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Abstract

A numerical investigation has been conducted to explore the steady nonlinear low Prandtl number flow/thermal transition in a dif-
ferentially heated cubic cavity. For small values of Rayleigh number (Ra), it is observed that initially there was only one symmetric
steady-state solution. When the Ra was amplified, the system bifurcates from one fixed-point solution to the two stationary solutions,
namely, Mode I and Mode II pitchfork bifurcations. This is due to the symmetric nature existing along the vertical and diagonal planes.
The flow structure in the present nonlinear system consists of a pair of asymmetric counter-rotating helical cells in a double helix struc-
ture, foliated with invariant helically symmetric surfaces containing the fibre-like fluid particle orbits. Also the evolution of different sym-
metry-breaking orientations on the transverse and diagonal planes of the cavity was noticed. In the Mode I orientation a symmetric
vortex coreline was observed. However, in the Mode II orientation a pair of anti-symmetric vortex corelines was observed. Detailed
topological study was made based on the rule of Hunt and the structural stability criteria. Also the simulated results were corroborated
with numerical evidence. The existence of the critical Ra values was ascertained with the aid of the predicted L2-error norms, thermal/
flow iso-contours and streamlines. The route of Mode I orientation was made of the alternate symmetric and asymmetric flows as Ra was
augmented.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a growing interest in
studying the liquid metal flow in cavities subjected to an
external temperature gradient. In the process of solidifica-
tion of binary alloys and crystal growth in melt fluids,
the thermal and concentration buoyancy forces can either
aid (or oppose) each other depending on the type of alloy
and the process of heating (or/and cooling). When the fluid
is heated from below, the flow exhibits a very strong and
complex nonlinear behavior which is of primary impor-
tance in the solar collector design, passive energy storage,
crystal growth and in the micro-manufacturing techniques
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[1]. For example, in the electronic industry the solid/liquid
interface is strongly affected by the heat convection [2]. Sta-
ble dynamic solutions of these convection problems are
important for practical applications because of their
impact on the control of dopant distribution. In the past
several decades, the Rayleigh–Bérnard problem had been
slightly modified so as to make this classical problem more
closely related to the destabilized vertical Bridgman crystal
growth system. Intensive theoretical, experimental and
numerical studies have been done especially in the infinite
horizontal layers and in the relatively shallow cavities.

McFadden and Coriell [3] and Impey et al. [4] have stud-
ied the two dimensional (2D) model of the directional
solidification configuration for the solutal control. The
same problem under the low gravity condition was ana-
lyzed by Alexander et al. [5]. The thermal control condi-
tions were used by Larroude et al. [6] to investigate the
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2D Rayleigh–Bénard problem. Computational results pre-
sented in these papers were used to analyze the dynamic
interaction with the solid/liquid transition. The three
dimensional (3D) experimental studies of the problem of
current interest have been reported by Bratsun et al. [7].
They showed that an initially symmetric cavity flow could
become asymmetric as the Grashof number was increased
beyond a critical value. Lan and Yang [8] addressed the
oscillatory responses to pulse disturbances in the furnace
of a 2D vertical zone-melting system and studied the sym-
metry-breaking steady-state flows in a simplified 3D verti-
cal zone-melting system [9]. Such a symmetry-breaking
phenomenon (or pitchfork bifurcation) in a symmetric
physical domain is termed as the Coanda effect [10].
According to Bennacer et al. [11] this symmetry-breaking
phenomenon has been influenced by the cavity height and
the externally applied temperature gradient. Bifurcation
in a nonlinear system is a qualitative change in the dynam-
ics of that system. Bennacer et al. [11] also showed that the
bifurcation type might change when a controlling parame-
ter (Rayleigh number (Ra) in the current study) was varied.
Transition to chaos is also shown to depend on the critical
Rayleigh number. For this cavity problem, Davis [12] and
Stork and Muller [13] have concluded that the critical Ray-
leigh number (Ra = 1708) was independent of the Prandtl
number (Pr). Erenburg et al. [14] studied the solution mul-
tiplicity, stability and bifurcation of low Prandtl number
steady natural convection in a two-dimensional rectangular
cavity. They observed that laminar oscillatory flows exist
around each unstable steady-state branch, which leads to
a multiplicity of steady and oscillatory state. From the sta-
bility diagram they also observed the marginal stability
curves corresponding to the steady symmetry-breaking
bifurcations.

Recently 3D computations have been limited to high Pr

and provided us a general understanding of the flow devel-
opment [15,16]. Hence, it is important to analyze the inher-
ent nonlinear transition from symmetric to asymmetric
equilibrium states with the increased Ra at the low Prandtl
number. For the hydrodynamic/thermal instability prob-
lems, the direct numerical simulation (DNS) of 3D time-
dependent Navier–Stokes equations is extremely time-con-
suming. The commonly used linear theory can be applied
only for the system state not far from equilibrium, i.e., lin-
ear theory is appropriate only for the first bifurcation [17].
The experimental evidence of the nonlinear behaviors in a
system and measurements of the significant data such as
critical values of the governing parameters for the bifurca-
tions are usually of considerable uncertainty and some-
times difficult to obtain. To explore the nonlinear
dynamics including the bifurcation and the routes to chaos
of the system we have focused our attention on the natural
convection in a cubical cavity subjected to the low Pr based
on the DNS results. Our aim is to provide a detailed non-
linear analysis of the symmetry-breaking thermal/flow
fields in the investigated buoyancy driven cubical cavity.
The major bifurcation type seen frequently in the nonlinear
system is the pitchfork bifurcation, which is characterized
by the appearance of symmetry-breaking solution. This
pitchfork bifurcation can produce some unsteadiness in
the flow and consequently perturb the solid/liquid interface
and the dopant distribution. The onset of pitchfork bifur-
cation points in the parameter space is, thus, important
to be identified.

