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A two-step interface capturing scheme, implemented within the framework of conserva-
tive level set method, is developed in this study to simulate the gas/water two-phase fluid
flow. In addition to solving the pure advection equation, which is used to advect the level
set function for tracking interface, both nonlinear and stabilized features are taken into
account for the level set function so that a sharply varying interface can be stably pre-
dicted. To preserve the conservative property, the mapping given by n ¼ x� ut is per-
formed between two coordinates x and n for the advection–diffusion equation in a flow
field with velocity u. To capture the interface, the flux term capable of compressing the
level set contours is also adopted in the construction of linear inviscid Burgers’ equation,
which is indispensable in the level set method. To resolve the physically sharp interface
without incurring contact discontinuity oscillations, a damping term which is nonlinear
in terms of the level set function and can render an adequate artificial diffusion to stabilize
the contact surface is added into the reinitialization step in the modified level set method.
For accurately predicting the level set function, the advection scheme for solving the linear
inviscid Burgers’ equation in the advection step of the modified level set method is devel-
oped to accommodate the true dispersion relation. The solution computed from the result-
ing two-dimensional dispersion-relation-preserving advection scheme can minimize the
phase error. Less artificial damping is needed to damp the oscillations in the vicinity of con-
tact surface and the interface can be less numerically smeared. For the sake of program-
ming simplicity, the incompressible two-phase flow will be discretized in non-staggered
grids without incurring checkerboard oscillations by the developed explicit compact
scheme for the approximation of pressure gradient terms. For the verification of the pro-
posed two-dimensional dispersion-relation-preserving scheme and the non-staggered
incompressible flow solver, three benchmark problems have been chosen in this study.
The proposed conservative level set method for capturing the interface in incompressible
fluid flows is also verified by solving the dam-break, bubble rising in water, droplet falling
in water and Rayleigh–Taylor instability problems. Good agreements with the referenced
solutions are demonstrated for all the four investigated problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many problems of practical importance and scientific significance involve tracking of interface between different phases,
where surface tension needs to be taken into account. These surface evolving problems include, for example, etching, depo-
sition, lithography development in microfabrication processes [1]. Studies of the phenomena related to air–water interaction
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dynamics, breaking surface wave, solidification-melt dynamics, combustion, two-phase flow, reacting flow and flow-struc-
ture interactions fall into the framework involving a temporal surface advancement due to complex motion under different
physical effects. The necessity of capturing the time–evolving interface with a sharply varying topology and a large change in
front propagation speed makes the prediction of differential equations governing the respective two-phase flow an even
challenging topic. In this study, we will consider the dam-break problem and investigate the fluid motions due to a rising
air bubble in water, a droplet falling in water and Rayleigh–Taylor instability. Our attention will be concentrated on the
development of incompressible flow algorithm, which can be applied to predict the air/water interface accurately with/with-
out surface tension being taken into account in the prediction of surface advancement.

The most common incompressible flow algorithms that have been applied to track the air/water interfaces include vortex
method [2], boundary integral method [3], volume of fluid (VOF) method [4], front tracking method [5] and phase field meth-
od [6–8]. One can also combine the level set method with the projection method to avoid an explicit tracking of interface [9].
There exist advantages and disadvantages for these interface capturing methods and it is difficult to assert which method is
generally superior. Since the success of employing a particular interface capturing method depends on the problem under
consideration and the available computing resource, it is fair to say that there may exist a class of problems for which
one method can perform better than the other [10]. If surface tension needs to be considered in the simulation of incom-
pressible two-phase flows, the volume of fluid method and the level set method are most commonly referred to.

The VOF method has the advantage of conserving the volume of each fluid phase exactly [11]. The interface in VOF meth-
ods is normally represented by a color function, defined as the fraction of the volume within each cell of one of the fluids, in a
discontinuous fashion. Such a discontinuity can make the simulation of an evolving interface very difficult. In fact, no advec-
tion scheme for the VOF methods can offer an accuracy order larger than two [12]. The interface in level set methods can, on
the other hand, be defined by the zero contour of a continuous signed distance function.

Subsequent to the pioneering work of Osher and Sethian [13], much progress has been made to construct various level set
formulations, which have been applied to solve a large variety of problems that involve moving interfaces. Some application
areas include the simulation of surface, flame propagation, shape reconstruction, image processing and crystal growth. Due
to the smooth nature of the level set function across the interface, the interface and its curvature can be easily transported
and accurately calculated, respectively. To retain the level set function, a signed distance function and a reinitialization pro-
cedure are normally required in the traditional level set method. The drawback is due, however, to the violation of geometric
conservative law (GCL) [14,15] to preserve the volume as time is marched. In each time step, a small amount of mass may be
lost or gained. As time evolves, these negligibly small errors may be accumulated to a large value and may, finally, break
down the incompressible constraint condition. A modified level set method with the built-in conservative (or area-preserv-
ing in the incompressible flow simulations) property will be developed in this study to preserve the mass [12,16]. Descrip-
tion of the ideas about the level set method can be found in the books of Osher and Fedkiw [17] and Sethian [18].

The outline of this paper is as follows: In Section 2, the differential equations governing the motion of two fluids will be
presented along with the transport equations for the fluid viscosity and density. Section 3 describes the two-step conserva-
tive level set method, which involves a nonlinear transport equation. In Section 4, the truly two-dimensional dispersion-rela-
tion-preserving advection scheme will be presented to dispersively more accurate advect the front of interface. Regularized
incompressible flow solver, which is implemented in non-staggered grids, will be presented in Section 5 for solving the
working primitive variables explicitly. Section 6 is presented to validate the employed analysis code by solving one linear
inviscid Burgers’ equation with a sharply varying initial condition and one Navier–Stokes problem with the benchmark solu-
tion for the carrier fluid flow. Section 7 is addressed to investigate the dam-break, bubble rising, droplet falling and Rayleigh–
Taylor instability problems. Finally, we will draw some conclusions in Section 8.

2. Governing equations

Of the two immiscible fluids under current investigation, one is known as a liquid and the other is a gas. Both of them are
considered to be incompressible. The resulting equations of motion for the gas and liquid fluids in a gravitational vector field
g can be represented by the incompressible Navier–Stokes equations given below:
Du
Dt
¼ 1

q
ð�rpþr � ð2lDÞ � T þ qgÞ; ð1Þ

r � u ¼ 0; ð2Þ
where Du
Dt �

ou
ot þ ðu � rÞu

� �
represents the material derivative of the fluid velocity vector u. The physical properties q and l

shown in Eq. (1) represent the fluid density and the fluid viscosity, respectively. Both of them are functions of the time and
space, implying that q ¼ qðx; tÞ and l ¼ lðx; tÞ. The tensor D shown above denotes the rate of deformation, with the com-
ponents denoted by Dij ¼ 1

2 ðui;j þ uj;iÞ. In addition to the stress tensor given by �pIþ 2lD, where I is the identity matrix,
the other source term capable of resulting in flow acceleration is the surface tension T concentrated solely on the two-fluid
interface, which is denoted by the phase field function U.

