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SUMMARY 

In this paper, four quadratic hexahedron elements are considered and assessed for analysis of an incompressible 
viscous flow underlying the mixed finite element method. We classify the investigated elements as multivariant 
and univariant finite elements. With the same number of pressure unknowns, multivariant elements are more 
constrained when the number of elements per side is larger than 10, as compared with that of continuous pressure 
elements. In multivariant elements, the coding is complicated by the appearance of restricted degrees of freedom at 
mid-face and mid-edge nodes. The comparison consequently should be made via numerical example against the 
analytical problem. 
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1. INTRODUCTION 

The finite element method has now been used for more than three decades and has recently emerged as 
a reliable analysis tool for industrial applications. Historically, several formulations underlying the 
finite element theory have been developed for incompressible fluid flows, among which the mixed 
formulation has been most used and is still a rapidly evolving subject.'-3 Other viable alternatives 
formulated on the basis of primitive variables comprise the penalty4 and least-squares finite element 
methods.576 These methods have advantages of being tied to the legitimate boundary  condition^.^-^ No 
artificial boundary condition needs to be devised in the intermediate steps as required in the segregated 
 formulation^.^^^^ While being a storage intensive approach, we believe the merits gained in the mixed 
formulation outweigh the drawbacks. In this paper, no attempt will be devoted to justifying this view 
point. 

In finite element computations of incompressible flows, numerical difficulties are mainly associated 
with the discrete divergence-free condition and pressure instability. ','* In the past, erroneous results 
were obtained at times from many elements because they fell short of the inf-sup (or LBB) condition. 
These oscillatory pressure modes are the consequence of an inappropriate combination of interpolation 
fimctions for the velocities and pressure. Thanks to the work of BrezziI3 and Babu5ka,l4 we now 
understand that as finite element practioners we should use different basis fimctions to interpolate 
velocity and pressure in the context of the mixed method. An examination of existing literature reveals 
that quite a few convergent pairs have been devised. As to three-dimensional incompressible flow 
simulations, it is particularly difficult to justify if an element is accommodated with the LBB 
(Ladyzhenskaya-BabuSka-Brezzi) condition. To dispense with this constraint, recently, a least-squares 
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finite element model was successfully d e ~ e l o p e d . ~ , ~ ~ ' ~  By means of minimization procedure, stable 
solutions are rendered regardless of the LBB condition. 

The emphasis here is placed on seeking several appropriately arranged three-dimensional elements. 
Comparison studies were made among these elements by evaluating the computed solutions. 

2 .  MATHEMATICAL MODEL 

We consider an incompressible fluid at the laminar flow regime. As regards dependent variables, there 
exist several settings such as the velocity-pressure,'6 streamfimction-vorticity,'6 velocity-vorticity, ' 
and vorticity-vector potential,18 among which the velocity-pressure is an appealing choice since it 
pertains to legitimate boundary  condition^.^^^.^ No artificial boundary conditions need be imposed in 
the intermediate projection steps. In a domain R of three dimensions, the steady solution sought is 
from the following dimensionless governing equations: 

1 
Re 

(g . VUJ = -v2g - vp, (1) 

v . g = o .  (2) 

Re = PUrefLrefIP. (3) 

In equation (l), Reynolds number Re is defined by 

To close the above elliptic system, we need to specify the following boundary conditions on rD and 
rN, respectively: 

- u = f  - onTD, (4) 
1 &  

-PB + -2 = g Rean - 
on r,. ( 5 )  

It is noteworthy that I' = asl= To + rN. In equation (5 ) ,  n stands for the unit outward normal vector. 
For simplicity, we only consider boundary conditions of the Dirichlet type as shown in (4). In 
incompressible flow analyses, the divergence-free constraint condition placed on the velocity field 
should be carehlly considered. This subject has truly dominated researches for more than 20 years. 
Another important issue concerns the pressure, which is nothing but the Lagrangian multiplier' rather 
than the thermodynamic property in the compressible counterpart where an equation of state is 
indispensable. 