The paper is organized as follows. The equations and
the prescribed boundary conditions, the symmetries of
the problem and their implications along with the theoret-
ical details are summarized in Section 2. The subsequent
Section 3 deals with the employed numerical methods
along with the grid validation. In Section 4, the flow fea-
tures are extracted and well represented in terms of topol-
ogy, which is spanned by different kinds of critical points.
The critical point analysis was also presented to show that
the simulated velocity vector field satisfies the topological
rule of Hunt [18] and the structural stability criteria. This
is followed by providing the corroborative numerical evi-
dence. Further, the multiple solutions and the symmetry-
breaking (or pitchfork bifurcation) phenomenon were ana-
lyzed with the help of the iso-contours of heat flux and the
flow variables in the wide range of Rayleigh numbers. The
vortical nature was analyzed for the two possible solutions
existing in the currently investigated nonlinear system. In
addition, the global pitchfork bifurcation scenario for the
critical parameter Ra was presented. The conclusions are
drawn finally in Section 5.

2. Numerical model

The geometry of an axisymmetric cubical cavity (length
L = 1 m) containing the liquid metal Tin (Sn) of low Pr

(=0.01) is shown in Fig. 1. The Cartesian coordinate frame
of reference (x, y, z) for this study was chosen as shown in
Fig. 1. The bottom wall (x = 0) and the left (y = 0) and
right (y = 1 m) vertical side walls (0 < x < h, (h = 0.75 m))
were maintained at a high temperature (TH), which corre-
sponds to the temperature of the furnace in a real crystal
growth situation. The top wall was maintained at a lower
temperature (TC), which corresponds to the temperature
at the solidification front, and the remaining vertical side
walls (h < x < 1 m) were imposed with the zero heat flux
boundary condition. The remaining lateral walls (z = 0,
1 m) of the cavity were also assumed to be thermally insu-
lated (adiabatic). The thermal properties of this melt fluid
were treated as constants. The above mentioned thermal
boundary conditions can be used to model the synthetic
production of single crystals, where the crystal grows
slowly from a fluid nutrient contained in a crucible of var-
iable geometry. The fluid under current investigation was
incompressible and Newtonian along with the Boussinesq
approximation made in the equations of motion along
the gravity direction.

With the said assumptions, the governing equations to
be solved are given below in the specified gravity field
g = (�g, 0,0).



Fig. 1. Schematic of the investigated thermal driven cavity, where h (= 0.75 m) and g denote the height of the hot walls and gravity, respectively.
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r � V ¼ 0 ð1Þ
oV
ot
þ V � rV ¼ �rP þ Prr2V þ RaPrT ð2Þ

oT
ot
þ V � rT ¼ r2T : ð3Þ

In the above equations, V = (U, V,W), t,P and T repre-
sent the dimensionless velocity vector along the (x,y,z)
directions, time, pressure and temperature, respectively.

In the above Eqs. (1)–(3), the following non-dimension-
alizations were employed X = x/L; Y = y/L; Z = z/L;
H = h/L; V = v L/a; t = t0a/L; p = p0L2/qa2; T = (T0 �
TC)/DT; Pr = m/a and Ra = (gbTDTh3)/(ma), where t0, p0,
T0, m, a and bT denote the dimensional time, dimensional
pressure, dimensional temperature, viscosity, thermal diffu-
sivity and the coefficient of thermal expansion. Flow veloc-
ity was assumed to be of the no-slip type on the entire
boundary of the domain. The temperature boundary con-
ditions are given by

T ð0; Y ; ZÞ ¼ 1

T ðX ; 0; ZÞ ¼ T ðX ; 1; ZÞ ¼ 1 for 0 < X < H

oT
oX

� �
ðX ;0;ZÞ

¼ oT
oX

� �
ðX ;1;ZÞ

¼ 0 for H < X < 1

T ð1; Y ; ZÞ ¼ 0:
In the above nonlinear system, an attempt has been
made to know the qualitative behavior of the fluid flow.
In the mathematical terms, the number of non-wandering
sets (including the fixed point, the limit cycle and the
quasi-periodic or chaotic orbit) existing in the flow was
determined. The appearance and the disappearance of such
a non-wandering set is called bifurcation. Knowledge
about the change of stability and the bifurcation, which
always coincide in nonlinear dynamics, is thus a key to
fully understand the currently investigated nonlinear differ-
ential system. One of our main objectives in conducting
this study is to explore the flow and the thermal details
using the flow topology, the stability analysis and the bifur-
cation analysis. Bifurcation is defined as a qualitative
change in the nonlinear flow/thermal system. In the nonlin-
ear flow topology, many bifurcation types can be discov-
ered. In the present study attention was paid exclusively
to the pitchfork bifurcations because of their existence in
the currently investigated thermally driven cubical cavity.
3. Methodology and grid validation

Well established CFD package CFDRC [19], which pro-
vides a finite-volume flow solver, has been employed in the
present study. The flow model geometry was constructed



Table 1
The computed L2–error norms and average errors in a domain with
41 � 41 � 41 and 81 � 81 � 81 nodes at (0.5, Y, 0.5) and at (0.05, Y, 0.05)
for U and T

(0.5, Y, 0.5/0.05, Y, 0.5)

L2-error norm U 4.37734852E-04/2.19162510E-03
T 3.87396403E � 02/1.17754256E � 02

Average error U 4.77100462E � 02/9.19851574E � 02
T 1.46493709E � 04/5.55973129E � 05
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using the grid generation software, namely, the CFD-
GEOM. The flow volume, boundary and initial conditions
for this model were set in the CFD-ACE solver. The third
order upwind numerical method was used for the spatial
derivatives. Conjugate Gradient Squared (CGS) method
was employed as an effective acceleration means. In the
final stage, the simulated results were viewed and analyzed
by the 3D animated plotting tools like the CFD-VIEW and
the TecPlot.

