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SUMMARY

We present in this paper a finite difference solver for Maxwell’s equations in non-staggered grids. The
scheme formulated in time domain theoretically preserves the properties of zero-divergence, symplecticity,
and dispersion relation. The mathematically inherent Hamiltonian can be also retained all the time.
Moreover, both spatial and temporal terms are approximated to yield the equal fourth-order spatial and
temporal accuracies. Through the computational exercises, modified equation analysis and Fourier analysis,
it can be clearly demonstrated that the proposed triple-preserving solver is computationally accurate and
efficient for use to predict the Maxwell’s solutions. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simulation of some differential equations of scientific and practical importance is subject to
the divergence-free constraint conditions. One typical example of which is the incompressible
Navier–Stokes equations, which should be solved together with the divergence-free velocity field u.
Unlike the incompressible Navier–Stokes equations, where ∇ ·u=0 serves as an explicit part of the
equations of motion for the fluid flows, magnetohydrodynamic (MHD) and Maxwell’s equations
automatically satisfy the divergence-free conditions for the magnetic and electric flux densities
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provided that their initial conditions are divergence free [1]. The presence of these two constraint
equations cast in the divergence-free form poses a computational challenge since the numerically
predicted solutions are not necessarily to be divergence free. Violation of these physically relevant
divergence-free conditions can very often lead to severe numerical defects in stability.

Several numerical methods have been proposed to resolve the problems related to the local
divergence-free conditions. For the incompressible Navier–Stokes equations, one may refer to the
work of Karakashian and Jureidni [2]. In MHD equations, three major approaches have been
proposed to overcome the difficulty associated with the predicted solutions that do not satisfy the
divergence-free condition exactly or very accurately. They are known as the projection method of
Brackbill and Barnes [3], constrained transport method of Evans and Hawley [4], and Powell’s
method [5], among many others reported in [6, 7]. To enforce the divergence-free conditions
in Maxwell’s equations, one can follow the idea of Yee [8] implemented in staggered grids.
Another class of numerical methods for Maxwell’s equations developed to retain the divergence-
free condition is the generalized Lagrange multiplier formulation of Munz et al. [9]. The local
divergence-free condition in Maxwell’s equations can be also enforced within the discontinuous
Galerkin framework [1].

Maxwell’s equations have been gradually solved in time domain rather than in frequency domain
since recent applications in semiconductor manufacturing, biophotonics, display technology, and
optical communication, sensing, imaging and storage involve electromagnetic wave operated in
high-frequency range. Development of an effective and accurate Maxwell’s equation solver in
time domain becomes thus an important subject. In Maxwell’s equations, there are no magnetic
and electric monopoles in the sense that the magnetic flux density B and electric flux density D
satisfy the divergence-free constraint conditions given by ∇ ·B=0 and ∇ ·D=0. In the continuous
context, these two divergence constraints have to be imposed initially. In fact, the divergence-free
properties of B and D are preserved all the time by means of the time-evolving Faraday’s and
Ampère’s laws. The implication is that the zero-divergence equations for B and D are considered
as the inherent analytical properties for the evolution operators of the magnetic and electric fields.
In other words, Gauss’ law for magnetism and electricity can be left out of consideration in the
analytic calculation of solutions for B and D from Faraday’s and Ampère’s laws, respectively.

In the discrete context of Maxwell’s equations, the divergence-free conditions for magnetism
and electricity are not satisfied in general due to the inevitably introduced discretization errors.
Violation of the zero-divergence constraints on the magnetic and electric flux densities will often
lead to stability problem in the simulation of Maxwell’s equations. Thus, one major task needs to
be performed in the development of numerical methods for Maxwell’s equations is the elimination
of divergence errors. Control of the divergence errors is particularly essential for solving the
problem of compressible MHD, and the problem of Maxwell’s equations, which may involve sharp
gradient solutions, since any accumulated divergence error can cause the employed scheme to
breakdown [10].

