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A compact finite-difference scheme is presented in this paper for efficiently solving the variable
Helmholtz equation. This scheme development involves relating the derivative terms, namely, uxx

and uxxxx, to u at the two adjacent nodal points in order to yield a 3-point stencil implicit scheme.
In addition to sixth-order accuracy, the proposed scheme can conditionally provide oscillation-free
solutions using the underlying M -matrix theory. Computations have been carried out for several
problems which are amenable to exact solutions. Agreement with the exact solutions is excellent
even in a grid system involving fewer number of mesh points. Thus, the integrity of the compact
scheme and the efficiency of the alternating direction implicit algorithm are demonstrated. The
proposed scheme is applied to study the effect of variable wave number on the wave propagation
characteristics for the problem, which is partly bounded by a scatter surface.

Keywords: Compact finite-difference scheme; Helmholtz equation; sixth-order accuracy; oscillation-
free; M -matrix.

1. Introduction

Investigation of the Helmholtz equation is worthwhile as it is closely related to various
scientific applications. Typical examples include the water wave propagation in the coastal
regions,1 the scattering wave from an elastic body,2 and the sound wave propagation in
water. A rule of thumb indicated in the numerical simulation of Helmholtz equation demands
10 mesh points per wavelength.3 This constraint precludes a practical application since the
physical domain can have a length that is thousand times of the wavelength. Under these
circumstances, the amount of computer resources (CPU, I/O, memory, and disk storage)
required for the implicit scheme becomes prohibitively large. This is a serious impediment to
the use of conventional approaches, thereby motivating the development of two higher-order
Helmholtz discretization schemes.
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High-order Helmholtz schemes can be constructed by introducing more number of finite-
difference stencil points. These schemes can simultaneously increase the matrix bandwidth
and are, thus, computationally more expensive. We are, therefore, motivated to develop a
compact scheme so as to retain good prediction accuracy without involving many number of
finite-difference stencil points. Since the tri-diagonal Thomas direct solver4 is known to be
cost-effective in the calculation of matrix equation, it is desirable that higher-order schemes
can be formulated within the framework which involves only three stencil points.

When the multi-dimensional exterior acoustic problem is considered, the peripheral stor-
age required for the matrix equation can be excessive and typically exceeds the available
computer resources. To overcome this difficulty, the alternating direction implicit (ADI)
method5 is adopted in the present study. The benefit of employing the ADI method is that
the tri-diagonal matrix solver4 can be applied in each spatial sweep.

The remainder of this paper is organized as follows. In Sec. 2, the model differential equa-
tion is described. In Sec. 3, the newly developed fourth- and sixth-order accurate schemes
are presented in detail. A rigorous theory will be employed to construct an M -matrix type
scheme.6,7 This is followed by verifying the proposed compact schemes via the three chosen
problems which are amenable to exact solutions. Encouraged by the success in validating
the Helmholtz scheme, in Sec. 5 the sixth-order compact scheme is applied to simulate the
point-source wave propagation. Finally, some concluding remarks are provided in Sec. 6.

2. Model Equation

Numerical simulation of underwater acoustics often involves solving the following Helmholtz
equation for the static pressure p:

∇2p+ k2(x) p = f(x). (1)

The real-valued variable k, known as the wave number, is allowed to vary with x. In Eq. (1),
f denotes the prescribed sound source. In order to make the above elliptic-type differen-
tial equation well-posed, it is solved subject to the conditions prescribed over the entire
boundary of the physical domain.

When the Helmholtz equation for the underwater acoustics is solved, generally not less
than 10 nodal points per wavelength1 are needed to retain the predicted accuracy. The
resulting consequence is that the problem will become prohibitively large. Therefore, we
are motivated to develop two schemes which can yield high-order prediction accuracy in a
domain discretized by fewer grid points so as to gain the computational efficiency.

3. Numerical Model for the Helmholtz Equation

For the proposed method, the following prototype equation is considered:

uxx + k2(x)u = f(x). (2)

Inspired by the work of Lele,8 a class of compact finite-difference schemes is developed,
which will be presented in the subsequent sections.
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3.1. Fourth-order scheme

Let us denote the approximation of uxx at a point j as

uxx|j = sj. (3)

The scheme development is followed by relating the nodal value of uxx(xj) to its two adjacent
values uxx|j±1 as follows:

h2(β1sj+1 + β0sj + β−1sj−1) = α1uj+1 + α0uj + α−1uj−1. (4)

In the above equation, h denotes the grid size. With the definition mentioned in the Eq. (3),
the following equations are obtained:

sj+1 + k2
j+1uj+1 = fj+1,

sj + k2
juj = fj,

sj−1 + k2
j−1uj−1 = fj−1.