In this study, the surface tension will be modified as the body force and is applied at the interface. In other words, the
surface tension per unit interfacial area is given by
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Fig. 1. The interfaces plotted in a domain of 257� 257 grids were predicted at (a) t ¼ 0, (b) t ¼ 0:5, (c) t ¼ 1, (d) t ¼ 2. The contours for the inner, middle
and outer lines represent U ¼ 0:95; 0:5 and 0:05, respectively.
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T ¼ rjn: ð3Þ
In the above, r is denoted as the surface tension coefficient, j is the curvature of the interface and the unit outward normal
vector n along the interface is normally pointed to the surrounding liquid. One can express the normal and curvature of an
interface in terms of U as n ¼ rU

jrUj and j ¼ r � rU
jrUj. This clearly explains why the Navier–Stokes equations need to be formu-

lated within the framework of level set method. In this study, the curvature term is approximated by the second-order accu-
rate central scheme as r � rU

jrUj

� �
i;j
¼ 1

2Dx
ðUxÞiþ1;j
jðrUÞiþ1;j j

� ðUxÞi�1;j
jðrUÞi�1;j j

� �
þ 1

2Dy ð
ðUyÞi;jþ1
jðrUÞi;jþ1 j

� ðUyÞi;j�1
jðrUÞi;j�1 j

Þ, where ðrUÞi;j ¼ ðUxÞi;j~iþ ðUyÞi;j~j ¼
Uiþ1;j�Ui�1;j

2Dx
~iþ Ui;jþ1�Ui;j�1

2Dy
~j and jðrUÞi;jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUxÞ2i;j þ ðUyÞ2i;j

q
.

The above equations cast in the dimensional form will be normalized for the sake of general application. Taking
ur; lr ; tr;qrglr ;qr;lr as the referenced values for the respective velocity, length, time, pressure, density and viscosity, the nor-
malized (or dimensionless) continuity equation remains unchanged. The momentum equation after the proposed non-
dimensionalization can be formulated as
ut þ ðu � rÞu ¼
1
q
ð�rpþ 1

Re
r � ð2lDÞ � 1

We
jðUÞrUÞ þ 1

Fr2 eg ; ð4Þ
where eg is the unit gravitational direction vector and the Reynolds number is given by Re ¼ qr ur lr
lr

. Another characteristic
parameter We is known as the Weber number, which is defined as We ¼ qr u2

r lr
r . Both density and viscosity will be smoothly

approximated by q ¼ q1 þ ðq2 � q1ÞU and l ¼ l1 þ ðl2 � l1ÞU, where qi and liði ¼ 1;2Þ are the dimensionless densities and
viscosities of the two investigated fluids, respectively. As for U it will be defined later in Section 3.
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Fig. 2. The interfaces plotted in a domain of 257� 257 grids were predicted at (a) t ¼ 1:0, (b) t ¼ 2:0, (c) t ¼ 1:0 [12], (d) t ¼ 2:0 [12]. The contours for the
inner, middle and outer lines represent U ¼ 0:95;0:5 and 0:05, respectively.
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Fig. 3. The plot of the predicted area ratio (AR) against the dimensionless time for the problem given in [12]. Note that AR is defined as
AR ¼
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3. Two-step interface capturing level set method

For the investigated two immiscible fluids, the physical properties q and l are assumed to be constant in their respective
phases in the sense that Dq

Dt ¼
Dl
Dt ¼ 0. There exists, however, a jump across the interface. As a result, the equations governing

the distributions of density and viscosity depend on the fluid velocity u as follows:
Table 1
The pre
velocity

No. of n

61� 61
101� 1
141� 1
181� 1
221� 2

Fig. 4.
predict
qt þ ðu � rÞq ¼ 0; ð5Þ

lt þ ðu � rÞl ¼ 0: ð6Þ
Since q and l may be changed sharply across the air/water interface, numerical simulation of the transport equations for q
and l, governed respectively by Eqs. (5) and (6), is computationally very challenging. The difficulty is attributed to the pres-
ence of contact discontinuities, which can incur unphysical oscillations. Such an academic difficulty has long been known
also in the gas dynamics community when contact discontinuities are formed in a highly compressible gas flow. Since no
rigorous theory can be applied to suppress this type of oscillations in the vicinity of multi-dimensional contact surfaces,
we shall use the modified level set method of Olsson et al. [16] to capture the interface.

As the interface will be advected with the fluid, the interface separating the two fluids can be regarded as the evolution of
U governed by DU

Dt ¼ 0 or by the linear inviscid Burgers’ equation given by Ut þr � ðuUÞ ¼ 0. In other words, the hyperbolic
equation for U will be used to represent the contour level of U at interface in a way like an actual interface movement. Unlike
q and l, which are discontinuous across the interface, U will be made to be slightly smoothed to avoid the difficulty of deal-
ing with the contact discontinuity when solving Eqs. (5) and (6). This implies that the jump of phase properties across the
interface needs to be smoothed in order to avoid numerical instabilities near the interface [19]. Within the continuous
framework, across the interface the Heaviside step function (or unit step function) for q and l needs to be smoothed with
a certain degree of smearing at the interface to render a smeared-out Heaviside function. For the sake of smoothly preserving
the sharp front, the Heaviside step function approximated in a way given below will be employed to retain the interface as
steep as possible
U ¼
0; if jxj > 3�l;
ð1þ ex=�lÞ�1; if � 3�l 6 jxj 6 3�l;
1; if jxj < �3�l;

8><>: ð7Þ
dicted L1-error norms and the rates of convergence at t ¼ 2T(T ¼ 0:5) in the five chosen meshes, Dt ¼ 1
10;000 and �l ¼ Dx. Note that at t ¼ 0:5 the flow

was reversed.

odal points L1 error norms Rates of convergence

4.126239265345434E–003
01 1.379342840129760E–003 2.14507
41 5.954776782349826E–004 2.49649
81 2.947313760961025E–004 2.79848
21 1.753773477596643E–004 2.58695
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The initial profile of U for the test problem given in Section 6.2.The diffusion coefficient is specified by �l ¼ Dx. (a) three-dimensional view of the
ed solution; (b) cross sectional view of U ¼ 0:05 (outer), U ¼ 0:5 (middle), U ¼ 0:95 (inner) contour lines.
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where x denotes the distance vector in space to the interface. As a result, q and l can be smoothly distributed across the
interface to prevent numerical instability arising from the contact surface when solving their transport equations. It is noted
that the magnitude of U at the interface has been made to change rapidly from zero to one across the interface, at which the
magnitude of U is 0.5 according to Eq. (7).