3. FINITE ELEMENT MODEL 

Discretization of coupled equations (1) and ( 2 )  is most often accomplished by using a method of 
weighted residuals. Of central importance to a finite element program capable of yielding better 
discrete ellipticity under a high Reynolds number is finding an appropriate biased weighting so that 
more upwind information is considered. In integrating these conservation equations, we proceed in the 
same way as the Petrov-Galerkin method does. This leads to the weighted residuals statement: For 
admissive functions w E Hi (a) x Hi (R) and pressure mode q E L2(R)/9 = P, find the velocity- 
pressure pair (g,p) E V = (H; x H J )  x P from 
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subject to the essential boundary condition g =f on aQ. Let w be test functions and N($ and M ( z )  be 
trial functions so that gh = Cg'N;, p h  = Cp'M;. we will discuss them in more detail in sections 3.1 and 
3.2. Substituting these test and basis functions into the above constrained variational statement, the 
matrix equations take the following form where the biased weighting functions are only applied to the 
nonlinear terms: 

where 

A =  

c" 0 0 

0 cil 0 

0 0 cil 

a" 1 a"a" 
J a4 Re ax, a4 

C" = (N' + P)(N' r!) - + - - ~, 

1 au 
p n , - - -  

Re an 
l a v  

pn,--- 
Re an 
l a w  

pn, - - - 
Re an 
0 

dTh. 

(9) 

As is usual in the mixed formulation, the stifiess matrix is neither symmetric nor positive-definite. 
Moreover, improper interpolatory combinations of p and g may render this matrix singular. Such a 
circumstance might yield spurious zero eigenvalues and terminate the calculation. As a consequence, 
some precautions must be taken to cope with the so-called pressure modes. 

3.1. Basis functions for primitive variables 

Finite elements applicable to three dimensional simulations are usually categorized as tetrahedral and 
hexahedral elements. Whether one class of elements is favored over another depends on the target 
problem under consideration. We will only consider hexahedral elements for the time being. Of 
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Figure 1. Primitive variables stored in a 1% element 

0 , [::I : pressure 

@, b : u, v, w 

Figure 2. Primitive variables stored in a 27/8 element 

*..- . .  :...: : pressure 

@ , %  :u, v, w 

Figure 3 .  Primitive variables stored in a 8/1 element 

importance in the above matrix equations is the selection of trial finite element spaces for p and g. The 
matter of making an appropriate combination will be dealt with later. 

For reasons of consistency, the polynomial order for the pressure unknowns must be one order lower 
than that for the velocities. Evidently, equal-order interpolations for the velocity and pressure tend to 
yield an erroneous pressure distribution unless the finite element analysis formulated is based on the 
idea of least squares. Two types of pressure approximations are possible, either continuous or 
discontinuous. In the continuous context, a trilinear interpolation is employed by lodging the pressure 
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[::: :pressure 
I 

Figure 4. Primitive variables stored in a 14/1 element 

..__.. 
i...; : pressure 

4 J I  

.,8 :u, v, w 

Figure 5 .  Primitive variables stored in a 264 element 

degrees of freedom at eight vertices of the element. As for the discontinuous setting, the pressure node 
is logically placed on the element centroid. Given these means of storing pressure unknowns, velocity 
nodal points can be chosen accordingly. In the first setting, shown in Figures 1 and 2, the polynomials 
for approximating the pressure should be one order lower than those for the velocities. For 
completeness, we will also discuss the so-called QlPo element, shown in Figure 3. Elements falling 
into the second catalogue are called the multivariant finite elements, shown in Figures 4 and 5 ,  
following the terminology of Gupta et al. l 9  

The finite element, shown in Figure 3, is believed to be the simplest conforming mixed element 
applicable to three-dimensional flow analyses. This element, defined by using the trilinear-velocity/ 
constant-pressure basis functions, involves eight nodal points, which does not suffice in itself to 
produce stable pressures. Therefore, we will not take this element into consideration. Of note is that the 
undermined pressure solutions may coexist with a set of smooth and accurate velocity solutions. To 
surmount the difficulty regarding these oscillatory pressures, we can regularize this wavy system by 
modifying the continuity equation in a manner such that the stabilization condition is achieved. 

