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In this paper a dual-compact scheme, which accommodates a better dispersion relation for
the convective terms shown in the transport equation, is proposed to enhance the convec-
tive stability of the convection–diffusion equation by virtue of the increased dispersive
accuracy. The dispersion-relation-preserving compact scheme has been rigorously devel-
oped within the three-stencil point framework through the dispersion and dissipation
analyses. To verify the proposed method, several problems that are amenable to the exact
and benchmark solutions will be investigated. The results with good rates of convergence
are demonstrated for all the investigated problems.
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1. Introduction

Numerical simulation of convection–diffusion equation involves reducing the indispensable dispersion error, which is de-
fined as the discrepancy between the effective and actual wave numbers. It is therefore important to apply a scheme with the
ability to enhance convective stability when solving the practically and academically important convection-dominated con-
vection–diffusion scalar transport equation and Navier–Stokes equations at high Reynolds numbers. To overcome the diffi-
culty regarding the convective instability, many upwinding schemes have been proposed; see, e.g. [1–5]. Thanks to the
underlying M-matrix theorem, the monotonic upwind schemes have been shown to be effective in enhancing convective sta-
bility [6,7]. Another theory that may also be adopted to enhance convective stability is to take the dispersive nature of the
investigated first-order derivative term into consideration [8].

A scheme for approximating the convection terms can be rigorously said to preserve the dispersion relation if it accom-
modates the same dispersion relation as that of the original first-order derivative term [8]. This relation, which can be nor-
mally derived by performing the spatial Fourier transform on the first-order derivative term, characterizes the angular
frequency relation with respect to the wavenumber of the spatial derivative term [9]. The main reason of developing the dis-
persion-relation-preserving (DRP) scheme is that some numerical features such as the dispersion, dissipation, group and
phase velocities for each wave component supported by the first-order derivative term can be well modeled [10].

The idea of the combined compact difference (CCD) scheme, which was proposed by Chu and Fan [11], is to solve the first
and second derivatives simultaneously. The resulting scheme becomes more compact and accurate than the normal differ-
ence schemes developed under the same number of stencil points. In addition, the dispersion error for this type of scheme is
. All rights reserved.
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smaller. In the above light, we are motivated to couple the compact expressions for the first-order and second-order
derivative terms. The underlying idea chosen to determine the relation between the two compact representations is to con-
duct the standard modified equation analysis, which involves truncated Taylor series, together with the Fourier transform
analysis [12], which enables us to derive the same or almost the same dispersion relation as the original partial differential
equation, during the approximation of convective and diffusive terms.

This paper is organized as follows. Section 2 presents the dual-compact scheme for the convection–diffusion equation
within the three-point stencil. This is followed by the presentation of the compact scheme detailed in Section 3 for the sec-
ond-order derivative term and in Section 4 for the dispersion-relation-preserving compact upwinding scheme for the first-
order derivative term. Section 5 presents the simulated results to verify the proposed dual-compact method. In Section 7 we
draw some concluding remarks based on the results presented in Section 6.

2. Dual-compact scheme

The scalar transport equation given below for a field variable / will be considered:
a
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� k
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¼ f ð1Þ
where k is the diffusion coefficient, and a and b are denoted as the constant velocities along the x- and y-direction, and f is the
source term, respectively. Both of the first-order and second-order spatial derivative terms shown in Eq. (1) will be approx-
imated at the uniform gird size Dx ¼ Dy ¼ h.

We assume that the first derivative term o/
ox and the second derivative term o2/

ox2 , for example, in Eq. (1) are approximated
respectively within the following three-point compact framework
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For terms o/
oy and o2/

oy2 , they can be similarly expressed along the y-direction. Note that the compact schemes for o/
ox ji and o2/

ox2 ji
are not independent of each other. They are rather strongly coupled through terms o/

ox ji�1, o/
ox ji,

o/
ox jiþ1, o2/

ox2 ji�1, o2/
ox2 ji, o2/

ox2 jiþ1, /i�1;/i

and /iþ1. For the sake of description, we consider the above equation only for the case involving the positive convective coef-
ficient. As for the negative convective coefficient, the derivation can be done in the similar way.