While level set methods can be applied to predict the topological change of interface present in compressible and incom-
pressible two-phase flows, the relatively more accurate conventional level set methods are not conservative. This drawback
is particularly severe in the simulation of incompressible two-phase flow problems. Any loss or gain in mass will incur phys-
ically erroneous results [20]. To improve mass conservation, several attempts with different underlying ideas have been
made in the level set methods [12,21,22]. Given a smeared-out Heaviside function Uðx; t ¼ 0Þ in a divergence-free velocity
field, our goal is to develop a dispersively accurate method to advect U so as to preserve the initially prescribed smooth pro-
file of Uðx; t ¼ 0Þ and the solution Uðx; tÞ computed at the time t ¼ nDt. In mathematical description, the property given byR

UdX (=constant) needs to be satisfied perfectly so as to render a conservative (or area-preserving) scheme. With the objec-
tive of maintaining a good conservation of area bounded interface, the employed advection scheme should also accommo-
date the good dispersive nature so as to be able to predict the non-oscillatory sharp interface.

We now turn to the subject of developing a method to advect the value of U so that it is conservative and can possess the
sharp property. For an easier description of the interface capturing method, consider the following transport equation for the
advection of U, subjected to an initial condition U0ðx; t ¼ 0Þ, in a fluid with the velocity field u ¼ ðu;vÞ
Fig. 5.
shown
Ut þr � ðuUÞ ¼ 0: ð8Þ
To retain the conservation property, given by
R

UdX, all the time, it is desired to assure that Uðx; tÞ ¼ Uðx� uDt; t � DtÞ. In
actual computation, any employed stable numerical scheme will introduce diffusion error that will more or less smear
the predicted solution as time proceeds. Since in the linear differential system no mechanism can steepen the solution,
development of another nonlinear equation for w, which is linearly related to the unknown field variable U, becomes a vital
means to achieve the goal of interface capturing.

Within the framework of linear transformation between the independent variables, namely, n ¼ x� ut, to preserve the
conservative property and for the dependent variables, namely, wðn; tÞ ¼ 1� 2Uðn; tÞ, the equation given below for w will
be chosen to compress the solution [16]:
wt þ
1
2
rðw2Þ ¼ �lr2w: ð9Þ
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(a) The predicted result using the current conservative level set method with 101� 101 nodal points for the Zalesak’s test problem; (b) The results
in [29] for the operator split advection algorithm and the various interface reconstruction methods for the Zalesak’s test problem.
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The artificial damping coefficient (or artificial viscosity) �l shown above needs to be prescribed with a small magnitude but it
can retain the sharply varying interface. Given the nonlinear equation for w in Eq. (9), the stabilized advection of U across the
interface along the direction normal to the interface can be expressed as follows by virtue of the above mentioned linear
transformation between the coordinates x and n and the linear mapping between the solution variables U and w:
Ut þr � ðuUÞ ¼ r � ð�Uð1�UÞnþ �lr � ðrUÞÞ; ð10Þ
where n ¼ rU=jrUj represents the unit normal vector of the gas/water interface. Note that the transport equation for the level
set function can no longer be simply governed by the linear inviscid Burgers’ Eq. (8), which is normally employed in the con-
ventional level set method. The source term shown in the right hand side of Eq. (10) makes the governing equation for the level
set function to be nonlinear. As a result, the transport of U in a nonlinear way by virtue of Eq. (10) may help to achieve the goal of
compressing the solution profile. The predicted interface can therefore be sharp in the course of numerical simulation.

Calculation of the inhomogeneous nonlinear viscous Burgers’ Eq. (10), which can artificially compress the interface pro-
file, will be split into two steps for solving the respective linear inviscid Burgers’ equation and the nonlinear viscous Burgers’
equation. The reason is that the working equation employed in each fractional step resembles the frequently investigated
model equation. Within each time step, U will be firstly computed from Ut þr � ðuUÞ ¼ 0, which is the equation normally
employed in the traditional level set method to advect U. The computed linear inviscid Burgers’ solution for U is then em-
ployed as the initial solution to solve the following nonlinear equation for the sake of stabilization and compression of U
across the interface:
Us þr � ðUð1�UÞnÞ ¼ �lr � ðrUÞ: ð11Þ
Note that Uð1�UÞn in the left hand side of the above equation can be regarded as the compressive flux term. Due to its non-
linear nature, high resolution of the contact surface can be possibly maintained. Furthermore, the artificial damping term
introduced into the formulation to avoid numerical oscillations due to discontinuities present at the interface is also nonlin-
ear with respect to U. Calculation of Eq. (11) will be repeated until the steady-state solution is obtained. Owing to the current
use of explicit scheme, solution will be calculated subject to the stability constraint condition given by Ds 6 C ðDxÞ2

�l , where
C ¼ 1

4. In this study, the time step is chosen to be 1
10
ðDxÞ2

�l . In practice, only few time steps are sufficient for all the computations
carried out in this study.

Employment of the two-step solution algorithm can make the currently employed level set method to be conservative. In
other words, Eq. (11) can be considered as the correction equation for the conservative level set method to compress the
level set contour near the interface. Note that stabilization and compression of the solution are both essential to stably pre-
serve the sharp air/water interface while Eq. (8) is served to assure the conservative property. There remains to determine
the numerically introduced artificial viscosity �l, which needs to be prescribed for the stabilization sake. The magnitude of �l
shown in Eq. (11) accounts for the thickness of the interface between U ¼ 0 and U ¼ 1. In what follows, �l will be chosen as
Dx in all calculations.

4. Dispersively accurate multi-dimensional advection scheme

In the numerical prediction of multi-dimensional flow problems, which involve interface that separates the fluids of dif-
ferent physical properties, it is essential to suppress oscillations, predicted near the contact surface, within a distance as
short as possible. Since no Eulerian scheme, to the best of authors’ knowledge, can be employed to eliminate the erroneous
oscillations near the contact surface, the artificial viscosity �l shown in Eq. (11) must be a non-zero positive value for the
stabilization purpose. An improper specification of �l may over-diffuse the profile of U and a sharp capturing of interface
is impossible. Hence, it is important to alleviate the computational difficulty in association with the approximation of Eq.
(11). One trivial means to achieve the above goal is to eliminate the origin of oscillations, which is known to be the errone-
ously introduced dispersive error. For this reason, we are motivated to develop a dispersively accurate two-dimensional
transport scheme for the approximation of the first-order derivative terms shown in Eqs. (4) and (8). The artificial viscosity,
introduced to damp the oscillations in the vicinity of air/water interface, can be minimized. The physical interface can there-
fore be well captured all the time. In the following, the advection scheme which can preserve the dispersion relations for the
first-order derivative terms will be briefly described.