When approximating the derivative terms, numerical error will be inevitably shown both in
amplitude and phase. The resulting dissipation error may attenuate the solution amplitude and the
dispersion error may lead to an erroneously predicted phase speed. Maxwell’s equations involve
only the spatial terms of the first-order derivative type. Prediction error of the dispersive type
can even cause the scheme destabilization to occur. It is therefore essential to avoid dispersion
error when approximating the spatial derivative terms. How to preserve the embedded dispersion
relation in the first-order derivative term becomes the second challenge of calculating an accurate
Maxwell’s solution.
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Dissipation error, which can result in amplitude attenuation, and dispersion error, which can cause
an incorrect wave propagation speed, are cumulative in nature. After the wave being propagated for
a fairly long distance or time, the solution for a time-evolving problem can be greatly affected and
becomes non-physical. For example, the Hamiltonian structure of the Maxwell’s equations may
no longer be retained after a sufficiently long time. Preservation of the symplecticity embedded in
Maxwell’s equations poses another difficulty when approximating the time derivative terms shown
in Faraday’s and Ampère’s equations.

The remainder of this paper will be organized as follows. In Section 2, Maxwell’s equations,
which include Faraday’s law for the time-evolving magnetic flux density, Ampère’s law for the
time-evolving electric flux density, and Gauss’ laws for magnetism and electricity, will be presented
together with the physically important property of the zero-divergence for the two invoked vector
fields. The hyperbolic Hamiltonian differential system will be integrated in time to preserve its
symplecticity using the implicit symplectic Runge–Kutta scheme described in Section 3. This is
followed by imposing the divergence-free algorithm for Gauss’ law in Section 4 and presenting
the discretization scheme in Section 5 for the first-order spatial derivative terms shown in the
Maxwell’s equations so as to preserve their respective dispersion relations. We present in Section 6
a detailed analysis of the scheme in Fourier space to reveal the accuracy of the proposed scheme.
In Section 7, one problem with the analytic and benchmark solution will be chosen to validate
the proposed fourth-order accurate scheme in time as well as in space, which accommodates
the divergence-preserving, symplecticity-preserving and dispersion-relation-preserving properties.
Finally, we will draw some conclusions in Section 8 based on the solutions predicted from the
Maxwell’s equations.

2. WORKING EQUATIONS

We consider in this paper the following time domain Maxwell’s equations without current density
and free charges for ease of describing the proposed scheme:

�H
�t

=−1

�
∇×E (1)

�E
�t

= 1

�
∇×H (2)

The above set of hyperbolic equations, which contain no current density, will be solved in a perfectly
conducting domain bounded by some truncated boundaries, at which the following boundary
conditions are specified:

n×E=0 (3)

n ·H =0 (4)

In the above, n represents the unit vector that is locally orthogonal to a boundary surface. Imposition
of the above set of boundary conditions ensures that the normal component of the magnetic field
and the tangential component of the electric field will be vanished [11]. For the two-dimensional
analysis, Maxwell’s equations can be normally decomposed into two independent classes of equa-
tions, namely the transverse magnetic (TM) and the transverse electric (TE) modes. For brevity,
only the TM-mode Maxwell’s equations will be considered in this study.
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The permeability in Faraday’s law of induction and the permittivity in Ampère’s law for the
medium of current interest are assumed to be homogeneous and isotropic for the sake of simplicity.
These two material properties are the proportional constants for the following linear isotropic
constitutive relations:

D=�E (5)

B=�H (6)

The magnitudes of � (dielectric permittivity) and � (magnetic permeability) can, in addition,
determine the wave speed c(≡(ε�)1/2). In the above, four invoked field vectors H , E , B, and D
are denoted as the magnetic field intensity, electric field intensity, magnetic induction (or magnetic
flux density), and electric displacement (or electric flux density), respectively. It is worth noticing
here that the time-evolving transport equations for H and E are constrained by the following
Gauss’ laws for magnetism and electricity, respectively:

∇ ·B=0 (7)

∇ ·D=0 (8)

Within the continuous context, Equations (7)–(8) are satisfied automatically if they are divergence
free initially [1]. Maxwell’s equations (1)–(2) and (5)–(8) are, in mathematics, overdetermined.
One often considers that the two divergence-free equations (7)–(8) are simply auxiliary and can be
neglected when performing the numerical computations. The reason is that the equations in (1)–(2)
are not strictly independent of (7)–(8) in the sense that Equations (7) and (8) turn out to be the direct
consequence of applying the divergence operator (∇·) to both hand sides of Equations (1) and (2),
respectively. One can therefore integrate the hyperbolic system of equations in (1)–(2) to calculate
the instantaneous electric and magnetic fields. Negligence of the divergence-free equations (7)–(8)
will destroy the ellipticity of Maxwell’s equations in the spatial domain. In computational practice,
satisfaction of two divergence-free constraint conditions shown in (7)–(8) poses however a great
challenge due to the introduced numerical errors of all sorts. This misconception has been known
to be the origin of the spurious solutions predicted in time domain [12, 13].