(5)

By substituting Eqs. (5) into Eq. (4), we get

(α1 + h2kj+1β1)uj+1 + (α0 + h2kjβ0)uj + (α−1 + h2kj−1β−1)uj−1

= h2(β1fj+1 + β0fj + β−1fj−1). (6)

To make u amenable to a tri-diagonal matrix equation solver, the six free parameters shown
in Eq. (6) have to be determined. These six parameters α0, β0, α±1, and β±1 are determined
by expanding sj±1 with respect to sj while expanding uj±1 with respect to uj . After some
algebra, the following equation is obtained:

sj =
1

h2(β1 + β0 + β−1)

{
(α1 + α0 + α−1)uj + h(α1 − α−1)u(1)|j +

h2

2!
(α1 + α−1)u(2)|j

+
[
h3

3!
(α1 − α−1) − h3(β1 − β−1)

]
u(3)|j +

[
h4

4!
(α1 + α−1) − h4

2!
(β1 + β−1)

]
u(4)|j

+
[
h5

5!
(α1 − α−1) − h5

3!
(β1 − β−1)

]
u(5)|j +

[
h6

6!
(α1 + α−1) − h6

4!
(β1 + β−1)

]
u(6)|j

}
.

(7)

By virtue of Eq. (3), the following six equations can be derived

α1 + α0 + α−1 = 0,
α1 − α−1 = 0,
α1 + α−1 = 2(β1 + β0 + β−1),

1
6
(α1 − α−1) − β1 + β−1 = 0,

1
12

(α1 + α−1) − β1 − β−1 = 0,

1
20

(α1 − α−1) − β1 + β−1 = 0.

(8)



October 29, 2008 14:13 WSPC/130-JCA 00361

346 T. W. H. Sheu, L. W. Hsieh & C. F. Chen

Calculation of the above coupled equations results in α1 : α0 : α−1 : β1 : β0 : β−1 =
12 : −24 : 12 : 1 : 10 : 1. These free parameters are then substituted into Eq. (6) to derive
the discrete equation, which is given below, for the model equation given in Eq. (2):

(12 + h2k2
j+1)uj+1 − 2(12 − 5h2k2

j )uj + (12 + h2k2
j+1)uj−1 = h2(fj+1 + 10fj + fj−1).

(9)

To understand the proposed discrete equation (2), uj±1 are expanded with respect to uj

and then substituted into Eq. (9) to derive the following modified equation9:

k2u+ ux = f − h2

12
{[2(kkxx + k2

x)u+ 4kkxux + (k2uxx + uxxxx)] − fxx}

− h4

12

[
1
6
(3k2

xx + kkxxxx + 4kxkxxx)u+ 2
(
kxkxx +

1
3
kkxxx

)
ux

+ (kkxx + k2
x)uxx +

4
3!

(kkx)uxxx +
2
4!

(k2)uxxxx + · · ·
]

+
h4

12
fxxxx + H.O.T.

(10)

Since ∂2/∂x2(k2u + uxx) = 2(kkxx + k2
x)u + 4kkxux + (k2uxx + uxxxx) = fxx, Eq. (10) is

rewritten as

k2u+ ux = f − h2

12

[
1
6
(3k2

xx + kkxxxx + 4kxkxxx)u+ 2
(
kxkxx +

1
3
kkxxx

)
ux

+ (kkxx + k2
x)uxx +

4
3!

(kkx)uxxx +
2
4!

(k2)uxxxx + · · ·
]

+
h4

12
fxxxx + H.O.T.

(11)

The above equation reveals that the right-hand side approaches zero as the grid size h is
decreased. This implies that the three-point stencil scheme accommodates the consistency
property. Since any implicit scheme is unconditionally stable, the numerical results exhibit-
ing the convergence property can be expected in lieu of the Lax’s equivalent theorem.10

Based on the above modified equation analysis, the accuracy order for the proposed scheme
involving only three stencil points is O(h4).