The underlying idea of approximating the first-order spatial derivative terms shown in Eq. (4) for ou
ox,

ou
oy,

ov
ox, ov

oy and in (8) for
o
ox ðuUÞ, o

oy ðvUÞ is to preserve their dispersion relations, which stand for the relation between the angular frequency of the
wave and the wavenumber of the first-order derivative term, so that the convective instability can be effectively eliminated.
For easily describing the way of approximating these first-order derivative terms, a scheme accommodating the dispersion-
relation-preserving property for these derivative terms denoted by Fx and Fy will be developed under Dx ¼ Dy ¼ h. In the
case of u > 0, Fx at a nodal point ði; jÞ can be approximated by Fiþ1=2;j�Fi�1=2;j

Dx , where ðuUÞiþ1=2;j (or Fiþ1=2;j) and ðuUÞi�1=2;j (or
Fi�1=2;j) are weighted by their adjacent nodal values. Note that this control-volume approximation is an aid to achieve area
preservation. The resulting Fx at an interior node ði; jÞ can be expressed as follows in the 12-point stencil grid
Fxðx; yÞ ’
1
h
ða1Fi�1;j�1 þ a2Fi;j�1 þ a3Fiþ1;j�1 þ a4Fi�1;j þ a5Fi;j þ a6Fiþ1;j þ a7Fi�1;jþ1 þ a8Fi;jþ1 þ a9Fiþ1;jþ1 þ a10Fi;j�2

þ a11Fi;jþ2 þ a12Fi�2;jÞ: ð12Þ
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Substitution of Taylor series expansions for Fi�1;j, Fi�2 ;j, Fi;j�1, Fi;j�2, Fi�1;j�1 into the above equation, we are led to derive the
resulting modified equation for Fx. The derivation is followed by eliminating the eleven leading error terms so as to be able
to derive a system of eleven algebraic equations. One more equation needs to be derived for uniquely determining the values
of a1 � a12 shown in Eq. (12).

It is essential that the dispersion relation be retained to enable an effective suppression of the convective oscillations, in
particular, in the prevailing convection case [23]. It is desired that the right hand side of Eq. (12) becomes nearly the same, by
Fourier transform in space, as the original derivative term shown in the left hand side. The Fourier transform and its inverse
for Fðx; yÞ are defined respectively as follows:
Fig. 6.
401� 4
eF ða; bÞ ¼ 1

ð2pÞ2
Z þ1

�1

Z þ1

�1
Fðx; yÞe�iðaxþbyÞdxdy; ð13Þ

Fðx; yÞ ¼
Z þ1

�1

Z þ1

�1

eFða;bÞ eiðaxþbyÞdadb: ð14Þ
Performing the Fourier transform on each term shown in Eq. (12), the first component in the actual wavenumber vector
a ¼ ða; bÞ can be derived as
a ’ �i
h
ða1e�iðahþbhÞ þ a2e�ibh þ a3eiðah�bhÞ þ a4e�iah þ a5 þ a6eiah þ a7e�iðah�bhÞ þ a8eibh þ a9eiðahþbhÞ þ a10eið�2bhÞ

þ a11eið2bhÞ þ a12eið�2ahÞÞ; ð15Þ
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The contours of U ¼ 0:5 predicted at two grids after one and two revolutions. (a) 201� 201 grids; (b) 201� 201 grids; (c) 401� 401 grids; (d)
01 grids.



T.W.H. Sheu et al. / Journal of Computational Physics 228 (2009) 661–686 669
where i ¼
ffiffiffiffiffiffiffi
�1
p

. In an approximated sense, the components of the effective wavenumber vector ~a ¼ ð~a; ~bÞ can be written as
follows:
a

Fig. 7.
step an
~a ¼ �i
h
ða1e�iðahþbhÞ þ a2e�ibh þ a3eiðah�bhÞ þ a4e�iah þ a5 þ a6eiah þ a7e�iðah�bhÞ þ a8eibh þ a9eiðahþbhÞ þ a10eið�2bhÞ

þ a11eið2bhÞ þ a12eið�2ahÞÞ; ð16Þ

~b ¼ �i
h
ðb1e�iðahþbhÞ þ b2e�ibh þ b3eiðah�bhÞ þ b4e�iah þ b5 þ b6 eiah þ b7e�iðah�bhÞ þ b8eibh þ b9eiðahþbhÞ þ b10eið�2bhÞ

þ b11eið2bhÞ þ b12eið�2ahÞÞ: ð17Þ
In this study, the magnitude of jah� ~ahj2 or the following integrated error E was assigned to be equal to zero in the following
weak sense to make ~a to be an appropriate approximation of a [23–25]:
EðaÞ ¼
Z p

2

�p
2

Z p
2

�p
2

jah� ~ahj2dc1dc2: ð18Þ
Note that ðc1; c2Þð� ðah; bhÞÞ, where � p
2 6 c1; c2 6

p
2, should sufficiently define a period of sine (or cosine) wave.

To minimize the value of E, it is required to enforce oE
oa6
¼ 0 at the stencil point ðiþ 1; jÞ. Therefore, the values for

a1 ¼ a3 ¼ a7 ¼ a9 ¼ 1
18

pð3p�10Þ
ðp2�6pþ8Þ, a2 ¼ a8 ¼ 1

9
pð3p�10Þ
ð3p�8Þ , a4 ¼ �4

9
ð3p2�16pþ18Þ
ðp2�6pþ8Þ , a6 ¼ � 8

9
ðp�3Þ

9ðp2�6pþ8Þ, a5 ¼ 1
18
ð21p2�94pþ72Þ
ðp2�6pþ8Þ , a10 ¼ a11 ¼ 0

and a12 ¼ 1
6 can be obtained. The resulting modified equation for Fx approximated by means of Eq. (12) is shown to have

a spatial accuracy order of third in the sense of Fx ’ 0:08333h3Fxxxx � 0:03333h4Fxxxxx þ 0:00854h5Fxxxxyyþ
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The predicted solutions for U after two revolutions in a mesh with 201� 201 nodal points using the advection step equation (or Eq. (8)), advection
d reinitialization step equations (or Eqs. (8) and (11)). (a) contours of U ¼ 0:5; (b) Uð50; yÞ; (c) Uðx;65Þ; (d) Uðx;75Þ.



670 T.W.H. Sheu et al. / Journal of Computational Physics 228 (2009) 661–686
0:01388h5Fxxxxxx þ 0:008537427877049h5Fxxyyyy þ � � � þH:O:T: Similarly, the 12-point stencil discrete equation for Fy, which
accommodates the dispersion relation property, in the case of v > 0 can be derived by the same way as that of Fx.

5. Incompressible flow solver in non-staggered grids

Regularized methods developed for solving the computationally difficult Navier–Stokes equations along with the incom-
pressibility constraint condition are rooted in replacing the divergence-free constraint equation for mass conservation with a
differential equation for pressure or pressure variation. The fractional step and artificial compressibility methods are the two
representative classes. In the artificial compressibility method, the constraint equation for the velocity field, or the momen-
tum equation, can be regularized by adding a pseudo-time dependent term 1

ba

op
os to the left hand side of the continuity equa-

tion. The equation for mass conservation turns out to be the equation for p as 1
ba

op
osþr � u ¼ 0, where ba is the user’s specified

artificial compressibility coefficient (ba ¼ 10 � 500 was normally recommended).
In fractional-step methods, calculation of the solutions can be generally decomposed into two or three steps. The first step

approximates the viscous and convective terms to obtain an intermediate velocity from the transport equation for u, with the
pressure term being omitted. To make the fractional-step method viable for solving the incompressible equations, the time
increment should be split based on the Helmholtz–Hodge decomposition theorem [26]. Any vector field w can be decom-
posed into a solenoidal field with a zero normal component along the boundary and a gradient of some scalar functions.
By choosing the scalar function as the pressure p and the divergence-free vector field as the velocity u, the equation given
by u ¼ w�rp is resulted from the underlying decomposition theorem. The operator P is defined to project the vector w
ð� uþrpÞ onto its divergence-free vector field u, thereby rendering Pw as Puþ PðrpÞ. According to this definition, we
can derive Pw ¼ Pu ¼ u and, in turn, PðrpÞ ¼ 0. This projection operator is then applied to both hand sides of the momentum
equation. Since u is divergence-free, we can get P ou