3. I .  I .  Continuous pressure elements. In the context of continuous pressure elements, two elements 
are considered which assign pressure nodal points at eight vertexes of a hexahedron. Since the pressure 
serves as a Lagrangian multiplier when an incompressible flow is considered, an element of 24 degrees 
of freedom defined at eight nodal points fails to render smooth pressure solutions at the same number 
of vertex nodes (8 degree of freedom). This implies that the divergence-free condition is not strongly 
tied to this arrangement. This fact may explain why this element is generally afflicted with spurious 
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pressure modes. Given this, it is of necessity to reserve more velocity nodal points to enhance the 
discrete ellipticity. Among the possible higher-order velocity elements, we consider herein the 
following two alternatives. 

3. I .  1 .1 .  Trilinear-pressure/l5 velocity element (or 15/8 element). AS mentioned earlier, numerical 
oscillations in a 818 element are caused by an approximation free of the inf-sup condition. As a remedy, 
we could add more nodes to the element shown in Figure 6 .  In the first place, we allocate one velocity 
node to each face and centroid of a hexahedron. The resulting element has 15 velocity nodal points or 
45 degrees of freedom. We refer herein to this element as a 1518 element which is defined by a tri- 
linear continuous pressure field and the following basis functions for velocities in a tri-quadratic 
element .20 
Comer node: 

N = ; ( 1  + ?)( 1 + i j )(  1 + 4)(& + 114 + 42 - 2&4). ( 1 4 4  

Mid-face node: 

N,=~[5(1+~)+i i ( l+ i j )+5(1+5)1(1  - t2+Z2)(1 -$+ii*(1-C2+C-2). (14b) 

Centre node: 

Ni = (1 - t2 + E2)(1 - $ + i j 2 ) ( 1  - c2 + t2),  

4 = tti, i j  = qqi, 4 = CCi, 

( 144  

where 

and ti, qh and ci are the normalized coordinates of the ith node. 
The underlying idea of enriching a lower-order element lies in attempting to yield a more stiff 

system. The remaining question is to check whether this element has the inf-sup condition. In view of 
the difficulty of analytic verification, we are led to perform numerical experiments to study whether the 
inf-sup condition is accommodated to this element. 

3. I. I .2. Trilinear-pressure/tri-quadratic Lagrangian element (or 2 7/8 element). Following the 
same line, we can continue adding velocity nodal points, on each of the 12 edges, to the above- 
mentioned 1518 element. This leads to 27 velocity nodal points. This element can be thought of as a tri- 

-.... 
i ..... ~ :pressure 

.,@ :u, v, w 

Figure 6 .  himitive variables stored in a 8/8 element 
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quadratic Lagrangian element. The following Ni,  which are nodal basis functions, have the property 
that “(xi) = 6;: 

The major complication with this element is the dramatic increase of matrix size and the prohibitive 
computational cost. Regardless of this drawback, we still prefer to advocate this element. The main 
reason is attributable to the accessible error consistency since velocity derivatives are one order higher 
than those of the pressure. 

3.1.2. Discontinuous pressure elements. When a lower-order pressure element is advocated, it is 
natural to replace eight pressure corner nodes solely with one located at the centroid of hexahedral 
element. This leads to a piecewise constant pressure element. Under these circumstances, we can 
dispense with some velocity degrees of freedom; otherwise, the element of interest becomes less 
constrained. Certainly, the task of judiciously eliminating these dispensable velocity degrees of 
freedom should be explored and is the focus of our attention. Successhl elimination of these 
dispensable velocity degrees of freedom depends on the presence of the BabuSka-Brezzi condition. In 
addition, the computational efficiency should be simultaneously taken into account. From the view 
point of programming complexity, we can then build the degenerated variants of the two elements 
presented in section 3.1.1. 

