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Prediction of strong-shock structure using the bimodal distribution function
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A modified Mott-Smith method for predicting the one-dimensional shock wave solution at very high Mach
numbers is constructed by developing a system of fluid dynamics equations. The predicted shock solutions in a gas
of Maxwell molecules, a hard-sphere gas, and in argon using the newly proposed formalism are compared with
the experimental data, direct-simulation Monte Carlo (DSMC) solution, and other solutions computed from some
existing theories for Mach numbers M < 50. In the limit of an infinitely large Mach number, the predicted shock
profiles are also compared with the DSMC solution. The density, temperature and heat flux profiles calculated at
different Mach numbers have been shown to have good agreement with the experimental and DSMC solutions.
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I. INTRODUCTION

A normal shock wave is one example of the highly
nonequilibrium flows. The most important parameter that can
be used to describe the nonequilibrium properties of the gas
is known as the Knudsen number, which can be defined in a
shock wave as a relation between the mean free path and the
shock thickness. In the shock wave, macroscopic properties
of the gas can change very rapidly within a short distance,
which is approximately several mean free paths, and the
Knudsen number becomes quite large. Strong shock waves
pose a computational challenge in the study of stationary
highly nonequilibrium flows.

The shock wave structure cannot be described well by fluid
dynamics equations in the sense that Navier-Stokes equations
[1] give good agreement with the experimental data [2–4]
only at Mach numbers M < 1.3. When applying the Burnett
and super Burnett equations in the shock prediction, some
nonphysical oscillations were found to appear in the solution,
even at M = 2 [5].

In the Grad method [6] and extended irreversible thermo-
dynamics [7], a large number of equations must be solved
to get a reasonable accuracy [8]. Grad’s 13-moment method
successfully simulated the shock profile below the critical
value MC = 1.65. When increasing the number of moments
in extended thermodynamics [7], the solution converges rather
slowly. Therefore, a large number of moments is required to
get an accurate shock structure at large Knudsen numbers.
At Mach numbers M < 9.36, for example, one needs up
to 15 180 equations in extended thermodynamics [7] (506
one-dimensional equations). Until very recently the continuum
method for the description of a flow inside the shock wave did
not exist. The goal of this study is to develop a system of
moment equations for investigating a highly nonequilibrium
flow inside the shock wave that is valid in a wide range of
Mach numbers.
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Good agreement with the experimental measurements was
obtained on the basis of the bimodal distribution function [9].
However, this method fails in the case of low Mach numbers
[10]. In order to improve the Mott-Smith method at low and
moderate Mach numbers we have proposed the modified Mott-
Smith method, which includes a system of fluid dynamics
equations [11]. It was shown that we can obtain a continuous
shock structure at all Mach numbers by using our theory.
The Mott-Smith method is able to predict correctly the shock
thickness at large Mach numbers. However, the predicted
shock wave profiles on the basis of the Mott-Smith method
disagree with the direct-simulation Monte Carlo (DSMC)
simulation results for strong shock waves [12]. It is of interest
here to examine whether the proposed system of equations in
Ref. [11] is suitable for the description of very strong shock
waves and if it can be applied to improve the Mott-Smith
method at an arbitrary Mach number. Recently the problem
regarding the structure of a very strong shock wave was
revisited in connection with the general fluid mechanics
development [13–15]. In this work, the structure of very strong
shock waves for a gas of Maxwell molecules, argon, and a gas
of hard spheres will be studied on the basis of our derived
system of equations.

II. FLUID DYNAMICS EQUATIONS

The system of fluid dynamics equations to predict the one-
dimensional structure of a shock wave was derived in Ref. [11].
The derived system of equations for the mass density ρ, the
temperature T , the diagonal component of the pressure tensor
PXX, the vertical component of the heat flow qX, and the new
parameter qX has the form given below:
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In the above, p = kρT /m denotes the pressure and μ is
the viscosity. The above system of equations contains two
variables given by

J1 =
∫

d �V (VX − U )2( �V − �U )2f, J2 =
∫

d �V (VX − U )4f,

(2)

where f is the distribution function of a gas.
To close the system of equations in Eq. (1), we have to

prescribe the distribution function. In Ref. [11] we chose
the bimodal distribution function [9]. One accounts for the
supersonic flow and the other for the subsonic flow,

f = f0 + f1, (3)

where

f0 = n0(x)

(
m

2πkT0

)3/2

exp

(
−m( �V − �U0)2

2kT0

)
. (4)

Similarly, f1 can be expressed by Eq. (4) by replacing the
subscript 0 with the subscript 1. The parameters T0, T1, �U1 =
(U1,0,0), �U0 = (U0,0,0) are assumed to be independent of x

and t . We will introduce them in the next section through the
Rankine-Hugoniot relations.