3. HAMILTONIAN STRUCTURE IN MAXWELL’S EQUATIONS

It is instructive to summarize some essential features existing in Maxwell’s equations so that they
can be taken into account in the scheme development. The hyperbolic system of equations (1)–(2)
is equivalent to the dynamical system given below

�
�t

(
H

E

)
=
(
O −I

I O

)(
�H/�E

�H/�H

)
(9)

where �H/�E , for example, denotes the variational (or functional) derivate of H with respect to
E . The Hamiltonian functional H shown above is expressed as follows [14]:

H(H ,E)= 1

2

∫
�

(
1

�
H ·∇×H+ 1

�
E ·∇×E

)
d� (10)
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According to the work of Kole et al. [15], Equations (1)–(2) can be rewritten as (�/�t)�(t)=
G�(t), where �(t)≡(m,n(t))T (=�1/2,�1/2E(t))T. The matrix operator G given below is skew
symmetric with respect to the inner product defined in [15]

G=
(

O −�−1/2∇×(�−1/2)

�−1/2∇×(�−1/2) O

)
(11)

GivenMaxwell’s equations represented by �(t)/�t=G�(t), one can easily write its formal solution

as �(t)=etG�(t=0). It is then clear to us that Maxwell’s equations under investigation will be

evolved according to the mathematical operator given by etG . It is also worth noticing that the norm
of �, which is

∫
�(�E ·E+�H ·H)d�, has the direct relevance to the following energy density

W (t) for the EM mode of the field equations:

W (t)=
∫

�
(�E ·E+�H ·H)d� (12)

Owing to the time-evolving operator etG , the vector solution for �(t) can be rotated without
changing its magnitude [11]. This theoretically enlightened that the energy density given in (12)
does not change with time for the EM field. Both of the local and global time-invariant quantities,
defined, respectively, in (10) and (12), will be utilized later on as the indirect means to justify the
proposed Maxwell’s equations solver.

4. DIVERGENCE-FREE-PRESERVING SOLUTION ALGORITHM

There are six unknowns shown in Maxwell’s equations (1)–(2) and (7)–(8), which include three
equations (Faraday’s law) for B, three equations (Ampère’s law) for D, and two equations (Gauss’
law) for magnetism and electricity. To close the differential system of Maxwell’s equations, we
normally only need to consider six of the eight equations given in (1) and (2), leaving the two
elliptic equations (7) and (8) in Maxwell’s equations out of consideration. Since omission of these
divergence-free conditions may numerically result in a serious stability problem, we are motivated
to develop a solution algorithm for Maxwell’s equations so that the solutions predicted from (1)–(2)
can satisfy Gauss’ laws (7)–(8) all the time.

In the light that Gauss’ laws shown in (7)–(8) are satisfied only within the continuous context
through Equations (1) and (2) for the field vectors H and E , modification of the time-evolving
transport equations for them is needed for retaining the discrete divergence-free solutions. Inspired
by the work of Assous et al. [16], two potential functions �1 and �2 will be introduced into
Equations (2) and (1), respectively. It is hoped that analysis of the following Faraday’s and Ampère’s
equations can ensure a discrete satisfaction of the normally dispensed Gauss’ laws:

�
�t

E− 1

�
∇×H+∇�1=0 (13)

�
�t

H+ 1

�
∇×E+∇�2=0 (14)
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To close the differential system for the above set of modified Maxwell’s equations, two equations
for the correction potentials �1 and �2 need to be derived. Define first the differential operators
D1 and D2 for the Gauss’ law represented by Equations (8) and (7), respectively. One can then
write the modified Gauss’ law as follows:

D1�1+∇ ·E=0 (15)

D2�2+∇ ·H =0 (16)

By performing the differential operator (∇·) on Equation (13) and then the temporal operator �/�t
on Equation (15), one can derive the equation for �1 as follows:

�(D1�1)

�t
−∇2�1=−1

�
∇ ·(∇×H) (17)

Since D1�1=−∇ ·E , we are led to rewrite Equation (17) as

∇2�1=− �
�t

(∇ ·E) (18)

For the two-dimensional case, the equation governing the correction function �1 turns out to be
the Laplace equation ∇2�1=0 due to the assumption that both current density and electric charge
density are equal to zero.

