

2 ðc � 2j�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc � 2jÞ2 þ 4C

q
Þ.

Calculation will be carried out at c = 2, j = 1/2 and C = 1 in this validation study. The time step, which is Dt ¼ 1
4 Dx, and the

grid size, which is Dx = 0.0492 (or 128 nodal points), are chosen. The waveform predicted at t = 0.787725 will be plotted
together with the exact solution and the initial traveling wave solution marked by the dot-dash line. After one time period,
the predicted waveform shown in Fig. 1(a) matches well with the initial waveform. The values of M ¼

Rþ1
�1 udx;

H1 ¼ 1
2

Rþ1
�1 ðu2 þ u2

x Þdx and H2 ¼ 1
2

Rþ1
�1 ðu3 þ uu2

x þ 2ju2Þdx are also calculated against time. It can be clearly seen from
Fig. 1(b) that these values indeed remain unchanged as the initial values of 3.428, 2.996 and 3.372 for M, H1 and H2,
respectively.

For the sake of completeness, the computed results in association with the grid and time refinements are tabulated
respectively in Tables 1 and 2. Note that the spatial rates of convergence are computed from the L2 error norms. The
spatial and temporal rates of convergence shown in Tables 1 and 2 are approximately equal to 5.5 and 5.4, respec-
tively. These computed rates are satisfactory since the employed scheme is fifth-order accurate for the advection term
and is sixth-order accurate for the rest of spatial derivative terms while the time-stepping scheme is sixth-order
accurate.

We also assess the u � P and u �m formulations in terms of the predicted accuracy. Based on the computed results
tabulated in Table 3, one can see that the proposed u � P formulation gives more accurate results in comparison with those
predicted from the u �m formulation. This confirms the applicability of the presently employed u � P formulation to carry
out the rest of numerical studies.
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Fig. 2. Comparsion of the predicted time-varying one-soliton solutions (j = 0.0036 in (a)) and (j = 0.09 in (b)) computed form the proposed scheme in
16,384 mesh points and the PQ-decomposition scheme [37] at three different times.
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Fig. 3. Plot of the computed values of M ¼
Rþ1
�1 udx; H1 ¼ 1

2

Rþ1
�1 ðu2 þ u2

x Þdx and H2 ¼ 1
2

Rþ1
�1 ðu3 þ uu2

x þ 2ju2Þdx against time for the investigated one-soliton
problem. (a) j = 0.0036; (b) j = 0.09.
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Based on the u � P formulation, we then solve Eq. (1) at j = 0.0036 and j = 0.09 for the one-soliton case that was consid-
ered previously in [37]. The results computed in a domain of 16,384 uniform mesh points will be compared with the results
computed from the method of PQ-decomposition [37]. Fig. 2(a) and (b) shows good agreement between the two results that
are plotted at the three chosen times. For the sake of validation, we also plot the values of M1,H1 and H2 for the cases
investigated at j = 0.0036 and j = 0.09 against time. One can clearly see from Fig. 3 that the predicted Hamiltonians remain
almost unchanged. The proposed CH scheme is validated.
7. Peakon and/or antipeakon interaction problems

The Camassa–Holm equation admits the peakon, cuspon and stumpon solutions [38]. Peakon (or a peaked solitary wave)
is a soliton with finite-valued discontinuous first derivative. This travelling wave solution can be algebraically expressed by
/(x, t) = ce�jx�ctj, where c represents the wave amplitude and speed. If c is negative, the wave propagates leftwards with its
peak pointing downwards. Such a peaked solution is sometimes called as an antipeakon. Cuspon also involves discontinuous
first derivative. In contrast to the peakon solution, the slopes of cuspon at the locations immediately adjacent to the point
with the discontinuous first derivative are both infinitely large [39].
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The solutions for the Camassa–Holm equation can be divided into two mutually exclusive classes. One class of the CH
solutions is globally smooth in time. The other class of the wave breaking solutions, which is Hölder continuous and
uniformly bounded, will develop an unbounded slope in finite time [40].

The Camassa–Holm equation is known to be amenable to the multipeakon solutions. For the multi-peakon cases with n
(=2,3,4), we intend to clarify whether the solution u(x, t > 0) remains to be globally smooth or will be gradually evolved to
exhibit a breaking wave pattern in finite time. We aim, in particular, to gain some insights into the peakon/antipeakon inter-
action after wave breaking.