Grid independent tests were conducted based on the pre-
dicted L2-error norms and the average errors for U and T

to make sure that the computed solutions can represent the
real flow physics. Fig. 2 shows the U and T solutions calcu-
lated at different meshes, namely, 21 � 21 � 21, 41 � 41 �
41 and 81 � 81 � 81, for Ra = 1 � 105. Figs. 2a and b show
Fig. 2. Grid independent test at Ra = 1 � 104. (a) Velocity u at the centre
line (0.5, Y, 0.5) and (b) temperature T near the bottom surface (0.05, Y,
0.5).
the u and T at the centre line (0.5, y, 0.5) and near the bot-
tom surface (0.05, y, 0.5), respectively. From Fig. 2 it is
observed that the currently employed 41 � 41 � 41 uni-
form mesh results did not show much difference from those
when the mesh resolution was increased or decreased by
50%. Table 1 shows the L2-error norms and the average
errors for U and T at Ra = 1 � 104, with the reference mesh
value of 41 � 41 � 41. From Table 1 it is observed that the
difference between the solutions obtained from
41 � 41 � 41 and 81 � 81 � 81 meshes is negligible. Hence
the mesh with 41x41x41 resolution was used for simula-
tions conducted in the investigated domain.

To initiate the non-symmetric steady-state mode (Mode
2) for the current Ra, the previous steady-state solution of
Ra was considered as the initial solution (e.g., to compute
the non-symmetric steady-state for Ra = 2000, the steady-
state solution of Ra = 1900 was considered as the initial
solution). To show that the simulated symmetry-breaking
flows are indeed stable, the history of convergence behav-
iors for the velocity, pressure and temperature are provided
in Fig. 3 at Ra = 1.598 � 104. The iterative calculations of
the primitive variables, such as velocity, temperature and
pressure, were terminated when the residual norm criterion
(610�11) was reached for all the calculations.
4. Results and discussion

To begin with the flow topology is presented to give a
global skeleton of the 3D flow development in the investi-
gated cubical cavity. Then a symmetry-breaking or pitch-
fork bifurcation is asserted to take place in the range of
1 6 Ra 6 2.782 � 105. It was observed that this bifurcation
occurred vertically (along the height of the cavity, h) and
also diagonally. Hence the two sets of solutions, namely
Modes I and II, were obtained. Extensive numerical verifi-
cation was made to ascertain that the simulated pitchfork
bifurcation was not of numerical origin. Having confirmed
the existence of symmetry-breaking flow, the critical Ra

range and the flow topology are presented in this paper.
4.1. Flow topology

In this section, the streamline portrait of the flow was
constructed and subsequently the rigorous support was
provided for the simulated streamline portrait by two ways.



Fig. 3. A 3D illustration of two modes of the simulated streamtraces at Ra = 1 � 104. (a) Mode I and (b) Mode II.
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One was by invoking the topological constraints and the
structural stability criteria and the other by listing the cor-
roborative numerical evidence.

4.1.1. Corroborative evidence for the proposed streamline
portrait

Determination of the stream-function is one way to con-
struct a streamline portrait of the flow (flow skeleton) [20].
This map contains the critical points and the limiting fluid
particle trajectories that can well characterize the flow. The
flow skeleton was presented in the transverse sections.
These 3D stream-function sections correspond to the 3D
stream-tubes in the transverse cuts and are equivalent to
the 3D trajectories of the fluid particles into the reduced
coordinate system. Mathematically speaking, these fluid
trajectories are the flow domain fibers and constitute a
local vector bundle [21].

The topology constraint is based on the Euler number n
of the flow. As explained by Jana et al. [22] the Euler num-
ber of a surface is defined as the sum of the Poincare indices
of the critical points on the surface. A Poincare index of the
hyperbolic point is �1, a parabolic point is �1/2, and an
elliptic point is 1. The topological invariance relation is
given by the following rule of Hunt

E � H þ 1

2
P

� �
¼ n ¼ 0 ð4Þ

where E, H, P represent the number of elliptic points,
hyperbolic points and parabolic points, respectively. The
topological rule given by Eq. (4) does not guarantee the
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existence of a physically relevant flow. Rather, it is merely a
way to check for the topological consistency [23]. One can
also validate the approximated velocity field by pursuing
the fact that the kinematics of a physically realizable flow
is related to its stability. Instead of referring to the stability
of the ideal flow, in the current study attention was focused
on the structural stability of the multiple solutions, namely
Modes I and II, with the infinitesimal changes to the geom-
etry and the boundary conditions in the currently investi-
gated cubical cavity. Drazin and Reid [24] defined a
structurally stable system as the one that does not change
its qualitative solution character subjected to the infinites-
imal changes in the geometrical setting of a system and
the physical parameters of the working fluid and the spec-
ified boundary conditions.

The 3D flow paths of Mode I and Mode II orientations
can be best illustrated by virtue of the simulated stream-
traces. In Fig. 3 it is observed that the stream-traces in both
Modes exhibit the symmetric nature. The Mode I and
Mode II show the symmetric nature with respect to the
transverse and diagonal planes, respectively. Mode I results
illustrate that at one rear end of the adiabatic wall (Z = 1),
the apparent spiraled stream-traces are present and they
lead to the formation of eddies near that adiabatic wall.
This is due to the fact that the heat flux was convected
towards the adiabatic wall, Z = 1. From Mode II results
it is observed that an increasingly apparent spiraling nature
of the stream-traces at the centre of the cavity is present.
The formation of such eddies at the centre of cubical cavity
is due to the heat transfer convected in the centre of cavity.
The heat transfer results for the Mode I and Mode II have
been discussed in detail in the later part.