ot

� �
¼ ou

ot and can, therefore, derive� �
Fig. 8.
dimens
ou
ot
¼ P �ðu � rÞu�rp

q
þ 1

qRe
r � ð2lDÞ þ f ð19Þ
where f is expressed as � 1
q

1
We jðUÞrUþ 1

Fr2 eg .
Thanks to the above theoretical splitting, the vector field can be decomposed into the zero-curl and zero-divergence two

components. The intermediate velocity unþ1
2 can then be calculated from the fully implicit equation along with the prescribed

velocity unþ1
2joXð� bÞ along the boundary oX as follows for the conventional Navier–Stokes vector equation
unþ1
2 � un

Dt
¼ �ðunþ1

2 � rÞunþ1
2 þ 1

qRe
r � ð2lDnþ1

2Þ þ f nþ1: ð20Þ
It is worthy to note that the pressure variable has been eliminated from the momentum equations so that analysis of the
incompressible viscous equations becomes much simplified. The above equation can be solved sequentially from the advec-

tion step, given by u
nþ1

2
a �un

Dt þ ðun � rÞun ¼ 0; and the diffusion step, given by unþ1
2�u

nþ1
2

a
Dt ¼ 1

qRer � ð2lDnþ1
2Þ þ f nþ1

2. Since the interme-

diate velocity solution unþ1
2 obtained from the above two steps does not necessarily satisfy the divergence-free constraint

condition, the intermediate field unþ1
2 (or w given in u ¼ w�rp) can be decomposed into the sum of the solenoidal velocity

unþ1 and the gradient of the currently chosen scalar function, which is proportional to Dtrpnþ1. The integrity of employing
the following two equations in the projection step is enlightened
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The conservative level set solutions obtained at 201� 201 grids after two revolutions by solving advection step and reinitialization step. (a) three-
ional view of the predicted solution; (b) the predicted contours for U ¼ 0:05 (outer), 0.5 (middle) and 0.95 (inner).
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unþ1 � unþ1
2

Dt
¼ rp

q

nþ1

; ð21Þ

r � unþ1 ¼ 0: ð22Þ

According to Eq. (21), calculation of unþ1 needs a pressure solution. By applying the divergence operator to both hand sides of
u ¼ w�rp, the Poisson equation given byr � rp

q ¼ r � unþ1
2 can be derived. Controversy regarding the necessity of specifying

the pressure boundary value in this formulation is arisen since no pressure boundary value needs to be specified when solv-
ing the primitive-variable Navier–Stokes equations. In addition, analysis of the Poisson equation for p is normally expensive.
For these two reasons, in the following the regularization method is proposed.

Development of the regularization method for ou
ot þ ðu � rÞu ¼ �

rp
q þ 1

Rer
2uþ f begins with the substitution of

unþ1�unþ1
2

Dt ¼ rp
q

nþ1
(or Eq. (21)) into the semi-discretized momentum equation given below
unþ1 � un

Dt
þ ðunþ1 � rÞunþ1 � 1

qRe
r2unþ1 þrp

q

nþ1

þ f nþ1 ¼ 0: ð23Þ
This substitution yields
unþ1 � un

Dt
þ ðunþ1

2 � rÞunþ1
2 � 1

qRe
r2unþ1

2 þrp
q

nþ1

¼ M1 þM2 � f nþ1; ð24Þ
where M1 ¼ ½ðunþ1
2 � rÞrpnþ1 þ ðrpnþ1 � rÞunþ1

2 � 1
Rer

2ðrpnþ1Þ�Dt and M2 ¼ �½ðrpnþ1 � rÞrpnþ1�Dt2. Let pnþ1 ¼ p	 þ p0, where
p	 is initially chosen to be the convergent solution pn. Afterwards, the value of p	 will be chosen as the most updated pressure
solution. The pressure-gradient step is decomposed into the following two steps
u	 � unþ1
2

Dt
¼ �rp

q

	
; ð25Þ

unþ1 � u	

Dt
¼ �rp

q

0
: ð26Þ
Then, Eq. (24) can be reformulated as
unþ1 � un

Dt
þ ðu	 � rÞu	 � 1

qRe
r2u	 þ rp

q

	
¼ �rp

q
0 þM3 þM4 � f nþ1; ð27Þ
where
M3 ¼ ðu	 � rÞrp
q

0
þ rp

q

0
� r

� �
u	 � 1

qRe
r2 rp

q

0� �� �
Dt; ð28Þ

M4 ¼ �
rp
q

0
� r

� �rp
q

0� �
Dt2: ð29Þ
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The predicted area ratios (AR) against time for the cases carried out in two grids. (a) 201� 201 grids; (b) 401� 401 grids. Note that AR is defined as
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By taking the divergence of Eq. (26) and imposing the constraint condition given byr � unþ1 ¼ 0, Eq. (28) can be rewritten as
Fig.

Fig. 1
M3 ¼ ðu	 � rÞrp
q

0
þ rp

q

0
� r

� �
u	

� �
Dt � 1

qRe
rðr � u	Þ: ð30Þ
As Eq. (27) indicates, the introduced momentum source term MDFCð� �Dp0 þM3 þM4Þ replaces the divergence-free condi-
tion and it can be called as the divergence-free-condition (DFC) compensated momentum source term. In other words,
the idea of the proposed compensated method is to replace the divergence-free constraint condition with the source term
MDFC added to the momentum equations. Note that the Lin’s SRM method [27] falls also into the category of the DFC method
provided that MDFC ¼ krðr � usÞ and p0 ¼ kðr � usÞ in the course of iteration, where the subscript s (=1, 2, . . .) represents the
iteration counter. As the divergence-free constraint condition is satisfied, the DFC momentum source will be vanished. For
the steady state analysis, the tolerance defined by Eðð�max jEkþ1 � EkjÞÞ, where E represents the field variable for u or p, is set
as E 6 10�6. For the transient case, the time-accurate solution will be iteratively calculated. After obtaining the updated val-
ues of unþ1 and p	 at every iteration, they will be substituted into the left-hand side of Eq. (24) to calculate the momentum
source term. As the momentum source term becomes less than 10�4, the predicted solution at each time step can be assumed
to be convergent. Normally, less than fifteen iterations will be needed to reach the convergent solutions.