3.2. Sixth-order scheme

To further improve the prediction accuracy, we can, of course, introduce more stencil points
to the discrete formulation. The improved prediction accuracy is, however, obtained at the
cost of an increasingly expensive calculation of matrix equation. To retain the prediction
accuracy at a lower computational cost, we are motivated to develop a scheme that has an
accuracy order of up to six in a grid involving only three points. Now, another auxiliary
variable t at xj is introduced and is shown below:

uxxxx|j = tj . (12)
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Development of the compact scheme at xj begins with relating t and s with u as follows:

h4(γ1tj+1 + γ0tj + γ−1tj−1) + h2(β1sj+1 + β0sj + β−1sj−1)

= α1uj+1 + α0uj + α−1uj−1. (13)

Further derivation is followed by expanding tj±1, sj±1 and uj±1 with respect to tj, sj, and
uj , respectively. Substituting these Taylor-series expansion equations into Eq. (13), we get

h4(γ1 + γ0 + γ−1)tj + h5(γ1 − γ−1)tx +
h6

2!
(γ1 + γ−1)txx

+h2(β1 + β0 + β−1)sj + h3(β1 − β−1)sx +
h4

2!
(β1 + β−1)sxx

+
h5

3!
(β1 − β−1)s(3) +

h6

4!
(β1 + β−1)s(4)

= (α1 + α0 + α−1)uj + h(α1 − α−1)ux +
h2

2!
(α1 + α−1)uxx

+
h3

3!
(α1 − α−1)u(3) +

h4

4!
(α1 + α−1)u(4) +

h5

5!
(α1 − α−1)u(5)

+
h6

6!
(α1 + α−1)u(6) +

h7

7!
(α1 − α−1)u(7) +

h8

8!
(α1 + α−1)u(8). (14)

A term-by-term comparison of the derivatives shown in Eq. (14) leads to eight simultaneous
algebraic equations, from which the introduced free parameters can be determined as α1 =
α−1 = −5040, β1 = β−1 = −660, γ1 = γ−1 = 41, α0 = 10080, β0 = −3720, and γ = 158.
Note that tm = (k4

m − 2k2
x,m − 2kmkxx,m)um − k2

mfm − 4kmkx,mux,m and sm = −k2
mum +

fm (m = j, j ± 1). Equation (14) can be expressed as

[α1 + β1h
2k2

j+1 − γ1h
4(k4

j+1 − 2k2
x,j+1 − 2kj+1kxx,j+1)]uj+1

+ [α0 + β0h
2k2

j − γ0h
4(k4

j − 2k2
x,j − 2kjkxx,j)]uj

+ [α−1 + β−1h
2k2

j−1 − γ−1h
4(k4

j−1 − 2k2
x,j−1 − 2kj−1kxx,j−1)]uj−1

= h4(−4γ1kj+1kx,j+1ux,j+1 − 4γ0kjkx,jux,j − 4γ−1kj−1kx,j−1ux,j−1)

+h2[(β1 − γ1h
2k2

j+1)fj+1 + (β0 − γ0h
2k2

j )fj + (β−1 − γ−1h
2k2

j−1)fj−1]

+h4(γ1fxx,j+1 + γ0fxx,j + γ−1fxx,j−1). (15)

It is noted that the above equation is derived subject to the condition given by

h(c1rj+1 + c0rj + c−1rj−1) = (a1uj+1 + a0uj + a−1uj−1)

+h2(b1sj+1 + b0sj + b−1sj−1), (16)

where r ≡ ux, c1 = −4h3kj+1kx,j1γ1, c0 = −4h3kjkx,jγ0 and c−1 = −4h3kj−1kx,j−1γ−1.
Following the same approach described above for the fourth-order compact scheme, the
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coefficients for a±1,0 and b±1,0 are obtained as

a1 =
1
2
(c1 + 3c0 − 7c−1),

a0 = −2c0 + 8c−1,

a−1 = −1
2
(c1 − c0 + 9c−1),

b1 =
1
6
(2c1 − c0 + 2c−1),

b0 =
1
6
(4c1 − 5c0 + 16c−1),

b−1 = 0.