The 2D flow skeleton in Fig. 3 represents the (X,Y)-
plane (or transverse section) of the Mode I and Mode II
orientations. Figs. 3a and b are the two projections of
the vector bundle. Two recirculating cells, namely CI and
CII, were observed in the Mode I and Mode II solutions.
These cells correspond to the two counter-rotating helical
vortices in the double helix topology. In the following dis-
cussion and in the rest of the article, the following termi-
nology is used to distinguish these two vortices. By
considering the transverse section of the stream-function
presented in Fig. 3, the rotation of the fluid in the clock-
wise-direction is referred as CI, while the rotation of the
fluid in the anti-clockwise direction is referred as CII. CI
encloses the elliptic point (E1) for the Mode I and (E1,
E2) for the Mode II. CII encloses the elliptic point (E2)
for the Mode I and (E3, E4) for the Mode II. Both CI
and CII regions are of the same size.

In Fig. 3a CI and CII cells form a closed pattern with
the parabolic points denoted as P1 and P2. Also CI and
CII cells are delineated from each other by the parabolic
points, namely, P3 and P4. The Mode II streamline portrait
in Fig. 3b shows that the cells CI and CII are bounded by a
set of parabolic points (P1, P6) and (P4, P5), respectively.
There exists a hyperbolic point (H) between the repeating
cells. In the remaining flow region there exist two more par-
abolic points (P2, P3). The representation of geometric
objects in the reduced coordinates is further clarified in
the next paragraph by relating the 3D structure to the
2D cuts.

It is useful to describe the streamline portrait in terms of
the dynamical system nomenclatures. By comparing the 3D
plot in Fig. 3 with the projections depicted in Fig. 4, it
becomes clear that the boundary of CI cell is a 2D manifold
heteroclinic to the two invariant one-dimensional mani-
folds passing through the point P1 for Mode I (Fig. 4a)
and points (P1, P6) for Mode II (Fig. 4b). The two one-
dimensional manifolds form the two helices on the outer
surface. Similar topology characterizes the boundary of cell
CII which passes through the point P2 for Mode I (Fig. 4a)
and the points (P4, P5) for Mode II (Fig. 4b).

Based on the global geometrical constraints, the stream-
line portrait obtained from the analytical approximation,
in Figs. 4a and b, is ‘realistic’. Quite obviously, the critical
points in the streamline portrait presented in Fig. 4a satisfy
equation (6) with the two elliptic points (E = 2) and four
parabolic points (P = 4). Similarly, the critical points in
Fig. 4b satisfy the topological rule given in equation (6)
with the four elliptic points (E = 4), one hyperbolic point
(H = 1) and six parabolic points (P = 6).

The flows depicted in Figs. 3a and b are structurally sta-
ble according to the theorem given in the work of Ma and
Wang [25]. Indeed, the conditions for the structural stabil-
ity criteria of the divergence-free vector fields that satisfy
the Dirichlet boundary conditions (no-slip at the walls)
are met with. The velocity field is found to be sufficiently
regular for the Mode I and Mode II orientations. Both par-
abolic points, P1 and P2 shown in Fig. 4a, are connected
with the stable manifolds. Similarly for Mode II, the para-
bolic points P2 and P6 shown in Fig. 4b are connected with
the stable manifolds. Such manifolds correspond to the
flow regions which separate the counter-rotating cells and
become visible as lines. These lines act as barriers for the
two vortices when the flow is observed from the transverse
and diagonal planes for the Mode I and Mode II, respec-
tively (Fig. 3). By verifying that the simulated flow struc-
ture is structurally stable, the fidelity of the simulated
thermal and velocity fields was further corroborated from
the available results in the literature.

4.1.2. Corroborative numerical evidence

The 2D square cavity benchmark solutions of de Vahl
Davis [26] and Le Quéré [27] were compared with the pres-
ent calculations, which were carried out in a 41 � 41 non-
uniform mesh with more grid points near the bounding
walls. The agreement was found to be satisfactory as
shown in the following Table 2. To present more valida-
tion, the solutions obtained at Ra = 106 and some reference
values are compared and are tabulated in Table 3. The
locations for the maximum velocities are calculated and
compared. The present results shown in Table 4 for Umax

and Wmax are in good agreement with the results by Waka-
shima and Saitoh [28] and others.



Fig. 4. The simulated streamlines and critical points at the cross-flow plane z = 0.5 for Ra = 1 � 105. CI, CII represent the clockwise-rotating cells and
anti-clockwise-rotating cells. E, H and P denote the elliptic, hyperbolic and parabolic points, respectively. (a) Mode I and (b) Mode II.
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The 3D cavity considered by Wakashima and Saitoh
[28] had an aspect ratio of unity and was filled with the
working fluid of air. The Prandtl number was fixed at
0.71. The vertical walls located at X = 0 and X = 1 were
retained to be isothermal but at hot and cold temperatures,
respectively. The remaining four sidewalls are taken as adi-
abatic. The agreement of the present results with Wakashi-
ma and Saitoh [28] is shown in the following Table 4 for the
Umax and Wmax and is found to be satisfactory.