For solving the value of �1 from the Laplace equation, we need to prescribe the boundary
condition. In this study, we impose ��1/�x=0 and ��1/�y=0 at the boundary since �E/�t−
(1/�)∇×H =(0,0) holds on the x–y plane. As a result, �1 will remain to be zero in the whole
domain and there is no need for us to include Equation (18) in the current two-dimensional
simulation. One can similarly perform the spatial operator (∇·) on Equation (14) and the temporal
differential operator �/�t on Equation (16) to get the transport equation for �2 as follows, thanks
to the identity ∇ ·(∇×E)=0

∇2�2=− �
�t

(∇ ·H) (19)

In summary, the divergence-free electromagnetic differential system formulated within the above
framework of Lagrange multiplier includes the equations given in (13), (14), (19) and �1=0.

5. DISCRETIZATION METHOD

We consider in this paper the following equations with the TM polarization to model the time-
evolving planar magnetic field (Hx ,Hy,0) and the scalar electric field (0,0,Ez)

�Hx

�t
= −1

�

�Ez

�y
− ��2

�x

�Hy

�t
= 1

�

�Ez

�x
− ��2

�y
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�Ez

�t
= 1

�

(
�Hy

�x
− �Hx

�y

)

∇2�2 = − �
�t

(
�Hx

�x
+ �Hy

�y

) (20)

Maxwell’s equations, which are utilized to describe the propagation of electromagnetic wave in
space and time, have been shown to accommodate the Hamiltonian structure [17, 18]. It was shown
in [19, 20] that symplectic schemes in theory outperform their non-symplectic counterparts since
only the former schemes can always preserve the Hamiltonian nature embedded in Maxwell’s
equations.

5.1. Symplecticity-preserving temporal scheme

For retaining the physically embedded Hamiltonian structure in Maxwell’s equations [17, 18], we
will present below the employed symplectic integrator for the time derivative terms shown in
Equation (20).

The first three equations in (20) can be written as ��/�t= f , where

�=(Hx ,Hy,Ez)
T (21)

f =
(

−1

�
�Ez/�y−��2/�x,

1

�
�Ez/�x−��2/�y,

1

�
(�Hy/�x−�Hx/�y)

)T

(22)

One of the representative scalar equations in ��/�t= f , which is given by

��/�t= f (23)

will be approximated within the semi-discretization framework. By applying the symplectic Runge–
Kutta scheme of the fourth-order accuracy in time [10], we are rendered to get the following three
equations which altogether permit the fourth-order temporal accuracy for Equation (23):

�(1) =�n+�t[ 14 f (1)+( 14 + 1
2
√
3
) f (2)] (24)

�(2) =�n+�t[( 14 − 1
2
√
3
) f (1)+( 14 ) f

(2)] (25)

�n+1=�n+�t[ 12 f (1)+ 1
2 f

(2)] (26)

where f (1) and f (2) represent the values of f evaluate at t=n+( 12 + 1
2
√
3
)dt and t=n+( 12 −

1
2
√
3
)dt , respectively.

5.2. Dispersion-relation-preserving explicit compact spatial scheme

Discretization of Maxwell’s equations remains to approximate the first-order spatial derivative
terms shown in Equation (22) to render the algebraic system for equations in (20). One should
notice that when discretizing all the first-order derivative terms, shown in (20), in non-staggered
grids, care needs to be properly taken of. Otherwise, undesirable numerical oscillations, which are
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1,j 3,j 4,j 5,j 7,j2,j 6,j

Figure 1. Schematic of the seven-point stencil used in the current scheme.

commonly referred to as the numerical errors due to the even–odd or checkerboard decoupling,
will be present.