Now, the remaining issue of developing the compensated method is to derive the equation for p0. By performing the diver-
gence operator on Eq. (26), we get
r � unþ1 ¼ r � u	 � Dtr �rp
q

0
: ð31Þ
Enforcement of the divergence-free condition r � unþ1 ¼ 0 leads to
r �rp
q

0
¼ r � u

	

Dt
: ð32Þ
At each interior point ði; jÞ, application of a central approximation for the left-hand side of Eq. (32) leads to
1
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10. Comparison of the predicted mid-plane velocity profiles for the cases investigated at two Reynolds numbers. (a) Re ¼ 400; (b) Re ¼ 1000.
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1. Schematic of the initial water column for the dam break problem considered in Section 7.1. The diffusion coefficient is prescribed by �l ¼ Dx.
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Fig. 12. Comparison of the predicted surge front location and the water column height with the experimental data and the numerical results of Kelecy and
Pletcher. (a) height of the wetted wall; (b) location of the water front.
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By omitting
ðp0

i�1;j
Þ
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2
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2
Dx2, the following equation can be derived:
Fig. 13.
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Since the above omission may over-predict the solution p0, compensation for the omitted two terms will be made as follows.
First, Eq. (34) is used to calculate the predicted pressure correction p	0 given by
p0	i;j ¼ �
r � u	i;j

Dt 1
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� � : ð35Þ
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Comparison of the predicted free surfaces, obtained at 401� 101 grids, with those of Kelecy and Pletcher for the two-dimensional broken dam
. (a) t ¼ 0:6; (b) t ¼ 1:8; (c) t ¼ 2:4; (d) t ¼ 3:0.



674 T.W.H. Sheu et al. / Journal of Computational Physics 228 (2009) 661–686
This is followed by calculating the pressure correction p	 from p	0 by taking into account the omitted terms, which are eval-
uated from the p	0 solutions. The resulting p0 solution at ði; jÞ, for example, will be calculated according to
Fig. 14.

AR is d
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: ð36Þ
It should be stressed that the under-relaxation procedure becomes no longer needed. In summary, given the divergence-free
initial velocity vector, the velocity vector u at the time step ðnþ 1Þ can be computed explicitly from Eq. (27). Two invoked
source terms M3 and M4 can be computed respectively from Eqs. (29) and (30). As for the source term �rp0, it is approxi-

mated by the central scheme orp0i;j ¼
p0

iþ1;j�p0
i�1;j

2Dx

� �
using the p0 values computed from Eqs. (35) and (36). The pressure solution

pi;j at ðnþ 1ÞDt is then computed by pnþ1
i;j ¼ p	i;j þ p0i:j, where p	 is the known convergent solution calculated at the previous

time (or pn
i;j).

While the even–odd pressure oscillations can be well eliminated in staggered grids, the resulting programming complex-
ity motivated us to discretizerp in non-staggered meshes, where the velocities and pressure are stored at the same point. To
avoid spurious pressure oscillations, the nodal value of pi;j should be taken into account while approximatingrp at the nodal
dimensionless time
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Fig. 15. Schematic of the initial condition for the bubble rising problem given in Section 7.2.
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point ði; jÞ. In this study the approximated value of px (or Gi;j ð� h pxji;jÞ, where h denotes the constant mesh size, at an interior
node ði; jÞ will be computed from the following compact implicit equation
Fig. 16.
conside
t ¼ 3:5;
c1Giþ1;j þ c2Gi;j þ c3Gi�1;j ¼ c4ðpiþ2;j � piþ1;jÞ þ c5ðpiþ1;j � pi;jÞ þ c6ðpi;j � pi�1;jÞ þ c7ðpi�1;j � pi�2;jÞ: ð37Þ
The readers can refer to [28] for a detailed derivation of c1 � c7 by expanding Gi�1;j in Taylor series with respect to Gi;j and
pi�1;j and pi�2;j with respect to pi;j.

6. Verification studies

Three classical problems will be chosen to verify the proposed dispersion-relation-preserving advection scheme and the
incompressible Navier–Stokes equations, respectively.

6.1. Rotation of Vortex

We investigated the problem of Olsson and Kreiss [12] in a square domain with the specified velocity field given by
u ¼ sin2ðpxÞ sinð2pyÞ, v ¼ � sin2ðpyÞ sinð2pxÞ. The center of this rotating velocity field, defined in a circle of radius 0:15, is
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Comparison of the predicted time–evolving free surfaces and bubble interfaces, obtained at 241� 281 grids, with those of [35] for the case without
ring surface tension. The diffusion coefficient is prescribed by �l ¼ Dx. (a) t ¼ 0:5 ; (b) t ¼ 1:0; (c) t ¼ 1:5; (d) t ¼ 2:0 (e) t ¼ 2:5; (f) t ¼ 3:0; (g)
(h) t ¼ 4:0.
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ð0:5;0:75Þ. At t ¼ Tð¼ 1:0Þ, the flow field was made to be reversed so that the exact solution at t ¼ 2T should theoretically
coincide with the initial condition. The test problem will be solved on 257� 257 grids and at Dt ¼ 1

10;000. For the case with
�l ¼ Dx, shown in Eq. (11), the predicted results at t ¼ 0;0:5;1:0 and 2:0 are plotted in Fig. 1. Calculation is followed by per-
forming a non-reversion simulation in the 257� 257 grid system until t ¼ 2. The solutions at t ¼ 1 and t ¼ 2 are shown in
Fig. 2(a) and (b). For the sake of comparison, the results in [12] are plotted in Fig. 2(c) and (d). To further confirm that our
prediction is accurate, we plot the predicted values of AR against time in Fig. 3, from which the area is seen to be conserved
fairly well.

For the sake of completeness, we also calculate the spatial rate of convergence by performing calculations on five grids
ð61Þ2; ð101Þ2; ð141Þ2; ð181Þ2; ð221Þ2. The time step is chosen to be Dt ¼ 1

10;000. Since Dt 
 minfDxg, the predicted errors come
mainly from the approximation of the spatial derivative terms. At t ¼ 1:0, the predicted error norms and the corresponding
spatial rates of convergence for the problem with velocity being reversed at t ¼ Tð¼ 0:5Þ are tabulated in Table 1. The con-
vergence rates will be determined by the predicted L1-error norms, defined by

R
X jHðUnumericalÞ � HðUexactÞÞj=LdX, where

HðUÞ ¼ 0 if U < 0:5
1 if U > 0:5

	
and L is the perimeter length. Based on the calculation we are led to know that the accuracy is de-

creased quite stably with the grid reduction with the convergent rate less than three (which is the order of the proposed DRP
scheme). The deteriorated accuracy order is mainly due to the second-order approximation applied for calculating the nor-
mal vector term and the second-order approximation of the terms shown in the reinitialization step equation.
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6.2. Rotation of a sharp slot profile

To verify the proposed DRP advection scheme, the problem of Zalesak [29] will be considered. The sharp profile of the
notched disc with the slot width of 15, schematic in Fig. 4, is made to rotate about the point (50,75) in an inviscid flow with
the velocity field given by ðu;vÞ ¼ ððp=314Þð50� yÞ; ðp=314Þðx� 50ÞÞ. This problem has been known to be a tough test for
assessing the pure advection scheme for the solution with a large gradient. We carried out the calculation for the problem
using 101� 101 nodal points and compared the solution with the Pilliod and Puckett’s result [29], which is shown in Fig. 5.
We also carried out the calculation for the problem using 201� 201 and 401� 401 nodal points. After one and two revolu-
tions, the solutions were compared and shown in Fig. 6. Good agreement with the exact solution schematic in the same fig-
ure is clearly seen. The dispersive error has been well eliminated for the case with 201 � 201 nodal points since the predicted
solutions near the jump are seen to show only a negligibly small oscillation in Fig. 7. This implies that the solutions obtained
from the DRP advection scheme for the approximation of advection terms involved in both solution steps of the conservative
level set method are dispersively very accurate.