(17)

By substituting Eq. (16) along with coefficients shown in Eq. (17) into Eq. (15), it follows
that

[−5040 − 660h2k2
j+1 − 41h4(k4

j+1 − 2k2
x,j+1 − 2kj+1kxx,j+1) − a1 + b1h

2k2
j+1]uj+1

+ [10 080 − 3720h2kj − 158h4(k4
j − 2k2

x,j − 2kjkxx,j) − a0 + b0h
2k2

j ]uj

+ [−5040 − 660h2k2
j−1 − 41h4(k4

j−1 − 2k2
x,j−1 − 2kj−1kxx,j−1) − a−1 + b−1h

2k2
j−1]uj−1

= −h2[(660 + 41h2k2
j+1 − b1)fj+1 + (3720 + 158h2k2

j − b0)fj

+ (660 + 41h2k2
j−1 − b−1)fj−1] + h4(41fxx,j+1 + 158fxx,j + 41fxx,j−1). (18)

Here, c1 = −164h3kj+1kx,j+1, c0 = −632h3kjkx,j, and c−1 = −164h3kj−1kx,j−1 are invoked
in the derivation of Eq. (18). At the constant wave number limiting condition, the cor-
responding modified equation for the proposed scheme is derived as follows after some
algebra:

k2u+ uxx = h6

(
19k2

60 480
− 477k4

12 700 800
h2 + · · ·

)
u(6) + · · · + H.O.T. (19)

This modified equation analysis demonstrates that the scheme developed within the three-
point stencil framework can yield a prediction accuracy of order 6. The apparent advantage
is that the Helmoholtz solution can be obtained easily by employing a tri-diagonal solution
solver.4

3.3. Constraint on the solution monotonicity

Acoustics are featured with a highly fluctuating pressure field. It is, thus, important to clar-
ify whether the predicted oscillating pressure solution is physically relevant or is numerically
produced, especially when a highly accurate scheme is applied to solve the problems involv-
ing high-frequency sound sources. In this study, we will employ the M -matrix theory6,7
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to solve for the physically relevant wavy solution. Some definitions and theorems useful to
construct the monotonic scheme are given below6,7:

Definition 3.1. A real n× n matrix A (= aij) is classified as being irreducible diagonally
dominant if |aij | >

∑n
ij=1,i�=j |aij | for at least one i.

Definition 3.2. A real n×n matrix A (= aij) with aij ≤ 0 for all i �= j is called M -matrix
if A is non-singular and A−1 > 0.

Definition 3.3. A real n × n matrix A is defined as monotonic provided that Aψ ≥ 0
holds for any vector ψ under the condition ψ ≥ 0.

Theorem 3.1. If a real and irreducible diagonally dominant matrix has the properties,
namely, aij ≤ 0 for i �= j and aii > 0 for 1 ≤ i ≤ n, then A−1 > 0.

Theorem 3.2. If the off-diagonal entries of A are nonpositive, then A is termed as a
monotone matrix if and only if A is an M-matrix.

For example, consider the constant wavenumber case; the two proposed implicit schemes
are monotonic provided that the diagonal coefficient aj has a positive value. Under these
circumstances, aj±1 are unconditionally negative in magnitude. By applying the theorems
pertaining to the solution monotonicity, the validity of the two proposed compact monotonic
schemes are subjected to the respective conditions given below:

(a) fourth-order scheme

5(hk)2 − 12 ≤ 0 (or hk < 1.549); (20)

(b) sixth-order scheme

79(hk)4 + 1860(hk)2 − 5040 ≤ 0 (or hk < 1.566). (21)

For the sake of comparison, the monotonic constraint condition, namely, (hk)2 − 2 ≤ 0
(or hk < 1.414), for the centered scheme is also derived. Depending on the wave number
k, the grid size chosen to obtain the monotonic solution should fall into the shaded areas
depicted in Fig. 1. Characterized by the current two compact schemes, the monotonic region
increases in size with the increased accuracy order.

The fourth- and sixth-order accurate compact schemes developed in Cartesian grids
can be extended to simulate the practical problems with complex geometries by different
means. One can rewrite the working equation cast in curvilinear physical coordinates to
the orthogonal computational coordinates and solve the resulting transformed equation
in Cartesian coordinates using the proposed compact schemes.11 One can also apply the
immersed boundary method (IBM), which adds a properly derived source term to the
working equation, and apply the proposed compact scheme to solve the Helmholtz equation,
defined in irregular domain, in Cartesian grids. The idea of IBM is to derive the source
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Fig. 1. Schematic of the monotonic range of k−h (or f−h) in the shaded area. (a) centered scheme;
(b) fourth-order scheme; (c) sixth-order scheme; (d) a direct comparison of the monotonic regions plotted
in (a), (b), and (c). Here, f is computed at the chosen speed of sound c = 1500 m/s.