3.1.2.1. QTPo element (or 1411 element). On examining the three momentum equations, one can 
firstly dispense with the three velocity components at the centroid node of element 1518, on which we 
only place the pressure degree of freedom. In the momentum equations, each pressure gradient apldxi 
has an influence on the flow motion along the xi direction respectively. Consequently, the two velocity 
components on each face of element 1518 have little or no effect on the flow motion because they have 
nothing to do with the pressure difference along the direction normal to that surface. Because of these 
restricted facial degrees of freedom, the resulting element belongs to the so-called multivariant finite 
element.” In this class of elements, some velocity nodes may involve different degrees of freedom. In 
this discontinuous pressure element, there exists only one degree of freedom on each mid-face node 
whereas three degrees of freedom are lodged on each vertex of the hexahedron. For this element, the 
reader is referred to Gupta et ~ 1 . ’ ~  for additional details. For purposes of comparison, we only restrict 
finite-element meshes to cubical finite elements. This class of elements is characterized as having finite 
element edges which are parallel to the Cartesian coordinates. In this regard, the shape function can be 
written by the following form: 
Comer node: 

= i (1  + 4)(1 + ij)(l + 7)[2(4 + i j  + 4 - 1) - 411 - ii4 - 741. 

N, = i(1 + 4 + i j  + i)(l - t2 + f 2 ) ( 1  - 1’ + ij2)(1 - c2 + 7”. 

( 1 6 4  

( 16b) 

Mid-face node: 

3.1.2.3. R;Po element (or 2611 element). In the same spirit, one can also discard some velocity 
degrees of freedom to build an element which still satisfies the Babulka-Brezzi condition. The RfPo 
element given by Gupta et all9 can be regarded as the degenerated version of element 2718. This 
element is attainable by deactivating three velocity components at the centroid node, two velocity 
components at each mid-face node, and one velocity component parallel to the mid-edge from element 
27/8. Owing to the restricted velocity degrees of freedom, this element is still classified as multivariant 
in nature. In this multi-variant element, the derived basis hc t ions  tum out to be those in Reference 19. 
Also of note is that, we only apply this element to cubical finite-element meshes as the element 
discussed in 14/1. 
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Table I. Constraint ratio 

element type 

number of element 
number of point 
number of total variables 
number of computed velocities 
number of computed pressures 
number of boundary conditions 
constraint ratio 

2718 

43 83 1 63 
93 173 333 

2312 15468 112724 
1029 10125 89373 
124 728 4912 

1159 4615 18439 
8.2984 13.9080 18.1948 

2611 1411 

93 173 333 9 j  173 333 
1279 8315 59635 679 4427 31891 
441 4725 43245 225 2373 21645 
63 511 4095 63 511 4095 

775 3079 12295 391 1543 6151 

43 83 163 43 83 163 

7.0000 9.2466 10.5604 3.5714 4.6438 5.2857 

Comer node: 

Nt = t ( l  + i;)(l + ij>(l + 4 ) ( f i j  + 54 + 4 4  + 1 - 4 - i j  - 4). ( 1 7 4  

(17b) 

(174 

Mid-edge node: 

Ni = i ( 1  + 5)(1 + ij)(l + 4 ) @  + i j  + 4 - 1)(1 - t2 + t2)(1 - q2 + S2)(1 - c2 + t2). 
Mid-face node: 

nl = ;(I + 4 + i j  + 4>(1 - t2 + Z 2 > ( 1  - q2 + i j 2 ) (1  - t2 + i2). 

3.2. Constraint counts on the investigated elements 

As discussed earlier, an accommodation of interpolations for velocity and pressure in the 
incompressible equations may be inappropriate. A priori knowledge of a good match between these 
primitive variables is, thus, requisite. While the adoption of the LBB stability condition can provide us 
with information to affirm whether or not an element will lock, to establish such verification is not a 
trivial task and is often beyond the ability of many finite element practioners. For this reason, the 
method of constraint count, which has been proven quite effective in providing us with a hint regarding 
the onset of erroneous pressure, will be adopted to roughly determine the applicability of the employed 
element. 