To enlighten that the employed nonlinear compressive flux term can indeed help to sharpen the discontinuous front, we
plot in Fig. 7 the solution profile of U after the advection and reinitialization steps. Note that a small artificial viscosity,
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Fig. 17. Comparison of the predicted time–evolving free surfaces and bubble interfaces, obtained at 241� 281 grids, with those of [35] for the case
considering surface tension. The diffusion coefficient is prescribed by �l ¼ Dx. (a) t ¼ 0:5; (b) t ¼ 1:0; (c) t ¼ 1:5; (d) t ¼ 2:0 (e) t ¼ 2:5; (f) t ¼ 3:0 ; (g)
t ¼ 3:5; (h) t ¼ 4:0.
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namely, �l ¼ Dx is introduced in the reinitialization step of the conservative level set method to smear the oscillations in the
vicinity of the discontinuity. Also, the predicted solution contours shown in Fig. 8 for U ¼ 0:05;0:5;0:95 are seen to be irrel-
evant to the flow direction. In addition, the area ratios (AR) shown in Fig. 9 for the notched disk within the value range of
0 6 U 6 1 demonstrate the conservative property embedded in the transport equation for the level set function. It is, there-
fore, possible to capture the interface accurately and stably using the proposed two-dimensional DRP scheme.

6.3. Lid-driven cavity flow problem

The flow driven by a constant upper lid velocity ulidð¼ 1Þ in the square cavity is then investigated at Re ¼ 400 and 1000.
The simulated grid-independent mid-plane velocity profiles for uð0:5; yÞ and vðx;0:5Þ are plotted in Fig. 10. Good agreement
with the benchmark solutions of Ghia et al. [30] validates the proposed incompressible flow solver implemented in the two-
dimensional non-staggered grids.

7. Numerical results

With the success in verifying the advection scheme and the incompressible flow solver, we are proceeded to justify the
conservative level set method by virtue of the four investigated problems, which all involve the topological changes of inter-
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face. The first test problem, known as the dam break problem, is chosen to show the ability of the proposed interface cap-
turing method for solving the problem without taking the surface tension into account. The second and third simulations are
known as a rising air bubble in water and a droplet falling into water, respectively. Since the surface tension force present
dimensionless time
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Fig. 18. Plots of the simulated area ratios (AR) against the dimensionless time for the rising bubble investigated at We = 0 and We ¼ 10. Note that AR is

defined as AR ¼
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Fig. 19. Comparison of the predicted time-evolving free surfaces and bubble interfaces, obtained at 144� 144 grids, with those of [19] for the case
considering surface tension. The diffusion coefficient is prescribed by �l ¼ Dx. (a) t ¼ 2:8; (b) t ¼ 3:2; (c) t ¼ 3:6; (d) t ¼ 4:0 (e) t ¼ 4:4; (f) t ¼ 4:8 ; (g)
t ¼ 5:2; (h) t ¼ 5:6.
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along the gas/water interface can play an ineligible role for the time–evolving air bubble or water droplet shapes, surface
tension will be considered in both cases. Another well-known benchmark problem, known as the Rayleigh–Taylor problem,
is also chosen for the validation sake.

7.1. Dam break problem

The first problem without considering surface tension simulates the sudden collapse of a rectangular column of water
onto a planar surface. This classical problem, known as the dam break problem, has been frequently employed to validate
the code for predicting free surface hydrodynamics. In addition to the hydraulic importance of this problem, both experi-
mental [31] and numerical results [32] are available for making a direct comparison.

In the current calculation, the fluid properties are considered to be the same as those given in [32]. The initially prescribed
height of the water column schematic in Fig. 11 is h ¼ 1. The results for the collapsed water will be predicted at Re ¼ 42792
in the domain containing 301� 76 and 401� 101 nodal points. The predicted heights of the collapsed water column will be
plotted against the dimensionless time defined in [32]. Good agreement with the experimental result given in [31] is clearly
demonstrated in Fig. 12 for the predicted surge front location and the water column height. The predicted time–evolving free
surfaces in Fig. 13 are compared also favorably with the finite element solution of Kelecy and Pletcher [32]. As Fig. 14 shows
for the ratio of the temporal water against the initial water column, the conservative property built in the modified level set
method is still retained quite well.

7.2. Bubble rising problem in a partially filled container

We then investigate the time–evolving interface problem where surface tension needs to be taken into account. The prob-
lem under investigation considers the evolution of a stationary bubble, that is driven by surface tension, in a container par-
tially filled with the viscous fluid of height 3:5D and width 3:0D, where D is the initial diameter of the bubble. The main
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reason for modeling the gas bubble rising from rest in the incompressible fluid flow under buoyancy is due to a considerable
amount of available experimental results in the literature [33,34].

Modelling of a rising bubble, schematic in Fig. 15, needs to specify the ratios of physical properties for the gas and liquid.
The fluid–gas density and viscosity ratios are specified respectively as ql=qg ¼ 2:0 and ll=lg ¼ 2:0. In addition, the problem
under investigation is characterized by another two dimensionless parameters, namely, Re ¼ ðDÞ3=2 ffiffiffi

g
p

ql=ll and
We ¼ qlgD2=r, where Re and We are denoted as the Reynolds and Weber numbers, respectively. The subscripts l and g cor-
respond to the fluid surrounding the bubble and the fluid inside the bubble, respectively. Initially, the bubble center is lo-
cated stationarily at ð1:5D;1:5DÞ in the flow, which is at rest everywhere. The whole domain will be considered rather
than simply specifying the axially symmetric condition to avoid a possible development of Conda effect. As is usual, no-slip
conditions are specified along the horizontal and vertical walls.

Since surface tension can play an ineligible role during bubble rising, both cases with/without consideration of surface
tension will be investigated at Re ¼ 200. For the case taking into account the surface tension, the Weber number under cur-
rent investigation will be set as We ¼ 10. In Figs. 16 and 17, free surface and bubble interface are both plotted against time
for the cases without surface tension effect and with surface tension being taken into account, respectively. It can be clearly
dimensionless time
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Fig. 20. The plot of the predicted area ratio (AR) against the dimensionless time for the bubble rising problem considered in [19]. Note that AR is defined as
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Fig. 21. Comparison of the predicted interfaces with those of Sussman et al. [36] for the droplet problem investigated in 257� 257 grids. The diffusion
coefficient is prescribed by �l ¼ Dx. (a) t ¼ 0:0; (b) t ¼ 2:4; (c) t ¼ 3:5.
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shown that the presently predicted interface topologies agree fairly with those predicted by Zhao et al. [35]. To check the
conservative property, the relative change of bubble is plotted against time in Fig. 18. As the former test problem, the bubble
area is excellently preserved.