The expressions of the integrals shown in Eq. (2) are given
below:
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(5)

where V 2
T = 2kT /m.

III. SHOCK STRUCTURE

The shock wave, which is stationary in the steady frame
of reference, under our current investigation, connects the
equilibrium states for the density ρ0, velocity U0, and
temperature T0 ahead of the shock at x → −∞ and the
equilibrium quantities ρ1, U1, T1 behind the shock at x → ∞.

It is convenient to employ the dimensionless equations for
system (1), where the upstream values are used to define the
following dimensionless quantities:

ρ ′ = ρ

ρ0
, U ′ = U√

kT0/m
, T ′ = T

T0
, x ′ = x

λ0
,

(6)
π ′ = π

kρ0T0/m
, q ′ = q

ρ0(kT0/m)3/2
.

In the above, π = pxx − ρkT /m and λ0 is the mean free path.
The mean free path given in Refs. [1], [4], and [16] will be
adopted in this study:

λ0 = 16

5
√

2π

μ0

ρ0
√

k/mT0
≈ 1

0.783

μ0

ρ0
√

k/mT0
. (7)

The first three equations, cast in their dimensionless forms
[the prime in Eq. (6) for the dimensionless variables will be
omitted later], in the differential system (1) are as follows:

d

dx
(ρU ) = 0,

d

dx
(ρU 2 + ρT + π ) = 0, (8)

d

dx

(
1

2
ρU 3 + 5

2
ρT U + πU + q

)
= 0.

Far ahead of and behind the shock, the gas is in equilibrium
with π0 = π1 = 0 and q0 = q1 = 0. The dimensionless quan-
tities in front of the shock at x → −∞ are given by

T0 = 1, ρ0 = 1, U0 =
√

5

3
M0. (9)

Integration of all the equations in Eq. (8) between the two
equilibrium states gives

ρ1 = 4M2
0

M2
0 + 3

,
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√

5

3

M2
0 + 3

4M0
, (10)

T1 =
(
5M2

0 − 1
)(

M2
0 + 3

)
16M2

0

.

It is worth noting that use of the above equations, which are
well known as the Rankine-Hugoniot relations, enables us to
correctly prescribe the boundary conditions.

The number of equations can be reduced further by
integrating the equations in Eq. (8) from the upstream state
to an arbitrary location x in the shock. By taking into account
Eq. (9), we get

ρU = ρ0U0,

ρU 2 + ρT + π = ρ0U
2
0 + ρ0T0, (11)

ρU 3

2
+ 5

2
ρT U + πU + q = ρ0U

3
0

2
+ 5

2
ρ0T0U0.
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The following relations can be obtained by solving the three
equations in Eq. (11):
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q(U,T ) =
√

5

12
M0

(
5

3
M2

0 + 5 + U 2 − 3T

)

−U

(
1 + 5

3
M2

0

)
.

Then we substitute the relations in Eq. (12) into the differential
system (1) to get the following system of three ordinary
differential equations that govern the transport of velocity
U , temperature T , and q̄:
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The above three equations can be rewritten in the form given
below:

A

⎛
⎜⎝

d
dx

U

d
dx

T

d
dx

q̄

⎞
⎟⎠ = − pλ0

μ
√

kT0/m

⎛
⎜⎝

G1(U,T ,q̄)

G2(U,T ,q̄)

G3(U,T ,q̄)

⎞
⎟⎠ , (13)

where A is the 3 × 3 matrix with the nonlinear components.
The boundary conditions for the investigated system are
specified as

T0 = 1, U0 =
√

5

3
M0, q̄0 = 0 at x → −∞. (14)

At x → ∞, we impose

U1 =
√

5

3

M2
0 + 3

4M0
, T1 =

(
5M2

0 − 1
)(

M2
0 + 3

)
16M2

0

, q̄1 = 0.

(15)

After solving Eq. (13) to get the explicit expressions of
three derivatives, we can then solve the coupled first-order
ordinary differential equations to get the solutions that connect
the information at two fixed ends (boundary conditions at
x → −∞ and x → ∞).

The system of equations was derived on the basis of the
Boltzmann collision integral for the Maxwell molecules [17].