3. Compact scheme for the second-order derivative term

Approximation of o2/
ox2 can be normally made by applying the central schemes since the discretization error will be prevail-

ingly dissipative. For this reason, the weighting coefficients shown in Eq. (3) will be determined solely by the modified equa-
tion analysis for rendering a higher spatial accuracy. Derivation of the coefficients �a1; �a2; �a3;

�b1;
�b3;�c1;�c2 and �c3 is as follows.

We start by applying the Taylor series expansions for /i�1;
o/
ox ji�1 and o2/

ox2 ji�1 with respect to /i;
o/
ox ji and o2/

ox2 ji and, then, elim-
inating the leading error terms derived in the modified equation. This elimination of the leading error terms enables us to
derive the following set of algebraic equations for Eq. (3)
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By solving Eqs. (4)–(11), we can derive the coefficients for Eq. (3) as �a1 ¼ � 9
8, �a2 ¼ 0, �a3 ¼ 9

8, �b1 ¼ � 1
8, �b3 ¼ � 1

8, �c1 ¼ 3, �c2 ¼ �6,
�c3 ¼ 3.

Note that the coefficients shown above in Eq. (3) are exactly the same as those given in Chu and Fan [11]. It is also re-
marked that by virtue of the following derived modified equation, the presently derived coefficients can render the approx-
imation of o2/

ox2 with the spatial accuracy order of sixth
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4. Dispersion-relation-preserving compact scheme for the first-order derivative term

The coefficients a1; b1; b2; b3; c1; c2 and c3 are partly determined by applying the Taylor series expansions for /i�1, o/
ox ji�1 and

o2/
ox2 ji�1 with respect to /i;

o/
ox ji and o2/

ox2 ji. By eliminating the leading error terms derived in the modified equation, the following
set of algebraic equations for Eq. (2) can be derived as
c1 þ c2 þ c3 ¼ 0 ð12Þ
� a1 � c1 þ c3 ¼ 1 ð13Þ
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Comparison of kr and ki , which are plotted against ah, for the proposed dual-compact scheme and the CCD scheme of Chu and Fan [11]. (a) ki and
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It is still short of one algebraic equation for us to uniquely determine all the seven introduced coefficients shown
in Eq. (2).

For physically accurate predicting the first derivative term from Eq. (2), the dispersive nature embedded in o/
ox must be

retained as much as possible. The reason is that the dispersion relation governs the relation between the angular frequency
and the wavenumber of the first-order dispersive term [8]. In other words, the solution can be accurately predicted provided
that the dispersion relation is well preserved. Hence it is of primary importance to develop a scheme which accommodates
the dispersion relation for the first-order derivative term.

To preserve the dispersion relation, the Fourier transform and its inverse for / given below will be applied
~/ðaÞ ¼ 1
2p

Z þ1

�1
/ðxÞ expð�iaxÞ dx; ð18Þ

/ðxÞ ¼
Z þ1

�1
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Comparison of the predicted phase speed anisotropy, which is plotted against h, for the proposed dual-compact scheme and the CCD scheme of Chu
[11]. (a) Present scheme; (b) CCD scheme [11]; (c–d) Comparison of the present and CCD schemes in terms of c�=c, which represents the ratio of the

peed with respect to the analytic propagation speed, against the angle h at different values of the modified wavenumber ah.



Table 1
The computed L2-error norms and the corresponding spatial rates of convergence (s.r.c.) for the calculations carried out at five chosen meshes using the
proposed dual-compact scheme and CCD scheme [11] for Re ¼ 1.

Meshes Present CCD [11]

L2-error norms s.r.c. L2-error norms s.r.c.

10� 10 1.081E�6 – 1.050E�6 –
15� 15 1.629E�7 4.669 1.589E�7 4.658
20� 20 4.151E�8 4.751 4.054E�8 4.749
25� 25 1.411E�8 4.836 1.378E�8 4.835
30� 30 5.950E�9 4.736 5.823E�9 4.725

Table 2
The computed L2-error norms and the corresponding spatial rates of convergence (s.r.c.) for the calculations carried out at five chosen meshes using the
proposed dual-compact scheme and CCD scheme [11] for Re ¼ 10.