The 2D and 3D numerical results of Wan et al. [31] and
Bennacer et al. [11] were compared with the presently pre-
dicted results. Wan et al. [31] have considered a differentially



Table 2
Comparison of the 2D results of de Vahl Davis [26] and Le Quéré [27]

Ra

103 104 105 106

Present Umax(1/2,z) 3.649 16.178 34.7295 64.629
0.813 0.823 0.855 0.850

Wmax(x, 1/2) 3.697 19.617 68.59 219.36
0.178 0.119 0.066 0.0379

de Vahl Davis [26] Umax(1/2,z) 3.649 16.178 34.73 64.63
0.813 0.823 0.855 0.850

Wmax(x, 1/2) 3.697 19.617 68.59 219.36
0.178 0.119 0.066 0.0379

Le Quéré [27] Umax(1/2,z) – – – 64.83
0.850

Wmax(x, 1/2) – – – 220.6
0.038

Table 3
Comparison of the present solutions with the reference solutions
computed at Ra = 106

Ra = 106 Umax(z) Wmax(x)

Present 0.08128 (0.8500) 0.2379 (0.0500)
Fusegi et al. [29] 0.08416 (0.8557) 0.2588 (0.0331)
Janssen et al. [30] 0.08099 0.2585
Wakashima and Saitoh [28] 0.08129 (0.8500) 0.2382 (0.0500)
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heated, closed square cavity whose left and right vertical
walls are maintained to be hot and cold, respectively, and
the horizontal walls are adiabatic. In Table 5 the predicted
results were compared with the predictions of Bennacer
et al. [11], whose investigated geometry is similar to the pres-
ent study. Table 5 tabulates the Nusselt number (Nu) values
Table 4
Comparison of the present solutions with those of Wakashima and Saitoh [28

Ra and Grid size

Present Ra = 106 0.025
Wakashima and Saitoh [28]

Present Ra = 105 0.025
Wakashima and Saitoh [28]

Present Ra = 104 0.025
Wakashima and Saitoh [28]

Table 5
Comparison of the Nu values obtained at the bottom, left and top surfaces ag

Nusselt number (Nu)

Ra 102

Bottom surface (ABCD) Bennacer et al. [11] 0.26
Present 0.26

Left surface (ADIL) Bennacer et al. [11] 0.69
Present 0.69

Top surface (EFGH) Bennacer et al. [11] �2.10
Present �2.10
against Ra at the bottom, left and top surfaces. Comparison
results are found to be satisfactory. From Table 5 it is
observed that increasing Ra modifies the flow intensity with-
out significantly affecting the overall heat transfer but it does
modify the ratio between the lateral and lower surface
contributions.

For a 3D heat transfer flow in the rectangular enclosure
with Pr = 1 and aspect ratios A = AX = AY = 2 and 6, the
present results show the critical Rayleigh numbers as 2085
and 1755, respectively, which coincide with the results of
Gelfgat [32]. For the convective flow in an air cubical
enclosure heated from below, the first and second primary
bifurcations occur at Ra ffi 3389 and 5900, respectively.
These critical Ra values coincide with the results of Puigja-
ner et al. [33], who have considered the calculation domain,
which is scaled by the length of the side of the cubical cav-
ity and the temperatures at the top and the bottom hori-
zontal walls are constant and equal to cold and hot
temperatures, respectively.

The local heat transfer iso-contours at the bottom hori-
zontal surface (X = 0) for Ra = 10 and 3000 were com-
pared with the results of Bennacer et al. [11] and are
shown in Figs. 5a and b, respectively. It is observed that
the predicted heat transfer results agree well with the
results of Bennacer et al. [11]. The symmetric regions in
Figs. 5a and b exhibit the increasing flow intensity with
the Rayleigh number. Also Fig. 5 represents the four differ-
ent situations: The maximum temperature gradient is in the
middle due to the imposed thermal boundary conditions.
For the lower Ra(= 10), a distributed temperature field
was exhibited. For the intermediate Ra(= 3000), the
increase in the flow induces a higher local heat transfer rate
]

Umax(z) Wmax(x)

0.08128 (0.8500) 0.2379 (0.0500)
0.08129 (0.8500) 0.2382 (0.0500)

0.1423 (0.8500) 0.2406 (0.0751)
0.1423 (0.8500) 0.2407 (0.0751)

0.1989 (0.8250) 0.2211 (0.1253)
0.1989 (0.8250) 0.2211 (0.1253)

ainst Ra

1 � 103 2 � 103 3 � 103

0 0.279 0.304 0.310
018 0.28061 0.30438 0.31148

0.69 0.686 0.684
18 0.6951 0.6783 0.6721

�2.12 �2.13 �2.14
52 �2.1077 �2.1134 �2.1308



Fig. 5. Comparison of the simulated local contours of Nusselt number (Nu) on the hot plane (ABCD) with those of Bennacer et al. [11]. (a) Ra = 10 and
(b) Ra = 3000.
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(Nu) along the centreline due to the arrival of the cold fluid.
Close to the hot walls (Y = 0 and 1) the local heat transfer
rate was observed to be small due to the flow damping.

4.2. Flow field description

Having corroborated the present numerical results, the
local behavior of the pitchfork bifurcation is analyzed
based on the heat flux and U-velocity iso-contours. To
effectively obtain a profound understanding of the buoy-
ancy driven convective flow features, the wall heat flux
on various planes were calculated at Ra = 1 � 104. Fig. 6
shows the wall heat flux distribution for the two sets of
solutions, the Mode I and Mode II. From Fig. 6, it is
observed that the simulated heat flux has its peak value
near the bottom surface and minimum at the top. It is nat-
ural to observe the asymmetric local heat flux distribution
between the hot and cold walls as there exists a steady-state
asymmetric distribution in the flow and thermal fields.
There was a large amount of heat, transferred from the
lower bottom of the hot wall, to the fluid. This rate of heat
transfer from the wall to the fluid, and vice versa, is
increased with Ra. Also, the Mode I heat flux elucidates
that the heat is convected asymmetrically towards one par-
tially heated vertical wall (ABEF). Mode I has symmetric
nature about Y = 0.5 plane but not with respect to the
Z = 0.5 and the diagonal planes. Mode II heat flux shows
that the heat is distributed symmetrically about the diago-
nal plane but is asymmetric with respect to Y, Z = 0.5
planes. The contours in the adiabatic walls indicate that
there is no movement of heat flow through this boundary.
In the immediate neighborhood of the hot and cold walls,



Fig. 6. A 3D illustration of two possible surface flow topologies based on the simulated iso-contours of the wall heat flux obtained at Ra = 1 � 104. (a)
Mode I and (b) Mode II.
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the contours remain parallel to the isothermal vertical
walls.