As is usual, we shall employ the constraint ratio, defined by 

2 = nv/nin, (18) 
to estimate the propensity for locking. In equation (18), n, represents the total number of velocity 
equations after the boundary velocities are specified while n ,  represents the total number of 
incompressibility constraints. In three dimensions, an element of constraint ratio il smaller than 3 will 
tend to lock. As A continues to decrease to 2 < 1, the lock phenomenon will be anticipated. 

The value of I, for a given set of interpolation functions varies with the number of elements per side. 
The larger the problem size is, the larger the value of 2 is. This implies that the tendency for locking is 
associated with the problem size. With this fact in mind, we have summarized the computed A, together 
with the degrees of freedom of primitive variables, in Table I for the investigated elements, 4 x 4 x 4, 
8 x 8 x 8, and 16 x 16 x 16. 

At this point, it is important to note that the above approach in assessing the ability of an element is 
not a precise mathematical means. In practical computations, different conclusions regarding 
convergent behaviour might arise judging from different methods of constraint count. In order to make 
a clear comparison, we have carried out a series of calculations, which will be described in the result 
section, for checking if the convergent solution is attainable. It is appropriate at this point to derive the 
analytic constraint ratio for each element under consideration. Apart from the three elements discussed 
earlier, we also consider 84 ,  8/8, and 15/8 elements for purpose of comparison. In Table 11, we have 
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Table 11. Constraint ratio 

element type 4 n >  patch test analytic test 
range of 1(n) > 1 

- 3n3 - 9n2 + 9n - 3 
n3 - 1 mi-variant 8/1 1 < 1 < 3 *  4 G n  

818 

15/8 

3n3 - 9n2 + 9n - 3 
n3 + 3n2 + 3n 

15n3 - 18n2 + 9n - 3 
n3 + 3n* + 3n 

1 <1< 15* 2 G n  failure 

24n3 - 36n2 + 18n - 3 
n3 + 3n2 + 3n 

2718 - 1 < 1 < 2 4 *  2 G n  success 

multi-variant 1411 1 < 1 < 6 *  2 G n  success 
n3 - 1 

12n3 - 24n2 + 1% - 3 
n3 - 1 

1 <1< 12* 2 G n  success 2611 

* indicates the upper bound for the value of constraint ratio as n approaches infinity 

tabulated the analytic constraint ratios which are functions of the number of elements along one side. 
In a pack of elements, the minimal value of n for which an investigated element can pass the patch test 
is also included in Table 11. We have also calculated the values of 1 in terms of the number of elements 
per side. The lower bound for an element passing the patch test is 1. 

By examining the estimated constraint ratios, as shown in Figure 7, we find that the value of 1 I 1411 

is always smaller than that of A 12611 as far as multi-variant elements are concerned. This implies that 
element 14/1 has a higher percentage of incompressibility constraints. For the investigated uni-variant 
elements, the constraint ratio of element 15/8 is smaller than that of element 2718. The constraint ratios 
of univariant elements are larger than the values of multivariant elements when n becomes larger than 
9, as shown in Figures 7 and 8. For the same number of pressure unknowns, the value of 1 I 2718 is 
greater than that of 1 12611 when n is larger than 3, and the value of 1 I 1518 is greater than I I 14/1 as n 
turns out to be larger than 2. It is of note that elements 2718 and 15/8 have the same number of pressure 
unknowns, (n+l)3- 1, for n elements in one coordinate. Also of note is that elements 26/1 and 14/1 
have the same pressure unknowns, n3 - 1, for a fixed n.  