Meshes Present CCD [11]

L2-error norms s.r.c. L2-error norms s.r.c.

10� 10 1.392E�6 – 1.294E�6 –
15� 15 2.045E�7 4.730 1.924E�7 4.700
20� 20 5.010E�8 4.889 4.736E�8 4.873
25� 25 1.567E�8 5.208 1.486E�8 5.194
30� 30 8.054E�9 3.650 7.920E�9 3.451

Table 3
The computed L2-error norms and the corresponding spatial rates of convergence (s.r.c.) for the calculations carried out at five chosen meshes using the
proposed dual-compact scheme and CCD scheme [11] for Re ¼ 100.

Meshes Present CCD [11]

L2-error norms s.r.c. L2-error norms s.r.c.

10� 10 3.276E�6 – 2.999E�6 –
15� 15 4.803E�7 4.734 3.953E�7 4.998
20� 20 1.171E�7 4.906 9.707E�7 4.881
25� 25 3.823E�8 5.016 3.194E�8 4.980
30� 30 1.511E�8 5.090 1.273E�8 5.044

Table 4
The computed L2-error norms and the corresponding spatial rates of convergence (s.r.c.) for the calculations carried out at five chosen meshes using the
proposed dual-compact scheme for Re ¼ 10;000 and 100,000.

Meshes Re ¼ 10; 000 Re ¼ 100; 000

L2-error norms s.r.c. L2-error norms s.r.c.

10� 10 4.341E�6 – 4.345E�6 –
15� 15 6.772E�7 4.582 6.800E�7 4.580
20� 20 1.773E�7 4.658 1.782E�7 4.653
25� 25 6.161E�8 4.737 6.203E�8 4.730
30� 30 2.574E�8 4.786 2.595E�8 4.778

Table 5
The computed L2-error norms and the corresponding spatial rates of convergence for the calculations carried out at five chosen meshes using the proposed
dual-compact scheme.

Mesh L2-error norm Spatial rate of convergence

10� 10 4.341E�6 –
15� 15 6.772E�7 4.582
20� 20 1.773E�7 4.658
25� 25 6.161E�8 4.737
30� 30 2.574E�8 4.786
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Note that the notation i shown above is equal to
ffiffiffiffiffiffiffi
�1
p

. Development of the dispersion-relation-preserving scheme is followed
by performing Fourier transform on each term shown in Eqs. (2) and (3). The expressions of the actual wavenumber a for
these two equations can be therefore derived as
Table 6
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Fig. 3. The predicted spatial rate of convergence (src) based on the predicted L2-error norms for the test problem given in Section 5.

puted CPU times for the calculations carried out at five chosen meshes using the proposed dual-compact scheme and the CCD scheme [11] for the case
ated at Re ¼ 100.

Present CCD [11]

0.262 0.251
0.492 0.468
1.495 1.421
2.212 2.078
5.937 5.703

φ
=

1
-

ta
nh

(1
0)

φ
=

1
-

tanh(10)

∂φ / ∂y = 0φ = 1 + tanh[10(2x+1)]

y

x

(0,1) φ = 1 - tanh(10)

)0,1()0,0()0,1-(

u = 2y(1-x2)

v = -2x(1-y2)

4. Schematic of the specified boundary conditions and the specified velocity vectors for the Smith–Hutton problem considered in Section 6.1.
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In an approximation sense, the effective wavenumbers a0 and a00 are derived to have the same expressions as those shown
in the right-hand sides of Eqs. (20) and (21) [8]. For this reason, it is rational for us to express a0 and a00 as follows:
Fig. 5.
with da
ia0hða1 expð�iahÞ þ 1Þ ¼ c1 expð�iahÞ þ c2 þ c3 expðiahÞ � ðia00hÞ2ðb1 expð�iahÞ þ b2 þ b3 expðiahÞÞ ð22Þ

ia0h �8
9
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9
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8
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8
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The predicted two- and three-dimensional contours of / for the problem considered in Section 6.1. (a)–(b) Present; (c)–(d) CCD [11]; (e)–(f) CCD [11]
mping. Note that the artificial viscosity k0 shown in the numerically added damping term k0r2/ of Eq. (1) is 1/10,000.
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By solving Eqs. (22) and (23), the following expressions for a0 and a00 can be derived as
Fig. 6.
conside
a0h ¼ �ið24b1 expð�2iahÞ þ c1 expð�2iahÞ þ c3 þ c1þ 24b1 þ c2 expð�iahÞ þ 24b2 expð�iahÞ