term in a way that the boundary condition prescribed along the irregular boundary can be
approximately satisfied through the interpolation of nodal points in the vicinity of boundary
nodes. The reader can refer to the work presented in Ref. 12 for the analysis of incompressible
Navier–Stokes equations in complex geometry.
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4. Verification of the Helmholtz Scheme

4.1. Inhomogeneous one-dimensional validation case

Validation of the proposed three-point Helmholtz schemes is made by considering the fol-
lowing cornerstone point-source problem in the area of underwater acoustics:

φxx − k2φ = g�δ(x − η). (22)

In the above equation, δ is the delta function. The chosen test problem involves specification
of two end boundary conditions given by φ(�) = φ(−�) = 0. Under the condition given by
−� ≤ η ≤ �, the solution for Eq. (22) can be analytically derived as

φ(x, k, η) =




−g�
k

sinh[k(�− η)]
sinh(2k�)

sinh[k (�+ x)] −� < x < η,

−g�
k

sinh[k(�+ η)]
sinh(2k�)

sinh[k(�− x)] −η < x < �.

(23)

The solution was obtained at η = 0, � = 1, g = 1000, and k = 113. For the case with a
constant grid size of h = 0.02, it is found from Fig. 2 that the finite-difference solutions
compare well with the analytical solution given in Eq. (23). The profile of φ can be sharply
captured for the given value of k and the chosen grid size h, which follows Eq. (21).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x

φ

Exact solution

Present solution O(h6)

Present solution O(h4)

Fig. 2. A comparison of the fourth- and sixth-order compact solutions with the exact solution given in
Eq. (3).
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4.2. One-dimensional validation — Variable wave number case

After the successful validation of the present scheme, the following variable wave number
case is then considered

uxx + sin2(x)u = sin3(x) − sin(x) 0 ≤ x ≤ 20. (24)

Subjected to u(0) = 0 and u(20) = sin(20), Eq. (24) has the following exact solution:

uexact = sin(x). (25)

The results obtained at ∆x = 20/17 are shown in Fig. 3. It is seen that the predicted solu-
tions follow the trend of the theoretical results, thus verifying the two proposed Helmholtz
schemes. For the sake of comparison, the solution obtained by using the centered scheme is
also plotted in this figure. It is evident that the proposed sixth-order scheme outperforms
the conventional second-order centered scheme and the fourth-order compact scheme given
in Eq. (9). A continuous increase of the grid points to 129 and 25 gives the results, which
are obtained using the second- and fourth-order schemes, comparable to the sixth-order
solutions obtained at 18 grid points. A considerable computational time is saved using the

0 2 4 6 8 10 12 14 16 18 20

-2

-1

0

1

2

3

x

u(
x)

Exact solution

Present solution O(h6)

Present solution O(h4)
Sectral solution

Fig. 3. A comparison of the fourth- and sixth-order compact solutions with the exact solution given in
Eq. (5).
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Fig. 4. The predicted rates of convergence for the variable Helmholtz equation considered in Sec. 4.2.

proposed compact fourth- and sixth-order schemes. For this reason, the computationally
more efficient sixth-order compact scheme for the two-dimensional analysis is applied.

To verify that the compact schemes given in Eqs. (9) and (18), which provide the fourth-
and the sixth-order accuracy, respectively, the rate of convergence test is conducted by
carrying out the calculations on several continuously refined uniform grids. The computed
errors were cast in their L2-error norms. Let us denote erri (i = 1, 2) as the L2-error
norms obtained at two continuously refined grids, (M1 + 1) and (M1 + 2). By plotting the
logarithm of L2-error norms against the grid sizes, the rate of convergence is obtained as
c (≡log(err1/err2)/log(M2/M1)). Figure 4 shows that as the slopes approach the values of 4
and 6, the two proposed three-point compact schemes can yield solutions with the accuracy
orders of four and six, respectively.

4.3. Two-dimensional verification — Constant wave number case

The following two-dimensional problem is considered to justify the use of compact scheme,
used in conjunction with the ADI approach, to solve for φ in 0 ≤ x, y ≤ π/2:

∇2φ+ 2φ = 0. (26)
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Fig. 5. A comparison of the predicted sixth-order compact solution profile with the exact profile of φ given
in Eq. (27). (a) exact solution profile; (b) sixth-order accurate compact solution profile.