3.3. Test functions in SUPG j n i t e  element model 

Numerical errors common to flow simulations of high Peclet number can be well-suppressed with the 
use of upstream weighted test functions. By appealing to the physical analogy, we find that more 
artificial difision must be added along the flow direction to enhance the stability because the stiffness 
matrix becomes more diagonally dominant. This is not a problem in one-dimensional flow simulation. 
In multidimensional cases, the situation is much more complicated because neither the upwinding 
direction nor its associated upwinding coefficient is easy to attain. An analytical derivation of z for a 
truly multi-dimensional analysis is still being studied. In the present study, the expression of z is 
derived based on the assumption of operator splitting. The following amount of z is spanned by an 
analytic representation along each direction21 
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Figure 7. Constraint ratio for 27/8, 15/8, 26/1, and 14/1 elements against the number of element per side, n. 

yg = VthyRe/2, y, = Vqh,Re/2, y I  = VyhcRe/2, 

v, = 6, . v, v, = i, ' v, v, = i[ . v, 
1 

Y 
f ( y )  = $ coth($ y )  - - . 
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3.4. Solution solver 

The main deficiencies, as compared with the segregated solution algorithm, encountered in the mixed 
formulation comprise a high disk-storage requirement and large CPU time per iteration. In 
consequence, a direct solver of the frontal type may not be advantageous in solving a large-size 
problem where matrix equations of non-symmetric and indefinite form are encountered. Most classical 
iterative solvers are generally not amenable to convergent solution. It seems logical to turn to modem 
iterative solvers such as the bi-conjugate gradient stable iterative method (Bi-CGSTAB22). How- 
ever, iterative solvers pose the considerable difficulty of removing the near breakdown, which is a 
currently active research topic. For this reason, we use only the direct solution solver in what follows 
for small-size problems (4 x 4 x 4 and 8 x 8 x 8) and the Bi-CGSTAB22 iterative solver for large- 
size problems. 

4. COMPUTED RESULTS 

To carry out a performance study, it is necessary to choose a model problem, implemented on different 
types of elements. Attention will first be given to validating the computer code by solving a problem 
amenable to close-form solution. Secondly, the order of solution accuracy and the rate of solution 
accuracy will then be computed accordingly. For the entire surface of a square cubical cavity of length 
1, we specify the discrete values of velocity according to the following expressions: 

u=&2+22), v = - z ,  w = y .  (21) 

With these boundary conditions of the Dirichlet type, the pressure takes the following form: 

(22) 
2 

Re 
p = +(y + 22) + -X. 

The disparity between the computed and analytic solutions has been measured in terms of L2-norm. 
Three uniform grids were investigated to estimate the rates of convergence. As seen from the computed 
error norms and convergent orders, given in Tables I11 and N, there is good agreement with the analytic 
solution. Of note is that the solutions for the investigated element, 16 x 16 x 16, were obtained from 
the Bi-CGSTAB iterative solver under the convergent tolerance of 1 O-’’ and the tolerance of nonlinear 
outer iteration lop6. The amount of time used on the CRAY X-MP EN1 16se is presented in Table IV 
to assess the effectiveness of the investigated elements. 

Before discussing solutions computed from a 27/8 uni-variant element, and multi-variant elements 
2611 and 14/1, it is worthwhile to explain why we fail to obtain a convergence solution from the 
investigated 15/8 uni-variant element. It should be emphasized that an element passing the constraint 
test may fail to yield a convergent solution. One can extract the inner brick from a pack of eight basic 

Table 111. Error of Lz norm 

element type number of element 
43 83 1 63 

2718 - u 8.46708 x lop3 4.69061 x 2.27517 x 
P 2.99745 x lo-’ 1.40210 x lo-’ 7.15795 x 

26/1 - u 9.91253 x lop3 4.99803 x 2.33302 x lo-’ 
P 3.15788 x lo-’ 1.44566 x lo-’ 6.53394 x 

5.49845 x 2.46413 x lop3 
14/1 - U 1-15789 x lo-’ 1.43048 x lo-’ 6.32338 x 

P 3.06003 x lo-’ 
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Table IV Convergent order and CPU time 

element type number of element 
4’ 8’ 16’ 