Fig. 7 plots the U-velocity iso-contours on different cut-
ting planes at Ra = 1 � 104. Both the Mode I and Mode II
flows exhibited an asymmetric behavior. For the Mode I
solution, the existence of two eddies at the transverse plane
and three eddies at the Z and diagonal planes were
observed. In the Mode II solution three eddies were, how-
ever, noticed at all the planes. The Mode I solution pattern
exhibits the asymmetric behavior with respect to the Y,



Fig. 7. The simulated U-velocity iso-contours on Y = 0.3, Z = 0.3 and the diagonal planes at Ra = 1 � 104. (a, c and e) Mode I and (b, d and f) Mode II.
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Z = 0.3 and the diagonal planes. As the flow was gradually
evolved to exhibit the Mode II bifurcation feature, the
velocity on the diagonal plane remained relatively invariant
with the exception at the Y = 0.5 and Z = 0.5 planes.
Unlike the Mode II bifurcated flow, the discrepancy in
the flow nature between the two halves of the channel
(i.e., Y, Z < 0.5; Y, Z > 0.5 and diagonal plane) in the
Mode I flow is clearly observed. The Mode II solution
showed, however, the asymmetric behavior with respect
to the Y, Z = 0.3 planes and symmetric behavior along
the diagonal plane. The local heat transfer and the velocity
iso-contours (Figs. 6 and 7) on the bottom wall correspond
to the rotation of the main cells inside the cavity about the
three planes, namely, the diagonal, Z and Y planes. The
existence of a wide range of fluid flow and heat transfer
characteristics in such a simple geometry, where the



Fig. 8. The simulated vortex corelines, limiting streamlines and streamtraces for the case considered at Ra = 1 � 105. (a) Mode I and (b) Mode II. The
color contours of velocity streamtraces are shown in Fig. 8.
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patterns are dictated purely by the buoyancy force, is par-
ticularly absorbing.

The vortex corelines are regarded as the main signature
of the vortical flow. Generally, a swirling motion in the
fluid is regarded as the vortex. Robinson [34] provided
the definition for vortex as ‘‘A vortex exists when instanta-
neous streamlines mapped onto a plane normal to the vor-
tex core exhibit a roughly circular or spiral pattern, when
viewed from a reference frame moving with the center of
the vortex core.” An attempt was made to obtain the



Fig. 9. The plots of the simulated difference, cast in L2-error norms with
respect to the Y = 0.5 plane, for the flow variables (a) U, V, W and (b) P

for illustrating the presence of pitchfork bifurcation in the Mode I flow.
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profound vortex flow nature in the present cubical cavity
flow for the Mode I and Mode II orientations.

Figs. 8a and b show the symmetrical vortex corelines in
the Mode I and Mode II orientations along with the limit-
ing streamlines (Chiang et al. [35]) and streamtraces. The
vortex corelines are drawn according to the velocity gradi-
ent eigenMode method [36]. An important feature of the
vortex coreline is the complex surface streaking pattern.
By definition, the spiraling vortex motion has its origin/
end from the bounding end walls. Hence in Fig. 8 the lim-
iting streamlines are drawn to observe the evolution of
these corelines in the vicinity of the end walls. Fluid parti-
cles near the end walls could have caused the vortical flow
to develop in the third dimension. In the Mode I flow, there
exists only one vortex coreline which is symmetric about
the Y = 0.5 plane. The Mode II flow consists of two vortex
corelines which are anti-symmetric to each other. The vor-
tical corelines of Mode I and Mode II orientations have
their origin/end points on the adiabatic walls. A very
strong predominant vorticity nature was found to occur
in the regions very close to the flanks of the two adiabatic
end walls. It is observed from Fig. 8b that the limiting
streamlines exhibited the anti-symmetric nature on the
flanks of the adiabatic end walls. Also it is observed from
Fig. 8a that a more apparent spiraling nature of the stream-
lines existed near the end wall than that in the centre of the
cavity. This implies that the vorticity is sturdy near the end
walls. In Fig. 8b the Mode II orientation shows that the
vorticity is sturdy in the centre of the cavity due to the
more apparent spiraling nature of the streamlines existing
in the centre of the cavity.

4.3. The route of developing pitchfork bifurcation

As mentioned earlier, the pitchfork bifurcation is of the
static and local type and involves one or more equilibrium
solutions. Usually the nonlinear systems with the geometry
and the flow symmetry perturbations of different sorts may
initiate pitchfork bifurcation. The currently investigated
3D natural convection problem is featured with two possi-
ble symmetric conditions in the geometry as well as the
boundary conditions. Symmetry was seen with respect to
the transverse and diagonal planes. As a result, it was
expected to observe two modes (Modes I and II) of pitch-
fork bifurcation in the current nonlinear partial differential
system governed by Eqs. (1)–(3) as the system control
parameter Ra was increased beyond its critical value. As
the solution is started to bifurcate, the geometrically sym-
metric cavity fluid flow lost its symmetry and the stable
branch became unstable. This led to the formation of two
new stable branches. Hence this pitchfork bifurcation solu-
tion is called as the symmetry-breaking solution.