The corresponding viscosity, which is proportional to the
temperature, follows the expression given below with s = 1:

μ = μ0

(
T

T0

)s

. (16)

For other interaction potentials the viscosity takes the
same form but just with an adjustment of the exponent
s [13,18,19]. For example, s = 1/2 is chosen for the hard
sphere and s ≈ 0.72 for the argon [1,13,18]. The hard-sphere
and the Maxwellian gases are the theoretical gases that can be
viewed as the limiting cases of a real gas, because for almost
all real gases, 0.5 < s < 1. According to Eqs. (7) and (16),
one gets

pλ0

μ
√

kT0/m
= ρT 1−S

0.783
. (17)

IV. COMPARISON STUDY AND DISCUSSION OF RESULTS

To compute the solutions of temperature and velocity
in shock profiles from the proposed system of ordinary
differential equations in Eq. (13), subject to the bound-
ary conditions (14) and (15), the computational domain is
descretized by N + 2 positions at xi with i = 0,1,2, . . . ,N +
1. The following approximation under the constant step size
�x is used at the nodal point i:

dT

dx

∣∣∣∣
i

= Ti+1 − Ti−1

2�x
.
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Calculation of the solutions at positions x1 and xN requires
knowing the field values at x0 and xN+1, which are given by
Eqs. (14) and (15). One needs therefore to derive 3N coupled
algebraic equations for the N unknown values of U , T , and q̄.
The resulting nonlinear system was solved with the appropriate
tanh(x) curve being considered as an initial guess for the
velocity and temperature (similar to Refs. [11] and [20]).
The predicted temperature and density are presented in the
normalized forms T −T0

T1−T0
and n−n0

n1−n0
. One of the main parameters

that can well describe the shock profile is the shock thickness,
which is defined as

δ = ρ1 − ρ0

max
(

∂ρ

∂x

) .

The inverse thickness can be derived as λ
δ

= α
4 [18],

according to the Mott-Smith theory. Another quantity is the
temperature-density separation �Tρ , which is the distance
between the two points at which T = 0.5 and ρ = 0.5,
respectively.

A. Shock wave results for the Maxwell gas

In Fig. 1 we compare our results of the temperature
profile with the results of DSMC simulation [21] for Maxwell
molecules, Navier-Stokes results, and Mott-Smith results at
M = 35. It is important to point out here that the temperature
profile in Fig. 1 shows its maximum within the shock
layer, which cannot be predicted by Mott-Smith theory and
Navier-Stokes equations. The temperature profile becomes
nonmonotonic at a Mach number M > 3. It is well known that
such a temperature profile is not the result of a mathematical
artifact but is rather the consequence of the atomistic dynamics
[22–24]. It is worth noting that the predicted temperature-
density separation by Mott-Smith theory is smaller in compari-
son with the DSMC value. The temperature-density separation
predicted by Mott-Smith theory [9] is �Tρ = 20.1λ0 at M =
35, while in our theory we get �Tρ = 25.7λ0, which agrees

X

M=35
1

0.8

0.6

0.4

0.2

0
-60 -40 -20 20 400

Navier-Stokes

Mott-Smith

DSMC

T

this theory

FIG. 1. Temperature profiles plotted as the function of distance.
The currently predicted results are compared with those based on the
theories of Navier-Stokes, Mott-Smith, and DSMC.

Navier-Stokes
this theory
Mott-Smith

DSMC

10

15

20

25

30

35

Burnett

10 20 30 40 50

5

M

/T

FIG. 2. Comparison of the predicted values of the temperature-
density separation, which are plotted against the Mach number.
Squares: DSMC results of Pham-Van-Diep (Ref. [4]), Nanbu
(Ref. [25]), and Fiscko (Ref. [21]).

with the DSMC value [21]. For the Navier-Stokes equations
the value of �Tρ is 12.5λ0.

In Fig. 2 the predicted values of the temperature-density
separation �Tρ are compared with the Monte Carlo simulation
results [4,21,25]. Mott-Smith theory only gives good agree-
ment with the DSMC simulation in the range of Mach numbers
2.2 < M < 2.7. The Burnett results of Fiscko and Chapman
[21] give a better agreement with the DSMC simulation result
than the Navier-Stokes result. Note that to obtain a stable
solution one term has been deleted from the viscous stress
tensor in the Burnett equations. Our results agree well with the
DSMC calculation in the entire range of 1 < M < 50.