7.1. Peakon–peakon interaction problem

We consider firstly the case with the two peakons propagating along the same direction [37]. The following initial data for
Eq. (1) investigated at j = 0 is specified in the domain �60 6 x 6 60
u

-

(a)

u

-

(c)

u

-

(e)

Fig. 4.
t = �10
u0ðx; t ¼ �20Þ ¼ p1ðtÞe�jx�q1ðtÞj þ p2ðtÞe�jx�q2ðtÞj ð47Þ
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Comparison of the predicted and exact [37] peakon–peakon solutions computed in 16,384 grids at different times. (a) t = �20.0; (b) t = �15.0; (c)
.0; (d) t = �5.0; (e) t = 0.0; (e) t = 10.0.
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In this case, two peakons move towards the x-direction with p1ðtÞ ¼ c2E1þc1E2
E1þE2

and p2ðtÞ ¼ c1E1þc2E2
E1þE2

, where EiðtÞ ¼ ecit (i = 1,2)

with c1 = 1.6 and c2 = 1.0. The Camassa–Holm equation will be solved at q1ðtÞ ¼ ln ðc1�c2ÞE1E2
c2E1þc1E2

h i
and q2ðtÞ ¼ ln c1E1þc2E2

c1�c2

h i
in a

domain with the periodic boundary conditions.
In Fig. 4, the time-evolving two-peakon solutions, predicted in a domain of 16,384 uniformly discretized grids, compare

excellently with the exact results given in [37]. Switching scenario is clearly confirmed in the sense that the two investigated
peakon waves pass through each other and they remain still as the solitary waves. Since no wave breaking has been
observed, we know that this two-peakon problem has a global solution. In addition, the higher peakon was seen to move
faster than the lower one. At the time t = 0.0 the higher peakon overtakes the lower peakon with the accompanied exchange
of the value

R
udxd. While exchange of the individual value of M indeed exists between the two right-running individual

peakons, the total values of M, H1 and H2 shown in Fig. 5 are unchanged all the time.

7.2. One-peakon and one-antipeakon interaction problem

The next peakon–antipeakon interaction problem, subject to the following initial profile, will be studied in the domain
�20 6 x 6 20
uðx; t ¼ 0Þ ¼ p1ðtÞe�jx�q1ðtÞj þ p2ðtÞe�jx�q2ðtÞj ð48Þ
In the above, we specify q1 ¼ ln c1�c2
c1e�c1 ðt�sÞ�c2e�c2 ðt�sÞ


 �
; q2 ¼ ln c1ec1ðt�sÞ�c2ec2 ðt�sÞ

c1�c2


 �
; p1 ¼

c2
1�c2

2eðc1�c2 Þðt�sÞ

c1�c2eðc1�c2 Þðt�sÞ, and p2 ¼
c2

1�c2
1eðc1�c2Þðt�sÞ

c2�c1eðc1�c2Þðt�sÞ
;

c1 ¼ 10; c2 ¼ �5 and s = 1. Subject to the periodic boundary condition, CH equation will be solved in the domain of
32,768 uniform grids.

In Fig. 6(a), one peakon initially moves to the right and the other antipeakon moves to the left. The computed time-
evolving solutions plotted in Fig. 6 compare well with the results in [41]. One can find from the predicted solution that
the antipeakon disappears pointwise after the collision time at t = 0.95. The total annihilation scenario is, thus, exhibited
after the head-on collision. Such a dissipative phenomenon has been observed and discussed in [40,42]. For the validation
purpose we plot the locations of peakon and antipeakon before the collision time and the peakon location after the time
of head-on collision. Good agreement between two solutions can be seen in Fig. 7.

The values of M, H1 and H2 plotted in Fig. 8 remain unchanged prior to the collision time at t = 0.95. Such a numer-
ically predicted conservation phenomenon is under our expectation since the Camassa–Holm equation satisfies the least
action Principle [15,11]. At a time after the peakon/antipeakon collision, the peakon and antipeakon pass through each
other in a way that the total value of H1 is no longer conserved. Two components in the Hamiltonian H1, which areR1
�1 u2 dx and

R
u2

x dx, are plotted against time to examine which one has caused the value of H1 to decrease after the
time of peakon–antipeakon collision. In Fig. 9 we clearly observe a rapid decrease of the value