We have also conducted the analysis with the physical density ratio of 1000, considered by Sussman et al. [19], to sim-
ulate the bubble rising problem. The predicted time–evolving free surfaces and bubble interfaces, obtained in 144� 144
grids with Re ¼ 100 and We ¼ 200, are plotted in Fig. 19. Good area-preserving feature is also demonstrated in Fig. 20.

7.3. Water droplet falling problem

We also investigate a water droplet falling through the air and hitting the originally planar free surface. The dimension-
less physical properties under current investigation are set to be the same as those given in Sussman et al. [36], namely,
l1 ¼ 1, l2 ¼ 0:0141, q1 ¼ 1, q2 ¼ 0:00123. The drop is initially accelerated with a fictitious gravitational force 1=Fr2=1=2
for a total dimensionless time of 2. Afterwards, three dimensionless parameters for characterizing the flow motion are cho-
sen as Re ¼ 3518, Fr ¼ 1633 and We ¼ 220, where the characteristic length and velocity are chosen as 10�3 m and 4 m=s,
respectively. All the calculations will be carried out at Dx ¼ Dy ¼ 0:03125 and Dt ¼ 5:0� 10�4 for the droplet with the
dimensionless radius of 1.

For the sake of enlightening the effect of surface tension, the case with consideration of surface tension is investigated for
studying the interaction between the water droplet and the originally stationary water bounded by the free surface. The pre-
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Fig. 22. The predicted area ratio (AR) against the time for the droplet problem carried out in a domain of 257� 257 grids. Note that AR is defined as
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Fig. 23. Schematic of the initial condition for the Rayleigh–Taylor instability problem investigated in Section 7.4.
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dicted time–evolving droplet interface and free surface in Fig. 21, plotted at the dimensionless times t ¼ 0:0, t ¼ 2:4 and
t ¼ 3:5, are compared with those given in Sussman et al. [36]. As Fig. 22 shows, the area-preserving feature remains also
quite well for the case with consideration of surface tension.

7.4. Rayleigh–Taylor problem

Flow instability of the Rayleigh–Taylor type is associated with the penetration of a heavy fluid into a light fluid in the
direction of gravity and has been observed in a wide range of many scientific and environmental fields. Such a Rayleigh–Tay-
lor instability phenomenon has, therefore, been intensively studied [37]. Due to its practical and scientific importance, two
incompressible fluids with the densities given by qh ¼ 1:225 kg=m3 and ql ¼ 0:1694 kg=m3 will be simulated in the rectangle
0 6 x 6 1 m, 0 6 y 6 4 m. The viscosity of the two investigated fluids, initially separated by the interface given by
yðxÞ ¼ ð2þ 0:1 cosð2pxÞÞm schematic in Fig. 23, is kept to be the same with the values of lh ¼ ll ¼ 3:13� 10�3 kg=ðm sÞ
in the whole domain. Like the referenced papers of Puckett et al. [38] and Popinet and Zaleski [39], flow simulation without
considering surface tension will be carried out for a fluid flow starting from rest in the domain, where free slip boundary
condition and non-slip boundary condition will be applied at the two vertical walls and at the horizontal top/bottom walls,
respectively.
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Fig. 24. Comparison of the predicted interfaces with those of Popinet and Zaleski [39] for the Rayleigh–Taylor instability problem investigated in 65� 257
grids. The diffusion coefficient is prescribed by �l ¼ Dx. (a) t ¼ 0:7; (b) t ¼ 0:8; (c) t ¼ 0:9.
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Fig. 25. The predicted area ratio (AR) against time for the Rayleigh–Taylor instability problem carried out in a domain of 65� 257 grids. Note that AR is

defined as AR ¼
R

Uðx;y; for 0:56U61;tÞdAR
Uðx;y; for 0:56U61;t¼0ÞdA

.



684 T.W.H. Sheu et al. / Journal of Computational Physics 228 (2009) 661–686
It can be seen from Fig. 24, which plots the development of interfaces against time at t ¼ 0:7 s, 0:8 s and 0:9 s. The inter-
face was found to be rolled up along the sides of the spike as the heavy fluid keeps penetrating into the light fluid. Devel-
opment of a mushroom-type spike is a strong indication of the formation of Kelvin–Helmholtz instability due to the
developed short wavelength perturbations present along the interface and parallel to the bulk flow. For the sake of compar-
ison, we also plot the front-tracking solutions of Popinet and Zaleski [39]. It can be seen from Fig. 24 that the predicted level
set solution compares favorably with other numerical predictions. Area of one fluid can be preserved quite well as Fig. 25
shows.

Moreover, another Rayleigh–Taylor problem due to Ding et al. [8] is considered. The interface is given by
yðxÞ ¼ ð2dþ 0:1d cosð2px=dÞÞ in the rectangular domain ½0; d� � ½0;4d�, where d ¼ 1. The Reynolds number under investigation
is 3000. The density difference is represented by the Atwoodratio At ¼ ðqA � qB=qA þ qBÞ ¼ 0:5 and the viscosity ratio is 1.
Fig. 26. The predicted time-evolving free surfaces and bubble interfaces, obtained at 80� 320 grids, for the problem with Re ¼ 3000 at (a) t ¼ 0:0; (b)
t ¼ 1:0; (c) t ¼ 1:25; (d) t ¼ 1:5 (e) t ¼ 1:75; (f) t ¼ 2:0; (g) t ¼ 2:25; (h) t ¼ 2:5.
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The predicted results for this test problem are given in Fig. 26 and in Fig. 27 for justifying the area-preserving feature from
the predicted time–evolving values of AR.

8. Concluding remarks

A dispersion-relation-preserving advection scheme for modelling the incompressible two-phase flow in two dimensions
by conservative level set method is formulated in non-staggered grids. The differential equation employed to model the
evolving interface should accommodate the conservative interface property. This underlying transport equation should also
have the ability to compress the level set function and can, therefore, sharpen the interface. Under these requirements, the
nonlinear inviscid Burgers’ equation cast in the transformed coordinate nð� x� utÞ is the underlying equation used for the
numerical advection of interface with the ability to conserve the area of each phase of the fluid and to sharpen the interface.
For the stabilization reason, an artificial viscosity that is sufficient to suppress the oscillations in the vicinity of interface, at
which a fairly high gradient solution may be present, is explicitly added to the formulation. The derived conservative level
set method will be split into the conventional level set method for the advection of the level set function and the other inho-
mogeneous equation, with the compressive flux and source terms being nonlinear with respect to the level set function, for
compressing the interface profile. The finite volume advection scheme implemented in the advection step of the conserva-
tive level set method should yield a predicted solution that is dispersively very accurate. Both of the proposed DRP advection
scheme and compact pressure gradient scheme applied in non-staggered grids have been verified analytically. Also, four
benchmark problems with/without consideration of surface tension have been numerically investigated. All the predicted
results have been shown to compare fairly well with the experimental and other numerical results.
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