U 2718 co * - 

P 

26/1 co - 

1411 co - 

CPU 1044 
U 

P 
CPU 294 

U 

P 
CPU 186 

0.852 1 
1,0961 
16929 
0.9879 
1.1272 
7313 
1.0744 
1.0970 
3245 

1.0438 
0.9700 
180935 
1.0992 
1.1457 
454963 
1.1579 
1.1777 
32743 

t 

* co denotes the convergent order 
t the solution is solved by BiCGStab iterative method 
f the solution is obtained under the outer iterative convergent tolerance of 

1518 elements, as shown in Figure 9. On each surface of the extracted brick, there are no velocity nodal 
points to store velocities as the result of pressure gradient setup from the adjacent center pressure 
nodes. It suffices to say that with the mid-face velocity nodal points, which are useful in stabilizing the 
incompressible system, oscillatory solutions are still expected owing to the lack of mid-surface velocity 
nodes as shown in Figure 9(b). 

The cost-effectiveness of the solution is, to a large extent, dependent on the programming 
complexity. While generating a data structure for multi-variant elements of even simple form can be a 
tedious and time-consuming task, we still prefer this class of elements mainly because of the 
computing time, as seen in Table 4, which is saved if a direct solver is considered. The computer 
resources in CPU, YO, memory and disk storage become prohibitively large (about 50,000 unknowns) 

a indicates the nodes of the inner subsection brick 

I 

inner subsection brick 

Figure 9. (a) A brick containing eight 15/8 elements; (b) inner extracted brick 
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when mesh numbers are increased to 16 x 16 x 16, and the use of a frontal solver is no longer 
advantageous. 

For a problem with a fixed number of elements, element 27/8 is most storage intensive, followed by 
element 2611 and element 1411 respectively. The amount of computing time involved in the solution of 
linear equations, either using a direct or an iterative method, follows the same trend as that of the 
storage requirement. As seen from the computed L2 error norms, little variation exists between the 
investigated elements under the condition that the element number per side is fixed. 
Through these computations, we fail to obtain convergent solution from elements 1518. This means 
that the success of a patch test does not necessarily assure convergence solutions. The failure to obtain 
convergent solutions in elements 811 and 818 can be attributed to the lack of velocity nodes on the 
centroid of the control surface. This shows that this type of mesh arrangement can not respond to the 
existing pressure gradient. 

5 .  CONCLUSIONS 

In this paper we have been concerned with the incompressible Navier-Stokes equations in three 
dimensions. Attention has been directed to assessing the smoothness of pressure and the rate of 
convergence for every investigated element. Two classes of velocity/pressure elements have been 
studied, namely the tri-linear continuous pressure element and the multivariant element, which belong 
to the discontinuous pressure element. In each class, two variants were considered. For the multi- 
variant elements QfPo and RtPo, they are the simplified forms of elements 15/8 and 2718 respectively. 
From the equations considered and the test problem analysed, we can draw the following conclusions. 

1. Even though the programming effort is laborious, we prefer using the multi-variant element 
because of the computing time it can save when using a frontal direct solver. As for a larger size 
problem, the above statement might not be true. It heavily depends on the iterative solver used and the 
stiffness matrix rendered. 

2. The rationale behind the use of the multi-variant element is two-fold. First, we assign 
indispensable velocity nodal points for a fixed pressure node. Second, it is not necessarily to provide 
more than the sufficient velocity degrees of freedom. It follows that one can obtain quite smooth 
convergent pressure from smaller size matrix equations. Of course, one can obtain solutions of higher 
resolution from uni-variant elements, at the cost of the demand for a larger storage capacity to solve the 
matrix equations. If the direct solver is considered only, there exists a trade off between less 
programming complexity using uni-variant elements and less laborative computing effort when dealing 
with multi-variant elements. 

3. Even though they pass the patch test, elements 811, 8/8, and 15/8 still fail to render convergence 
solutions. This implies that the realm of patch-test-satisfaction is much larger. An element with the 
LBB stability condition can pass the patch test. The opposite is not necessarily true. Also of note is that, 
if an element fails to pass the patch test, then it should be classified as a singular stiffness matrix. 