The critical nature of the Mode I and Mode II solutions
that vary with respect to Ra was studied based on the pre-
dicted L2-error norms. The entire Mode I solutions were
found to be asymmetric with respect to Z = 0.5 and the
diagonal planes. The solution was switched, however, from
the symmetric to asymmetric patterns for the various crit-
ical Ra values at the y = 0.5 plane. Hence the L2-error
norms for the U, V, W, P and heat flux were calculated
for the Mode I solution at the Y = 0.5 plane and are plot-
ted in Fig. 9 against Ra. This figure clearly illustrates the
evolution of the pitchfork bifurcation along the Y (= 0.5)
plane in the range of 103

6 Ra 6 105. Initially, for
Ra 6 103 the L2-error norm was very close to zero. This
implies that the flow was symmetric for Ra 6 103(steady
I). As Ra was increased further (P103), the increasing
L2-error norm values were seen. Under these circumstances
the solution was denoted as steady III. (The Mode II
steady-state solution was denoted as steady II). These
results imply that the pitchfork bifurcation started to
evolve around Ra = 6740 and was retained until
Ra = 8970 (steady IV). When the value of Ra was increased
further, the L2-error norms were found to be very close to
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zero. This indicates that the flow becomes symmetric again.
For Ra P 104, larger error was found in comparison with
the previous one. Hence the pitchfork bifurcation (steady
V) started to evolve again when the value of Ra was
increased above 15990. All the Mode II solutions exhibited
symmetric nature along the diagonal plane and asymmetric
nature along the Y, Z = 0.5 planes. The L2-error norm val-
ues of the U, V and W were not changed until the steady-
state IV was reached. Beyond Ra = 15,990, the L2-error
norms of these velocities were found to deviate from each
other. TheL2-error norm of the pressure (P) was found
to be small in comparison with the velocity values shown
in Fig. 9b. It is also observed that the alternate symmetric
and asymmetric nature of the pressure field is the same as
the velocity.

Figs. 10a, b and c illustrate the oscillatory nature of the
flow from the symmetric to asymmetric nature. By adding a
small perturbation by an amount of DRa = 10 on the
unperturbed cell predicted at Ra = 6730, the flow started
to show the asymmetric nature (Fig. 10a) and was switched
from the steady-state I to the steady-state III. Hence the
first critical pitchfork bifurcation Ra (RaCP1) value was
observed at 6740. Also, the break of symmetry leads to a
slight growth of one of the vortices and a slight decay of
the other. This secondary steady-state branch consisted
of symmetric vortices, which were separated by the hetero-
clinic lines connecting the hyperbolic fixed points of the
flow. This branch had created tertiary steady-states for
which the contours of the flow were changed such that
the middle points of the neighboring co-rotating vortices
were shifted up and down. With further increase of the
Rayleigh number, the non-symmetric flow pattern continu-
ously transforms, thereby tilting the vortices up and down.

The flow pattern starts to show the symmetric nature
again as shown in Fig. 10b. Hence, another pitchfork bifur-
cation occurred (steady IV) at RaCP2 = 8970 (Fig. 10b) and
it was stable within an interval 8970 6 Ra 6 15990. By
adding a small perturbation by an amount of DRa = 10
on the perturbed cell predicted at RaCP2 = 8970, the flow
is switched from the asymmetric steady-state III to the
symmetric steady-state IV as shown in Fig. 10b. The solu-
tions were returned to exhibit the symmetric vortices and
the solutions were stable until the third critical pitchfork
bifurcation was found at RaCP3 = 15990. The third pitch-
fork bifurcation (steady V) is illustrated in Fig. 10c. For
the value of Ra beyond RaCP3, the symmetric nature was
lost and both solution modes (Modes I and II) exhibited
the same set of results i.e., the disappearance of the multi-
ple solutions at Ra = 45000. The present predicted critical
Ra values are found to be closer to the 2D results predicted
by Ganaoui and Bontoux [37] and Bennacer et al. [11].

Fig. 11 illustrates the topology of pitchfork bifurcation
with the increasing Rayleigh numbers. In Fig. 11 the con-
tours of the U-velocity are plotted for various Rayleigh
numbers. Initially for Ra 6 6730 the flow exhibited a sym-
metric nature, as shown in Fig. 11i, and is denoted as
steady II. There exist two corner vortices and one centre
vortices, which are symmetric with respect to the Y = 0.5
plane. When Ra was increased above 6730, the symmetry
was lost and the break of symmetry leads to a slight growth
of the centre vortex and a slight decay of the others. The
two corner vortices become closer to the edges near the
mid-plane Y = 0.5 compared to those for Ra 6 6730. With
further increase of the Rayleigh number, the non -symmet-
ric flow pattern continuously transforms. The totally
deformed nature of the vortices is observed until
Ra = 8990 and this range is denoted as the steady III
(Fig. 11ii). The existence of the steady symmetry-breaking
pitchfork bifurcation shows multiple symmetry and asym-
metry steady-states. Thus, there exists at least one symmet-
ric and non-symmetric steady-state. When Ra was
amplified further, then the flow retains its symmetric nature
at 15980. Fig. 11iii shows the symmetric flow with respect
to the Y = 0.5 plane. The two corner vortices become clo-
ser to the edges of y plane and retain their respective sym-
metry with respect to the mid-plane of Y = 0.5 compared
to the previous steady III. This symmetric steady nature
of the flow remained until Ra < 15,990 and this range is
denoted as the steady IV. The final pitchfork bifurcation
showed its presence when Ra was augmented to 15990.
Once again the flow symmetry was lost as shown in
Fig. 11iv and this steady-state is denoted as the steady V.
Also the multiple steady-state disappears at Ra = 45,000,
but the non-symmetric flow is retained.