In the approximation of �Hx/�x , for example, at a point (i, j), it is essential to take the nodal
value of Hx |i, j into consideration so as to avoid the so-called even–odd decoupling problem. To
enhance numerical stability, one can employ the compact scheme proposed earlier in [21, 22].
Referring to Figure 1, �Hx/�x |i, j will be approximated by the following equation in a mesh with
the grid size of h:

�Hx

�x

∣∣∣∣
i, j

=a1Hx |i+3, j +a2Hx |i+2, j +a3Hx |i+1, j −a3Hx |i−1, j −a2Hx |i−2, j −a1Hx |i−3, j (27)

Derivation of the compact scheme for �Hx/�x is followed by applying the Taylor series expansion
for Hx |i±1, j , Hx |i±2, j , and Hx |i±3, j with respect to Hx |i, j and, then, eliminating the two leading

error terms �2Hx/�x2 and �3Hx/�x3 shown in the modified equation. One more algebraic equation
needs to be derived for uniquely determining the three weighting coefficients a1, a2, and a3
introduced in (27).

Within the dispersion relation preserving (DRP) analysis framework [23], we define first the
Fourier transform and its inverse for �Hx/�x in the one space dimension x as follows:

H̃x (�)= 1

2�

∫ +∞

−∞
Hx (x) e

−i�x dx (28)

Hx (x)=
∫ +∞

−∞
H̃x (�)ei�x d� (29)

By conducting Fourier transform on each term shown in Equation (27), we are led to get the
following actual wavenumber �:

�� −i
h

(a1e
i3�h+a2e

i2�h+a3 ei�h−a3 e−i�h−a2 e−i2�h−a1 e−i3�h) (30)

In an approximation sense, the effective wavenumber �̃ can be regarded as the right-hand side of
Equation (41) [23]. In other words, we can define �̃ as follows:

�̃= −i
h

(a1e
i3�h+a2e

i2�h+a3e
i�h−a3e

−i�h−a2e
−i2�h−a1 e−i3�h) (31)

where i=√−1. To make �̃ a good approximation of �, the magnitude of |�h− �̃h|2 should be kept
as small as possible in the integral range of −�/2�	��/2

E(�)=
∫ �/2

−�/2
|�h− �̃h|2 d(�h)=

∫ �/2

−�/2
|	− 	̃|2 d	 (32)
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where 	=�h. To make the positive E a minimum magnitude, the following equation is enforced
to achieve the goal:

�E
�a3

=0 (33)

According to the above extreme condition, we are led to derive one algebraic equation. One
equation for the minimization of dispersion error will be used together with the other two equations
derived from the modified equation analysis to get the following three coefficients ai (i=1–3)
shown in Equation (27)

a1=− 2(3�−10)

3(15�−32)
(34)

a2= 3(9�−32)

4(15�−32)
(35)

a3= 12

15�−32
(36)

Thanks to the following modified equation for �Hx/�x , we are led to know that the proposed
dispersion relation-preserving scheme has the spatial accuracy of fourth order

�Hx

�x
= �Hx

�x

∣∣∣∣
exact

− 9(5�−16)

10(15�−32)
h4

�5Hx

�x5
+O(h6)+·· · (37)

While use of the above implicit compact scheme can circumvent the erroneously predicted
oscillatory solutions, the computational cost can be quite considerable. As a means to alleviate
this drawback but not at the cost of destabilizing the approximation, we employ in this study the
modified explicit compact scheme presented in [24]. In what follows, we will briefly describe this
scheme. In the seven-point solution stencil schematic in Figure 1, the implicit equation for �Hx/�x
can be written in matrix form given below for the vector field Hx (≡(Hx |1,Hx |2, . . . ,Hx |7)T):

AH′
x =BHx (38)

where H′
x ≡�Hx/�x and

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3

1
4 1 1

4

1
4 1 1

4

1

1
4 1 1

4

1
4 1 1

4

3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−17

6

3

2

3

2
−1

6

−3

4
0

3

4
3

4
0

3

4
2(−10+3�)

3(−32+15�)
− 3(−32+9�)

4(−32+15�)
− 12

−32+15�
0

12

−32+15�

3(−32+9�)