REFERENCES 

I .  M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, A Guide to Theoly, Practice, and Algorithms, 

2 .  G. F, Carey and J. T. Oden, Finite Elements: Fluid Dynamics, vol. VI, Prentice-Hall, Englewood Cliffs, NJ, 1986. 
3. 0. Pironneau, Finite Element Methodsfor Fluids, John Wiley and Sons, Chichester, 1989. 
4. T. J. R. Hughes, W. K. Liu, and A. Brooks, ‘Finite element analysis of incompressible viscous fluid by the penalty function 

5 .  B. N. Jiang and L. A. Povinelli, ‘Least-squares finite element method for fluid dynamics’, Comput. Methods Appl. Mech. 

Academic Press, Inc., 1989. 

formulation,’ 1 Comp. Phys., 30, 1-60 (1 979). 

Eng., 81, 13-37 (1990). 



696 T. W. H. SHEU AND M. M. T. WANG 

6. 

7. 
8. 
9. 

10. 

11. 

12. 

13. 

14. 
15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

B. N. Jiang, ‘A Least-squares finite element method for incompressible Navier-Stokes problems’, Int. j .  numer methods 
fluids, 14, 843-859 (1992). 
R. Teman, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, Rev. edition, 1979. 
V. Girault and F? A. Raviart, Finite Element Methods for  Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. 
A. J. Chorin, ‘A numerical method for solving incompressible viscous flow problems’, J: Camp. Phys., 2,12-26 (1967). 
P. M. Gresho and R. L. Sani, ‘On pressure boundary conditions for the incompressible Navier-Stokes equations’, Finite 
Elements in Fluids, 7 ,  123-157 (1987). 
P. M. Gresho, ‘Some current CFD issues relevant to the incompressible Navier-Stokes equations’, Comput. Methods Appl. 
Mech. Eng., 87, 201-252 (1991). 
R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Griffiths, and M. Engleman, ‘The cause and cure (?) of the spurious pressures 
generated by certain FEM solutions of the Navier-Stokes equations, Parts 11’, Int. j. nume,: methodspuids, 1, 171-204 
(1981). 
F. Brezzi, ‘On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers’, 
RAIRO, Anal. Num., 8, @2), 129-151 (1974). 
BabuSka, ‘Error bounds for finite element methods’, Nume,: Math., 16, 322-333 (1971). 
T. J. R. Hughes, L. F? Fmca, and M. Becestm, ‘A new finite element formulation for computational fluid dynamics, V. 
circumventing the BabuSka-Brezzi condition, A stable Petrov-Galerkin formulation of the Stokes problem accommodating 
equal-order interpolations’, Comput. Methods Appl. Mech. Eng., 59, 85-99 (1986). 
D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemishere 
Publishing Co., 1984. 
T. B. Gatshi, C. E. Grosch, and M. E. Rose, ‘A numerical study of the two-dimensional Navier-Stokes equations in vorticity- 
velocity variables’, J: Camp. Phys., 48, 1-22 (1982). 
K. Aziy and J. D. Hellums, ‘Numerical solution of the three-dimensional equations of motion for laminar natural 
convection’, Phys. Fluids, 10, 314-324 (1967). 
M. Gupta, T. H. Kwon, and Y. Jaluria, ‘Multivariant finite elements for three-dimensional simulation of viscous 
incompressible flows’, Int. j .  numer methodsjuids, 14, 557-585 (1992). 
D. Pelletier, A. Garon, A. Fortin, F. Bertrand, and P. Tanguy, ‘Numerical Methods in Laminar and Turbulent Flow’, 
Proceedings of the Sixth International Conference, 6,  1803-1 81 3, Swansea (1989). 
T. W. H. Sheu and M. M. T. Wang, ‘AValidation Study of Quadratic SUPG Formulation for Incompressible Viscous Flows’, 
K. Morgan et al., editor, VIII International Conference on Finite Elements in Fluids, 224-232, Barcelona, Sep. (1993). 
H. A. Van der Vorst, ‘BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric 
linear systems’, SIAM 1 Sci. Statist. Comput., 13, 63 1-644 (1992). 