A complete overview of all the solution branches is pre-
sented schematically in the global pitchfork bifurcation
diagram (Fig. 12) at the Y = 0.5 plane against the Rayleigh
number. In Fig. 11 the present simulations of the five sym-
metric/asymmetric steady-states, multiple solutions for the
critical Ra values are shown. Fig. 12 has a close similarity
to the Feigenbaum sequence [38] that is normally employed
to describe the route to chaos. In the terminology of Mitch-
ell Feigenbaum, there exist some critical Rayleigh numbers
at which the characters of Feigenbaum sequences change
sharply. The first bifurcation (Ra < 3040) is the transition
of the system behavior from the basic symmetric steady-
state solutions. For Ra = 3040, the sequence asymptotes
to a stable fixed point. The value of Ra = 3040 is critical
for the onset of convection, at which the system bifurcates
from one fixed point to two stationary solutions, namely,
the Mode I and Mode II. Both of the solutions are pre-
dicted to be physically possible in the cavity in the sense
that they satisfy Eqs. (1)–(3). For the value of Ra beyond
3040, the primary steady-state lost its stability and pro-
duced two steady-state orientations, namely steady I and
steady II for Modes I and II, respectively. Further, there
are three critical values of Ra, namely RaCP1 = 6740,
RaCP2 = 8970 and RaCP3 = 15,990, which lead to the first,
second and third pitchfork bifurcations, respectively. These
bifurcations are explained in detail in Figs. 10 and 11. The
multiple solutions disappeared at a value around
Ra = 45000.

These results indicated that, over a range of Ra, at least
two stable steady-states existed. From an experimental



Fig. 10. Illustration of the pitchfork bifurcation. The numbers denote the contour levels. Solid and dotted lines denote the symmetric and asymmetric
contours, respectively.
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point of view, the existence of multiple steady-states implies
that the markedly different behaviors may be obtained
under the same condition, depending on which solution
branch is accessed (Sonda et al. [39,40]). Then at



Fig. 11. Contours of the U-velocity for various Rayleigh numbers. (i) Ra = 6730 (steady II) (ii) Ra = 8990 (steady III) (iii) Ra = 15,980 (steady IV) (iv)
Ra = 15,990 (steady V).

Fig. 12. Illustration of the global pitchfork bifurcation diagram based on the multiple steady-state solutions (Mode I and Mode II) at the Y = 0.5 plane.
The solid and dashed lines denote the symmetric and asymmetric flow behaviors. RaCP1, RaCP2 and RaCP3 denote the occurrence of the first, second and
third pitchfork bifurcations, respectively.
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Ra = 2.782 � 105 there was a transition to the periodic
solutions, through which the steady convection turned into
the time-dependent one, i.e., periodic, quasi-periodic or
chaotic motion in nature. Also the dynamic frequency-dou-
bling bifurcation started to appear.
5. Conclusions

Laminar natural convective flow in a three-dimensional
cubical cavity filled with a low Prandtl number fluid and
subjected to vertical temperature gradient is numerically
investigated in this study. The bottom wall and the two
sidewalls up to 75% height of the cavity are hot while the
top wall is cold. The two end walls and the remaining por-
tion of the sidewalls are adiabatic. The topological theory
is used to scrutinize the flow transitions and identify the
critical Rayleigh numbers for transition. The numerical
algorithm and the flow structures that result from its use
are extensively validated. The main focus of the study is
to examine the pitchfork solution bifurcation and the evo-
lution of different symmetry-breaking orientations on the
transverse and diagonal planes of the cavity as the Ray-
leigh number is gradually increased.

It is observed that the flow structure consisted of a pair
of asymmetric counter-rotating helical cells in a double
helix structure, foliated with the invariant helically sym-
metric surfaces containing the fibre-like fluid particle
orbits. The currently investigated 3D natural convection
problem is featured with the two possible symmetric condi-
tions in geometry as well as in boundary condition. Sym-
metry was seen with respect to the vertical (Y = 0.5) and
the diagonal planes. As a result, it is expected to observe
the Mode I and Mode II solutions. The Mode I solution
showed the symmetric nature about the Y-plane and while
the other, the Mode II solution, about the diagonal plane.
The flow topologies for the Mode I and Mode II were ana-
lysed by invoking the topological constraints and the struc-
tural stability criteria and were validated by the
corroborative numerical evidence.

The onset of pitchfork bifurcation at Ra = 3040 and its
evolution with respect to Ra were analysed by the L2-error
norms and the global bifurcation diagram. The Mode I
solutions showed the alternate presence of the symmetric
and asymmetric natures at the Y = 0.5 plane for the critical
Ra values. Mode I solutions were, however, found to be
solely asymmetric at the Z = 0.5 and diagonal planes.
The Mode II solution was found to be asymmetric with
respect to the Y, Z = 0.5 planes but symmetric with respect
to the diagonal plane. When Ra was increased beyond 3040
there existed three critical pitchfork Rayleigh numbers,
namely RaCP1 = 6740, RaCP2 = 8970 and RaCP3 = 15,990,
in which the Mode I solutions were switched from the sym-
metric solution to the asymmetric solution at the Y = 0.5
plane. At Ra = 45,000, the Mode II solutions had disap-
peared and there was only one asymmetric steady-state
solution until Ra = 2.782 � 105 is reached. As Ra was
amplified, the transition from the 3D periodic flow to cha-
otic behavior showed its presence.

An unanticipated outcome of the present analysis was
the discovery of solution multiplicity in the sense that the
symmetric/asymmetric flow states exist over a wide range
of the Rayleigh numbers. These findings suggest that multi-
ple operating states may occur in the destabilized vertical
Bridgman crystal growth process. These flow bifurcations
are very interesting and the information should be useful
in the design and operation of crystal growth processes.
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