þ 24b3 � 48b1 expð�iahÞ � 8c1 expð�iahÞ � 48b3 expðiahÞ þ 24b2 expðiahÞ þ 24b3 expð2iahÞ � 48b2

þ c2 expðiahÞ þ c3 expð2iahÞ � 8c3 expðiahÞ � 8c2Þ=ð�8þ expðiahÞ � 8a1 expð�iahÞ þ a1 expð�2iahÞ
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For the sake of acquiring a better dispersive accuracy for a0, it is demanded that ah � R½a0h�, where R½a0h� denotes the real
part of a0h. This implies that EðaÞ defined below should be a very small and positive value
EðaÞ ¼
Z p

2

�p
2

½Wðah�R½a0 h�Þ�2dðahÞ ¼
Z p

2

�p
2

½Wðc�R½c0�Þ�2dc ð26Þ
where c ¼ ah and c0 ¼ a0h. Note that Eq. (26) can be analytically integrable provided that the weighting function W shown
above is chosen as
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Comparison of the predicted solution at Dx ¼ 1=40 and the exact solution for / plotted along the line given by ð0 6 x 6 1; y ¼ 0Þ for the problem
red in Section 6.1.
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W ¼ �16þ 72b3 þ 72b1 � 81b2
1 � 81b2

3 � 81b2
2 � 162b2b3cosðcÞ � 144a1b3cosðcÞ � 162b1b2cosðcÞ � a2

1cosðcÞ2

þ 8a2
1cosðcÞ � 18b3cosðcÞ3 þ 18b1cosðcÞ3 þ 81b2

2cosðcÞ2 þ 162b1b3 � 72b1cosðcÞ2 þ 81b2
3cosðcÞ2

þ 81b2
1cosðcÞ2 � 72a1b2 � 18b1cosðcÞ þ 16a1cosðcÞ2 � 2a1cosðcÞ3 þ 72b3cosðcÞ2 þ 18b3cosðcÞ � 32a1cosðcÞ

� 36a1b3cosðcÞ4 � 18a1b2cosðcÞ3 þ 162b2b3cosðcÞ3 þ 162b1b2cosðcÞ3 þ 324b1b3cosðcÞ4 þ 72a1b2cosðcÞ2

þ 144a1b3cosðcÞ3 � 486b1b3cosðcÞ2 þ 36a1b3cosðcÞ2 þ 18a1b2cosðcÞ þ 8cosðcÞ � 16a2
1 � cosðcÞ2 ð27Þ
Note that W is the denominator of ðc�R½c0 �Þ. It is also worth pointing out that the integration interval shown in Eq. (26) is
sufficient to cover a complete period of the sine (or cosine) wave. To make E defined in Eq. (26) to be positive and minimum,
the following extreme condition is enforced
oE
oc3
¼ 0 ð28Þ
The above equation, which is enforced to preserve the dispersion relation, will be used together with another six previ-
ously derived algebraic equations by way of the modified equation analysis to acquire a higher dissipation accuracy as well
as a dispersion accuracy. The resulting seven introduced unknowns given below can be uniquely determined as
a1 ¼ 0:875 ð29Þ
b1 ¼ 0:12512823415990895606 ð30Þ
b2 ¼ �0:24871765840091043936 ð31Þ
b3 ¼ 0:0001282341599089560636 ð32Þ
c1 ¼ �1:9359611900810925272 ð33Þ
c2 ¼ 1:9969223801621850545 ð34Þ
c3 ¼ �0:060961190081092527237 ð35Þ
We remark here that the above upwinding scheme developed for o/
ox can be easily shown to have the spatial accuracy order of

fifth from the following modified equation
o/
ox
¼ o/

ox

����
exact

� 0:0007008561524398922475h5 o6/
ox6 þ 0:0001984126984126984127h6 o7/

ox7

� 0:0000498830507458330390h7 o8/
ox8 þ Oðh8Þ þ � � � ð36Þ
Fundamental analysis of the present DRP scheme starts from defining the coefficients ki and kr for the respective disper-
sion and dissipation errors
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φ = 0

v = sinθ

u = cosθ

u = (u,v)