B. Shock wave results for argon

Next, shock parameters are compared with the Monte
Carlo simulation results for argon. Figures 3 and 4 show the
temperature and density profiles calculated from the DSMC
simulation [21], Navier-Stokes, Burnett [21], and our proposed
equations for the argon investigated at the Mach number
M = 35. The normalized density of our solutions at the

X

0.8

0.6

0.4

0.2

0

1.0

0 10-10-20

Navier-Stokes
this theory

DSMC
M=35

FIG. 3. Density profile plotted as the function of distance.
Comparison of the currently predicted density profile with the DSMC
and Navier-Stokes simulation results against x at M = 35; argon,
s = 0.72.
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X
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0.4

0.2

0
-20

1.0

-10 0 10

M=35

Navier-Stokes
this theory
Burnett

DSMC

T

FIG. 4. Temperature profile plotted as the function of distance.
Comparison of the currently predicted temperature profile with the
DSMC, and Burnett and Navier-Stokes simulation results against x
at M = 35; argon, s = 0.72.

coordinate origin x = 0 is exactly 0.5 at any Mach number.
Argon is modeled with the value s = 0.72 for the viscosity
exponent in the above-mentioned constitutive equation for μ.
Our results are always in excellent agreement with the DSMC
simulation results for both the density and temperature profiles.
In Fig. 5 the predicted values of the temperature-density
separation are compared with the Monte Carlo simulation
results. Employment of the Burnett theory [21] gives good
agreement with the DSMC simulation results only in the range
of small Mach numbers. Our results have, however, good
agreement with the DSMC simulation results in the whole
range of the Mach numbers 1 < M < 50.

C. Shock wave results for the hard sphere

Before discussing the results for the hard spheres, we
consider also the limitations of our equations. The derivation
of our proposed fluid dynamics equations is based on the
Boltzmann collision integral for the Maxwell molecules.
The extension to a more general particle interaction case
via the viscosity exponent in Eq. (16) involves only a first
approximation. The full system of equations for the hard
sphere must include the hard-sphere collision integrals of
higher moments.

1

3

2

4

5

6

7

Navier-Stokes
Burnett

DSMC

0
0 10 20 30 40 50

M

this theory

/T

FIG. 5. Comparison of the predicted values of the temperature-
density separation, which are plotted against the Mach number; argon,
s = 0.72.

0-2 1 2-1
0

1

this theory
NEMD

NS
NSx
HM (0, 0.5)
HM (2, 0.5)

x

0.8

0.6

0.4

0.2

FIG. 6. (Color online) Density profile plotted as the function of
distance. Comparison of the currently predicted temperature profile
with the nonequilibrium molecular dynamics (Refs. [23] and [26])
NSx = NS with the T-dependence of the transport coefficients
being replaced by TXX . HM (0,0.5) is the Holian-Mareschal result
with the temperature relaxation only. HM (2,0.5) includes the
nonlinear Burnett conductivity as well as the relaxation. Navier-
Stokes simulation results against x at M = 134; a hard-sphere gas,
s = 0.5.

Figures 6–8 show the density, temperature, and heat
flux profiles calculated from the nonequilibrium molecular
dynamics (NEMD) simulation [23,26], Navier-Stokes, Holian-
Mareschal, and our proposed equations for the hard-sphere
gas investigated at M = 134. In Fig. 6 we have added the
density profile, calculated from the Holian and Mareschal
equations [14], that was not presented in Ref. [26]. Quite
recently Holian and Mareschal have modified the Navier-
Stokes equations [14]. One equation for the heat flux vector
was derived for the case of a very strong shock wave.
They also introduced two free parameters δ1 and δ2 that are
connected with the Burnett nonlinearity in the conductivity
and temperature relaxation. Holian-Mareschal results obtained
with the inclusion of nonlinear Burnett conductivity as well as
the temperature relaxation agree well with the NEMD results
in the upstream part. Their predicted results differ, however,
from the NEMD results in the downstream region. In our
predicted results one can see also good agreement with the
NEMD simulation results for temperature and heat flux profiles
in the downstream shock region. In the upstream region there
is only a small disagreement with the NEMD results. We can,
as a result, conclude that both the Holian-Mareschal results

0

1.0

0.6

0.8

0.2

0.4

0 1 2-1-2

this theory
NEMD

Navier-Stokes
NSx
HM (0, 0.5)
HM (2, 0.5)

T

x

FIG. 7. (Color online) Comparison of the predicted temperature
profiles plotted as the function of distance. M = 134; a hard-sphere
gas, s = 0.5. Notation: see Fig. 5.
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this theory
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HM (0, 0.5)
HM (2, 0.5)
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0

-0.02

-0.04

-0.06

-0.08
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-0.16

x

q/
U

03

FIG. 8. (Color online) The predicted heat flux profile plotted
as the function of distance. M = 134; a hard-sphere gas, s = 0.5.
Notation: see Fig. 5.