4(−32+15�)
− 2(−10+3�)

3(−32+15�)

−3

4
0

3

4

−3

4
0

3

4
1

6
−3

2
−3

2

17

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The gradient vector H′
x (≡(�Hx/�x |1,�Hx/�x |2, . . . ,�Hx/�x |7)T) shown in Equation (38) can be

also written as H′
x =GHx , where G(≡A−1B) is derived as

G=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− −152+69�

2(−32+15�)

3(−224+99�)

4(−32+15�)
− 3(−104+45�)

2(−32+15�)

13

6
− 12

−32+15�
− 3(−32+9�)

4(−32+15�)

2(−10+3�)

3(−32+15�)

− 4(−11+6�)

9(−32+15�)
− 160+69�

4(−32+15�)

2(−34+15�)

−32+15�
− 7

9

4

−32+15�

−32+9�

4(−32+15�)
− 2(−10+3�)

9(−32+15�)

8+3�

18(−32+15�)
− −32+21�

4(−32+15�)
− 5(−8+3�)

2(−32+15�)

17

18
− 4

−32+15�
− −32+9�

4(−32+15�)

2(−10+3�)

9(−32+15�)

2(−10+3�)

3(−32+15�)
− 3(−32+9�)

4(−32+15�)
− 12

−32+15�
0
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3(−32+9�)

4(−32+15�)
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3(−32+15�)

− 2(−10+3�)

9(−32+15�)

−32+9�

4(−32+15�)

4

−32+15�
− 17
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5(−8+3�)

2(−32+15�)

−32+21�

4(−32+15�)
− 8+3�

18(−32+15�)

2(−10+3�)

9(−32+15�)
− −32+9�

4(−32+15�)
− 4

−32+15�

7

9
− 2(−34+15�)

−32+15�

160+69�

4(−32+15�)

4(−11+6�)

9(−32+15�)

− 2(−10+3�)

3(−32+15�)

3(−32+9�)

4(−32+15�)

12

−32+15�
− 13

6

3(−104+45�)

2(−32+15�)
− 3(−224+99�)

4(−32+15�)

−152+69�

2(−32+15�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6. ANALYSIS OF THE PROPOSED SCHEME IN FOURIER SPACE

The following approximation for the first derivative of�, which represents Ez , Hx , Hy , is considered
in one dimension:

��

�x

∣∣∣∣
i, j

=a1�|i+3, j +a2�|i+2, j +a3�|i+1, j −a3�|i−1, j −a2�|i−2, j −a1�|i−3, j (39)

For the purpose of conducting Fourier analysis, field variable � is assumed to be periodic over the
domain [0∼ L], i.e. �1=�N+1, where N = L/h and h is the grid size. Within the Fourier analysis
framework, � can be decomposed into the Fourier series expansion shown below [25],

�(x)=
k=N/2∑
k=−N/2

�̃(k)ei2�kx/L (40)
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where i=√−1. It is convenient to introduce a scaled wavenumber �=2�kh/L=2�k/N , and a
scaled coordinate s= x/h. The Fourier modes expressed in terms of these are simply exp(i�s).
By conducting the above transform on each term shown in Equation (39), we are led to get the
following actual wavenumber �:

�� −i
h

(a1e
i3�h+a2e

i2�h+a3e
i�h−a3e

−i�h−a2e
−i2�h−a1e

−i3�h) (41)

In an approximation sense, the effective wavenumber �̃ can be regarded as the right-hand side of
Equation (41) [23]. In other words, we can define �̃ as follows:

�̃= −i
h

(a1e
i3�h+a2e

i2�h+a3e
i�h−a3e

−i�h−a2e
−i2�h−a1e

−i3�h) (42)

It follows that:

�̃h=−i(a1ei3�h+a2e
i2�h+a3e

i�h−a3e
−i�h−a2e

−i2�h−a1e
−i3�h) (43)

Fundamental analysis of the present DRP scheme starts from defining the coefficients ki and kr
for the respective dispersion and dissipation errors

ki =
[�̃h] (44)

kr =�[�̃h] (45)

In the above, 
[�̃h] denotes the real part of �̃h and �[�̃h] stands for the imaginary part of �̃h for
the proposed scheme. It is worth noticing that kr is always zero for the present scheme due to
the symmetry of the stencil points. In Figure 2, the predicted values of ki are plotted against the
modified wavenumber �h. For the sake of comparison, we also plot ki for the scheme of Tam and
Webb [23], schemes of Lele [25], and schemes of Bogey and Bailly [26].