The above equation, subjected to the Dirichlet-type boundary condition for φ, is amenable
to the following exact solution:

φ(x, y) = sin(x) sin(y). (27)

As Fig. 5 shows, the solution computed at h = π/40 agrees well with the exact solution
given in Eq. (27). The computations in continuously refined grids, namely, h = π/10, π/20,
π/40, π/60, π/80, are also performed and the prediction errors are computed in their L2-
norms. This was followed by plotting the values of log(err1/err2) against log(h1/h2) for the
errors err1 and err2 predicted in the two continuously refined grids h1 and h2. As Fig. 6
shows, the rate of convergence was found to be 6 using the proposed sixth-order scheme.
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Fig. 6. The predicted rate of convergence for the two-dimensional Helmholtz equation considered in Sec. 4.3
using the sixth-order compact scheme.

5. Results and Discussions

Having verified the proposed three-point Helmholtz scheme and justified the use of the alter-
nating direction implicit solution algorithm for the two-dimensional problem, the underwa-
ter acoustics in the presence of a point-source at (0, y0) is simulated. The physical problem
is governed by the following differential equation for p:

∇2p+ k2p = −δ(r)
2π

δ(y − y0). (28)

In the above equation, r denotes the position vector pointing to the sound source. Here,
the real wave number k (≡ 2π(ν/c)), where ν is the frequency of the sound source, of the
positive sign varies with the sound propagation speed c.

In order to make Eq. (28) well-posed, it is imperative to prescribe the boundary value
of p along the entire boundary of the domain. At infinity (r → ∞), it is rational to use
the following Robin-type radiation boundary condition to minimize the nonphysical wave
reflection from the open boundary:

lim
r→∞

√
r

(
∂p

∂r
− ikp

)
= 0. (29)
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At the free surface (y = 0), p is set to have the following fixed ambient pressure:

p(x, 0) = 0. (30)

At the hard bottom, the Neumann-type boundary condition for p is prescribed as

∂p(x,H)
∂y

= 0. (31)

On the scatter surface ∂Ω schematically shown in Fig. 7, the pressure vanishes in the
direction orthogonal to ∂Ω. This implies that

∂p

∂n
= 0. (32)

To begin with, a point source having a frequency of ν = 1500 Hz and a sound speed of
c = 1500 m/s are considered. The sound source was placed below the flat free surface with
a depth of H = 4.2 m. The physical domain was defined in 0 ≤ x ≤ 4 m and 0 ≤ y ≤ 4.2 m.
The predicted ADI solution for p is said to be convergent if the maximum difference of
solutions computed between x- and y-sweep fell below 10−6. In this study, the calculations
were performed on grids which were uniformly distributed with the grid sizes of ∆x = 0.1
and ∆y = 0.1.

The computed p is plotted in its contour-valued form in Fig. 8. To clearly illustrate the
point-source produced pressure field, in Fig. 9 the contour values of p at several selected
sections, namely, x = 2, x = 3, y = 2.1, and y = 3.1 are plotted. As these wavy pressures
reveal, one can see the acoustic signature of the fixed frequency point source in the water.

Fig. 7. Schematic of the sound source in the investigated domain which is bounded by four boundaries.
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Fig. 8. The computed contour values of p for the scattering wave problem considered in Sec. 5.

6. Concluding Remarks

This paper has presented two compact finite-difference schemes for solving the Helmholtz
equation. The emphasis has been placed on the improved prediction accuracy without
adding more points to the finite-difference formulation. Our underlying idea is to relate the
derivative terms with zero, second, and fourth orders. The Taylor series expansion has been
used to determine the linearly independent coefficients shown in the finite-difference equa-
tion so that the three-point scheme has the accuracy orders of fourth and sixth. It is note-
worthy that the grid sizes can be theoretically chosen to render an M -matrix equation. The
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Fig. 9. The predicted pressure distributions at the four selected sections. (a) x = 2; (b) x = 3; (c) y = 2.1;
(d) y = 3.1.

solution thus obtained can prevent any numerically generated oscillations to occur. Since
the proposed scheme is new, analytical verification of the scheme has been conducted for
both one- and two-dimensional problems. In conjunction with the ADI scheme of Polezhaev,
the three-point sixth-order finite-difference scheme has been successfully applied to simulate
the two-dimensional scattering wave problem.
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