and our results agree with the NEMD simulation result. Our
predicted density profile agrees excellently with the NEMD
simulation result in both downstream and upstream regions.
Holian and Mareschal presented their model only for the case
of strong shock waves, while our model can be applied to the
whole range of the Mach numbers. Recall that the continuum
modeling of a hard-sphere gas via the viscosity exponent in
Eq. (16) can be considered only as the first approximation. A
more intensive investigation regarding the Boltzmann collision
integral for the hard-sphere gas is needed to get a better
approximation. For the case of Maxwell molecules and a real
gas, which is now chosen to be argon, our predicted results
are in excellent agreement with the DSMC data. In Fig. 9
we compare our results of the inverse density thicknesses
for the Maxwell molecules and a hard-sphere gas with the
Monte Carlo simulations results [25,27], and Navier-Stokes
and Burnett [27] results. Our results are seen to have good
agreement with the Monte Carlo simulation results at all
investigated Mach numbers.

D. Discussion of results

We have made a modification on the Mott-Smith method
and have derived the system of fluid dynamics equations for
the flow inside the shock wave. The Mott-Smith solution

s=0.5

s=0.5

M
100101

0.2

0.4

0.6

0.8

s=0.5

s=1

Navier-Stokes
this theory
Burnett

DSMC0.9

0.7

0.5

0.3

0.1

0

FIG. 9. Comparison of the computed inverse density thick-
nesses, which are plotted against the Mach number, for two
monatomic gases, Maxwell molecules, and a hard-sphere gas. DSMC
(Refs. [25] and [27]).

is qualitatively correct for 2 < M < 3 [11]. At other higher
Mach numbers their predicted errors can be quite large. On
the contrary, our presented theory can predict a solution that
is in good agreement with the DSMC, NEMD simulations,
and experimental results for a gas of Maxwell molecules,
hard-sphere gas, and argon in the range of 1 < M < 50. In
contrast to the solutions predicted by Navier-Stokes theory and
other fluid dynamics equations mentioned earlier, the results
of our model are in good agreement with the DSMC and
experimental results in a much wider range of Mach numbers.
As far as we know, there is no such fluid dynamics model
that can provide solutions comparable to the Monte Carlo
simulation results and experiments in the entire range of Mach
numbers M < 50.

In the derivation of governing equations we used the Mott-
Smith distribution function to close the differential system.
According to the recent molecular dynamics [28] and direct
Monte Carlo simulations [18], as well as the experimental
work [29], the main conclusions [30] regarding a bimodal
structure of the distribution function in a shock region are
correct. In the upstream and downstream region of the shock
wave the bimodal distribution function can describe the exact
solution of the problem. Inside the shock wave use of the
bimodal function gives only the approximate solution. We are
interested only in the macroscopic properties inside the shock
wave, therefore small errors in the distribution function are not
so significant.

Mott-Smith considered only one moment equation to
determine the density inside the shock wave. Other macro-
scopic properties (temperature, heat flux, and pressure) are
calculated from the appropriate moments of the bimodal
distribution function. In our study the macroscopic variables
are calculated directly from the system of fluid dynamics
equations. By adding two additional moment equations to the
Mott-Smith method, we can obtain some additional insights
into the behaviors of the temperature, heat flux, and pressure
in the whole range of Mach numbers.

V. CONCLUSION

We have derived a system of fluid dynamics equations on
the basis of the Mott-Smith method for exploring the structure
of very strong shock waves. Our predicted temperature,
density, and heat flux profiles are seen to agree well with
the experimental data and the DSMC simulation results in
the entire investigated Mach numbers range M < 50 for the
three investigated gases: the Maxwell gas, a gas of hard
spheres, and argon. In the limit of an infinitely large Mach
number, the predicted shock profiles are in good agreement
with the NEMD solution for a gas of hard spheres. Our
system can be considered as an extension of the Navier-Stokes
equations, which are valid only at small Mach numbers. In
order to obtain a solution with better agreement with the
experimental result, many moments are required in extended
thermodynamics. With the Mott-Smith closure, a fairly good
agreement with the experimental and the Monte Carlo simula-
tion results can be obtained even from a differential system
with much fewer equations. The Mott-Smith method was
applied to different shock formation problems, including the
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shock structure in dense gases [11,15], gas mixtures [31,32],
relativistic shocks [33,34], and plasma [16]. The proposed
model can be also applied to simulate the problems involving
polyatomic gases, gas mixtures, plasmas, and problems in
astrophysics.
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