7. NUMERICAL RESULTS

To demonstrate the integrity of the symplecticity-preserving scheme formulated in non-staggered
grids for simulating the TM wave, we will consider the problem amenable to the analytic solutions.
The two-dimensional problem will be solved at �=1 and �=1 in −1�x�1, −1�y�1 with the
initially prescribed divergence-free conditions for H and E as follows:

Ez(x, y,0)=sin(3�x)sin(4�y)

Hx (x, y,0)=− 4
5 cos(3�x)cos(4�y)

Hy(x, y,0)=− 3
5 sin(3�x)sin(4�y)

The corresponding exact solutions are given below [10]
Ez(x, y, t)=sin(3�x−5�t)sin(4�y)

Hx (x, y, t)=− 4
5 cos(3�x−5�t)cos(4�y)

Hy(x, y, t)=− 3
5 sin(3�x−5�t)sin(4�y)
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h

k i

0 0.5 1 1.5 2 2.5 3
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0.5
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1.5

2
present
Tam and Webb [23]
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FDo11p
FDo13p
tri-4th
tri-6th
tri-8th
exact

( )

Lele [25]
Bogey and Bailly [26]

( )

( )
( )

Figure 2. Comparison of the values of ki , which are plotted against the modified wavenumber �h, among
the proposed scheme (seven stencil points), the scheme of Tam and Webb (seven stencil points) [23], the
schemes of Bogry and Bailly (nine-thirteen stencil points) [26], and the tri-diagonal compact schemes of

Lele (seven stencil points) [25].
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Figure 3. The predicted L2-error norms and the corresponding spatial rates of convergence
(sroc) for the three field variables.

Two sets of calculations will be performed to get the spatial and temporal rates of convergence.
One set of calculations will be performed at �t= 1

5000 , which is much smaller than the finest grids
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Figure 4. The predicted L2-error norms and the corresponding temporal rates of convergence
(troc) for the three field variables.

of �x=�y= 1
20 ,

1
30 ,

1
40 ,

1
50 . The predicted errors cast in L2-error norms are plotted in Figure 3,

from which the spatial rate of convergence can be numerically predicted to be fourth. Another
set of calculations will be similarly performed at the fixed grid size �x=�y= 1

50 , which is again
much smaller than the smallest chosen time steps of �t= 1

18 ,
1
19 ,

1
20 ,

1
21 , to facilitate us to calculate

the temporal rate of convergence. As Figure 4 shows, the L2-error norms are decreased with the
decreasing values of �t at an approximated rate of fourth.

As an indirect justification of the proposed scheme, we will calculate the values for the Hamil-
tonian defined in (10) and the energy density given in (12). Note that the Hamiltonian is trivially
equal to zero in the present two-dimensional Maxwell’s equations. This implies that the Hamil-
tonian structure will be automatically preserved all the time for the TM wave problem. We need,
as a result, to plot only the predicted and exact energy density W against time in Figure 5, from
which one can clearly see that the currently predicted value of W does not vary with time. Based
on the predicted solution, we will calculate the L2-norms of ∇ ·H and then plot them against time.
From Figure 6, one can clearly see that the magnetic field is indeed discretely divergence free for
the calculation without taking the differential Gauss’ law into account in the prediction.

To examine how the correction potential �2 introduced in Equation (14) can be a good aid
to satisfy the divergence-free constraint, we plot in Figure 6 the predicted values of ∇ ·H and
the magnitudes of |∇�2| in Figure 7 at the three chosen points (x=(−0.5,0,0.5), y=0) against
time. It can be clearly seen from Figure 7 that the values of ∇ ·H are indeed locally very close to
zero, thereby satisfying Gauss’ law numerically. The predicted non-zero values of |∇�2| plotted
in Figure 8 and the non-zero L2-norm of |∇�2| plotted in Figure 9 enlighten the necessity of
including ∇�2 in Equation (14) to yield the predicted divergence-free field for H .