Fig. 7. Schematic of the convection–diffusion problem considered in Section 6.2.
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ki ¼ R½c0� ð37Þ
kr ¼ I½c0� ð38Þ
In the above, R½c0� denotes the real part of c0ð	 a0hÞ and I½c0� stands for the imaginary part of c0 for the proposed scheme. In
Fig. 1, the predicted values of ki and kr are plotted against the modified wavenumber ah for the present dual-compact
upwinding scheme. One can easily see that the dispersion nature of the proposed scheme is better than the CCD scheme
of Chu and Fan [11]. As for the kr value derived from the current upwinded dual-compact scheme, it is less accurate than
that derived from the non-dissipated central-type CCD scheme of Chu and Fan [11] due to the implicitly added artificial vis-
cosity to the proposed scheme for the sake of enhanced stability.

We also plot in Fig. 2 the phase speed anisotropy [11,13], which is given below, for the present and CCD schemes
c�=cðc; hÞ ¼ cosðhÞR½c0ðccosðhÞÞ�sinðhÞR½c0ðcsinðhÞÞ�
c

ð39Þ
where h is the angle between the propagation direction and the x axis. From Fig. 2, one can clearly see that the phase speed
anisotropy for the proposed scheme is much accurate than the CCD scheme of Chu and Fan [11], in particular, at the angle of
h ¼ 45
.

5. Verification study

The following transport equation for / will be solved in a square domain for the sake of analytically verifying the pro-
posed dual-compact scheme:
. 8. The predicted two- and three-dimensional contours of / for the problem considered in Section 6.2. (a)–(b) Re ¼ 100; (c)–(d) Re ¼ 1000.
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Fig. 9. Schematic of the initial / contours for the Zalesak problem considered in Section 6.3.
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The exact (solid line) and predicted (dashed line) contours for / ¼ 0:5 at t ¼ 3140 at the time after rotating the initially prescribed profile by five
ions for the problem considered in Section 6.3.
u
o/
ox
þ v o/

oy
¼ 1

Re
o2/
ox2 þ

o2/
oy2

 !
þ S ð40Þ
In the above, Re and S are denoted as the Reynolds number and the source term per unit volume, respectively. The solution /,
subject to the following divergence-free velocity field [14], will be sought in 0 6 x; y 6 1



Fig. 11.
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u ¼ �2ð1þ yÞ
ð1þ xÞ2 þ ð1þ yÞ2

ð41Þ

v ¼ 2ð1þ xÞ
ð1þ xÞ2 þ ð1þ yÞ2

ð42Þ
The analytic solution for / has the same form as u given in (41) provided that the source term is chosen as S ¼ � op
ox, where
p ¼ � 2

ð1þ xÞ2 þ ð1þ yÞ2
ð43Þ
As usual, the currently proposed dual-compact scheme will be assessed through the nodal errors obtained in various
meshes for the cases carried out at Re ¼ 1;10;100;10000 and 100,000. At the boundary points, we apply the fourth-order
accurate scheme, which is the same as the one employed in [11]. From Tables 1–4, good agreement with the exact solutions
and the good spatial rates of convergence are based on the L2-error norms computed at 10� 10;15� 15;20�
20;25� 25;30� 30 nodal points. We also show the result in Table 5 and Fig. 3 for Re = 10,000. As can be seen from these pre-
dicted L2-error norms, the dual-compact scheme is applicable to solve the two dimensional transport equation at high as well
as low Reynolds numbers. We also assess the computational efficiency in terms of the CPU times for the implicit central CCD
scheme and the current upwinded dual-compact scheme. In this comparison study, the twin-tridiagonal algebraic equation
The initial and the predicted three-dimensional contours of / at different revolutions for the problem considered in Section 6.3. (a) Initial; (b) after
olution; (c) after two revolutions; (d) after three revolutions; (e) after four revolutions; (f) after five revolutions.
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will be solved by the computationally effective solver given in [11] at Re = 100. As can be clearly seen from Table 6 that the
difference in the computational times is negligibly small.