R1
�1 u2

x dx at a time of
peakon/antipeakon collision. While M remains unchanged, the predicted value of H1 decreases sharply at the time when
the peakon collides with the antipeakon. The solution of this head-on peakon/antipeakon interaction problem is globally
dissipative in the sense that all the associated Hamiltonians are decreasing in time [40,42]. For this peakon–antipeakon
problem, we numerically demonstrate the total annihilation process rather than the total recovery scenario that is typ-
ical of the peakon–peakon problem.
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Fig. 6. The predicted one-peakon and one-antipeakon interaction solutions in a domain of 32,768 grids at different times. (a) t = 0.0; (b) t = 0.5; (c) t = 0.75;
(d) t = 0.875; (e) t = 1.0; (f) t = 2.0.
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7.3. Two-peakon and one-antipeakon interaction problem

We also solve the problem, that is subject to the periodic boundary condition, with the initial condition given below in a
domain of �15 6 x 6 45
uðx; t ¼ 0Þ ¼ 5 expð�jxjÞ þ expð�jx� 20jÞ � 2 expð�jx� 35jÞ ð49Þ
This problem can be considered as the combination of the peakon–peakon and peakon–antipeakon two problems. Based on
the solutions plotted in Fig. 10 in the domain of 16,384 nodal points, we can get the value of H1, plotted in Fig. 11, that de-
creases in time. This exhibits thus also the globally dissipative solution behavior after the collision of the peakons and anti-
peakon. Also, the Hamiltonian H2 is seen to decrease its magnitude at about the same time when H1 decreases sharply. Mass
is still conserved quite well all the time.
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Fig. 10. The predicted solutions for the problem, subject to the initial condition Eq. (49), in the domain of 16,384 grids at different times. (a) t = 3.0; (b)
t = 4.0; (c) t = 5.0; (d) t = 6.0.
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7.4. Three-peakon and one-antipeakon interaction problem

We also consider the three-peakon and one-antipeakon case which was studied previously by Holden and Raynaud [41].
This problem, which initially involves three right-running peakons and one left-running antipeakon, will be solved in the
domain �20 6 x 6 20
uðx; t ¼ 0Þ ¼ p1ðtÞe�jx�q1ðtÞj þ p2ðtÞe�jx�q2ðtÞj þ p3ðtÞe�jx�q3ðtÞj þ p4ðtÞe�jx�q4ðtÞj ð50Þ
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Fig. 12. The predicted three-peakon and one-antipeakon interaction solutions in a domain of 8192 nodal points at different times. (a) t = 0.2; (b) t = 0.375;
(c) t = 0.625; (d) t = 0.875; (e) t = 1.0; (f) t = 1.125; (g) t = 1.5; (h) t = 2.0.
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In the above, q1, q2, q3 and q4 are chosen to be (q1,q2,q3,q4) = (�10,�5,0,5). Subject to the periodic boundary condition, CH
equation will be solved at p1 = 5, p2 = 5, p3 = 5 and p4 = �12 [41]. The predicted solutions in the domain of 8192 nodal points
plotted in Fig. 12 compare well with the results given in [41]. In Fig. 13 one can see that our predicted locations of the
peakons and antipeakon agree also quite well with those given in [41]. We, as before, plot the values of M1, H1 and H2 against
time in Fig. 14 to exhibit the globally dissipative multipeakon–antipeakon solution.
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8. Concluding remarks

To reduce the differential order, in this study the Camassa–Holm equation is recast to its equivalent u �m and u � P for-
mulations. Moreover, the space–time mixed derivative term in the Camassa–Holm equation is eliminated to simplify the
computational study. In both formulations, we approximate the time derivative term by the sixth-order accurate implicit
symplectic Runge–Kutta scheme to preserve the conserved quantities in the Camassa–Holm equation. As for the first-order
spatial derivative terms shown in both formulations, the dispersion error predicted from the proposed fifth-order accurate
combined compact scheme is minimized. We validate both formulations and assess their computational performances in
terms of the numerical accuracy. It can be found through the analytic test problem that the u � P formulation outperforms
the u �m formulation. For the single peakon problem, both mass and Hamiltonians can be perfectly conserved all the time.
For the peakon–peakon interaction problem, the simulation results clearly exhibit mass exchange between the two peakons
that propagate along the same direction without exhibiting wave breaking. While mass exchange between the individual
peakons of different heights is found, the total mass and Hamiltonians remain almost unchanged with time when the higher
peakon, which moves faster than the lower one, overtakes the slower-moving peakon. As a result, we numerically confirm
the switching scenario in the Camassa–Holm equation. For the peakon–antipeakon problem, after the collision time the
Hamiltonians H1 and H2 decrease sharply. The Camassa–Holm equation, which permits a globally dissipative solution, is
therefore numerically demonstrated. Mass remains, however, unchanged before as well as after the collision of the peakons
and antipeakon.
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