In addition to the good agreement with the exact solution and the satisfaction of the embedded
energy conservation in Maxwell’s equations, we will also assess the triple-preserving scheme with
the well-known Yee’s scheme for the sake of completeness. Two schemes will be assessed in terms
of the predicted L2-error norms, rates of convergence, and the required CPU times. To begin with,
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Figure 5. The predicted and exact energy density, shown in (12), against time.
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Figure 6. Comparison of the predicted L2-norms for ∇ ·H against time using the conventional and the
present symplectic formulations.

we plot in Figure 10 the two predicted energy densities against time. One can clearly see from
this figure that the predicted energy density of Yee is quickly dropped from two while the energy
density predicted by the current triple-preserving scheme remains unchanged with its initial value,
which is 2. In addition to this well-preserved nature for W , we also tabulate the predicted L2-error
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time
2 4 6 8 10

at (-0.5,0)

-2E-07

-1E-07

0

1E-07

2E-07 at (0,0)
at (0.5,0)

∇
⋅H |

Figure 7. The predicted time-varying values of ∇ ·H at the three chosen locations.

time

|
2|

2 4 6 8 10

2E-05

4E-05

6E-05

8E-05

0.0001
at (-0.5,0)
at (0,0)
at (0.5,0)

Figure 8. The predicted time-varying values of |∇�2| at the three chosen locations.

norms and the corresponding rates of convergence in Table I. It is clearly shown in this table that the
currently proposed preserving scheme outperforms Yee’s scheme in providing both higher accuracy
and faster convergence rate. While the present scheme needs a much longer computational time
to carry out the simulation in each investigated grid, the proposed triple-preserving scheme also
outperforms Yee’s scheme if comparison is made on the basis of the similar prediction accuracies,
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Figure 9. The predicted L2-norm values of |∇�2| against time.
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Figure 10. Comparison of the computed energy densities W against time for the problem with
the initial value of W (t=0)=2.

which are tabulated in Table II. One can clearly see either from Table II or Figure 11 that the
present scheme needs less CPU time to accomplish the computation that yields approximately the
same level of prediction accuracy.
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Table I. The predicted L2-error norms, rates of convergence, and the required CPU times for the two
investigated schemes carried out in 412, 512, 612, and 712 four meshes at time=10.

L2-error norm Rate of convergence CPU time (s)

Present Yee [8] Present Yee [8] Present Yee [8]
41×41 1.5846E−02 0.1478 — — 6.4375 0.1875
51×51 6.3243E−03 9.2943E−02 4.1163 2.0792 12.5781 0.3594
61×61 3.1331E−03 6.3856E−02 3.8525 2.0587 21.5000 0.6094
71×71 1.7169E−03 4.6592E−02 3.9018 2.0447 33.2187 0.9688

Table II. Comparison of the required CPU times for the two investigated schemes that yield approximately
the same L2-error norms at time=10.

Present Yee [8]
L2-error norm Grid CPU time (s) L2-error norm Grid CPU time (s)

1.5846E−02 41×41 6.4375 1.5649E−02 121×121 4.6719
6.3243E−03 51×51 12.5781 6.3570E−03 189×189 19.0937
3.1331E−03 61×61 21.5000 3.1511E−03 268×268 56.5937

CPU TIME (seconds)

L
2e

rr
o

r 
n

o
rm

0 10 20 30 40 50 60

0.005

0.01

0.015 present
Yee [8]

Figure 11. Comparison of the needed CPU times against the predicted L2-error norms to show that the
present scheme needs less CPU time for getting the predicted solution with the same L2-error norm.

8. CONCLUSIONS

In this article a compact scheme for the first-order derivative terms shown in TM Maxwell’s
equations has been shown to be applicable to predict the solutions in collocated grids. As a
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good discretization scheme, some features embedded in Maxwell’s equations should be retained
regardless of the spatial/temporal orders of accuracy. This explains the reasons for employing
the symplectic integrator to preserve the Hamiltonian structure. In addition to retain the disper-
sion relation, the fourth-order accurate divergence-free Maxwell’s solutions are also shown to
computationally satisfy Gauss’ law for magnetism and electricity.
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