6. Numerical studies

6.1. Convection–diffusion problem of Smith and Hutton

The problem of Smith and Hutton [15] will be investigated at u ¼ 2yð1� x2Þ, v ¼ �2xð1� y2Þ and S ¼ 0 shown in Eq. (40).
Along the inlet schematic in Fig. 4, / is prescribed by the distribution of /ð�1 6 x 6 0; y ¼ 0Þ ¼ 1þ tanh½ ð2xþ 1Þ � 10 �.
Along the lines x ¼ �1; y ¼ 1 and x ¼ 1;/ is prescribed as 1� tanhð10Þ while along the outlet ð0 6 x 6 1; y ¼ 0Þ a zero gra-
dient condition is specified for /. For the case investigated at Re ¼ 1 (or k ¼ 0), the results calculated at Dx ¼ Dy ¼ 1

40 are
plotted in Fig. 5. The predicted oscillatory solution from the CCD scheme of Chu and Fan [11] is under our expectation since
this central-type compact scheme suffers the problem of instability for the convection-dominated problems [16]. In order to
suppress the instability, one can include the damping term k0r2/ to the right-hand side of Eq. (40). It can be seen from Fig. 5
that the CCD scheme [11] with k0 ¼ 1=10;000 can resolve also the oscillations but is accompanied with a larger smearing of
the solution in comparison with the current dual-compact solution / plotted along the line 0 6 x 6 1; y ¼ 0. It can be seen
from Fig. 6 that the predicted solutions from the proposed method are drastically accurate than the solutions computed from
the CCD scheme [11]. The efficacy of the proposed dual-compact scheme is therefore revealed for the problem involving an
interior sharp layer.

6.2. Skew convection–diffusion problem

In Fig. 7, a unit-square cavity is divided into two subdomains by the straight line, which passes through (0,0), with the
slope of tan�1ðv=uÞ, where u and v are shown in Eq. (40). We consider in this study the unit velocity vector ðu;vÞ, which
is parallel to the dividing line, in 121� 121 (for Re ¼ 100) and 257� 257 (for Re ¼ 1000) uniformly discretized mesh systems
for the problem with S ¼ 0. Subject to the boundary conditions for the working variable /, one can clearly see a shear layer
with the width of Oð

ffiffiffiffiffiffi
Re
p
Þ in Fig. 8 in the vicinity of the dividing line. No oscillatory solution is found to occur both in regions

near and apart from the dividing line for the cases with Re ¼ 100 and 1000.

6.3. Transport of a sharp slot profile in a variable velocity flow field

To verify the proposed DRP advection scheme, the problem of Zalesak [17] will be considered. The sharp profile of the
notched disc with the slot width of 15 is made to rotate about the point (50,75) in an inviscid flow given by
T

BL1
BR1

Primary Vortex

u = 1, v = 0

u
=
0,

v
=
0 u

=
0,

v
=
0

u = 0, v = 0BL2

BR2

Fig. 12. Schematic of the eddy centers possibly formed in the lid-driven cavity.
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ðu;vÞ ¼ ððp=314Þð50� yÞ; ðp=314Þðx� 50ÞÞ, which corresponds to the stream function given by w ¼ x
2þ

y
2� x2

200�
y2

200. At t ¼ 0,
function / needs to be slightly smeared to avoid discontinuity in the initially prescribed profile. For the sake of smoothly
preserving the sharp front, / approximated in a way given below can retain its interface, schematic in Fig. 9, as steep as
possible
Fig. 13.
Re ¼ 50
/ ¼
0; if jxj > 3d

1
ð1þex=dÞ ; if � 3d 6 jxj 6 3d

1; if jxj < �3d

8><
>: ð44Þ
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Comparison of the predicted mid-plane velocity profiles uðx;0:5Þ and vð0:5; yÞ with the benchmark solutions obtained at Re ¼ 5000 and 7500. (a)
00 and (b) Re ¼ 7500.



Table 7
Comparison of the predicted eddy centers (primary eddy P, corner eddies BL and BR, and the eddy T near the cavity roof) with Ghia et al. [18] and Erturk et al.
[19] for the cases investigated at Re ¼ 5000 and 7500 using the present scheme.

Symbol Authors Re

5000 7500

Primary Present 0.5149, 0.5359 0.5127, 0.5327
[18] 0.5117, 0.5352 0.5117, 0.5322
[19] 0.5150, 0.5350 0.5133, 0.5317

T Present 0.0644, 0.9091 0.0667, 0.9114
[18] 0.0625, 0.9102 0.0664, 0.9141
[19] 0.0633, 0.9100 0.0667, 0.9133

BL1 Present 0.0727, 0.1372 0.0638, 0.1537
[18] 0.0703, 0.1367 0.0645, 0.1504
[19] 0.0733, 0.1367 0.0650, 0.1517

BR1 Present 0.8000, 0.0725 0.7820, 0.0646
[18] 0.8086, 0.0742 0.7813, 0.0625
[19] 0.8050, 0.0733 0.7900, 0.0650

BL2 Present 0.0076, 0.0079 0.0131, 0.0106
[18] 0.0117, 0.0078 0.0117, 0.0117
[19] 0.0083, 0.0083 0.0117, 0.0117

BR2 Present 0.9740, 0.0207 0.9439, 0.0513
[18] 0.9805, 0.0195 0.9492, 0.0430
[19] 0.9783, 0.0183 0.9517, 0.0417

Mesh points Present 128 128
[18] 257 257
[19] 601 601
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In the above, x denotes the distance vector to the interface. d is the regularized function, which is set at d ¼ 1:1Dx in the
present study. This problem has been regarded as a fairly tough test for assessing the pure advection scheme applied to solve
the problem containing a sharp solution gradient.

The third-order accurate Runge–Kutta solutions, predicted at 201� 201 grid size, after five revolutions for the case with
k ¼ 0 were compared and shown in Fig. 10. For the sake of completeness, the 3D contours are also plotted at different rev-
olutions in Fig. 11. Good agreement with the exact (or initial) solution schematic in the same figure is clearly seen.

6.4. Lid-driven cavity flow problem

With the success of predicting the solutions in smooth region and the non-oscillating solutions in regions of interior layer
from the scalar convection–diffusion scalar equation, we will apply the dual-compact scheme to simulate the high Reynolds
number Navier–Stokes flow in a cavity with an upper lid schematic in Fig. 12. In a square with 101� 101 and 129� 129
nodal points, the predicted velocity profiles uð0:5; yÞ and vðx; 0:5Þ at Re ¼ 5000 and 7500 will be compared with the stea-
dy-state benchmark solutions of Ghia [18] and Erturk [19]. Good agreement between the simulated and the benchmark
mid-sectional velocity profiles is clearly shown in Fig. 13. The predicted eddy centers at T, BL1, BR1, BL2 and BR2, schematic
in Fig. 12, are also in good agreement with the benchmark solutions that are summarized in Table 7. The applicability of the
proposed scheme to predict the high Reynolds number incompressible flow is therefore confirmed.

7. Concluding remarks

The proposed dual-compact scheme for the approximation of advection and diffusion terms is presented within the
three-point stencil framework for the convection–diffusion transport equation. The dispersive and dissipative natures of
the proposed scheme have been both rigorously revealed. To verify the proposed scheme, we have considered one problem
that is amenable to the exact solution. Also, three benchmark problems featured with interior shear layer and high Reynolds
number are investigated for the sake of validation. The computed L2-error norms and their resulting spatial rates of conver-
gence demonstrate the advantage of employing the proposed scheme to simulate the problems containing possibly the
smooth as well as the sharply varying solution profiles.
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