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Abstract

In this paper, an improved two-level method is presented for effectively solving the incompressible Navier–Stokes equa-
tions. This proposed method solves a smaller system of nonlinear Navier–Stokes equations on the coarse mesh and needs
to solve the Oseen-type linearized equations of motion only once on the fine mesh level. Within the proposed two-level
framework, a prolongation operator, which is required to linearize the convective terms at the fine mesh level using the
convergent Navier–Stokes solutions computed at the coarse mesh level, is rigorously derived to increase the prediction
accuracy. This indispensable prolongation operator can properly communicate the flow velocities between the two mesh
levels because it is locally analytic. Solution convergence can therefore be accelerated. For the sake of numerical accuracy,
momentum equations are discretized by employing the general solution for the two-dimensional convection–diffusion–
reaction model equation. The convective instability problem can be simultaneously eliminated thanks to the proper treat-
ment of convective terms. The converged solution is, thus, very high in accuracy as well as in yielding a quadratic spatial
rate of convergence. For the sake of programming simplicity and computational efficiency, pressure gradient terms are rig-
orously discretized within the explicit framework in the non-staggered grid system. The proposed analytical prolongation
operator for the mapping of solutions from the coarse to fine meshes and the explicit pressure gradient discretization
scheme, which accommodates the dispersion-relation-preserving property, have been both rigorously justified from the
predicted Navier–Stokes solutions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulation of incompressible viscous fluid flows remains an area of continuous challenges due to
the approximation of advective terms in the multi-dimensional domain. In addition to the notorious
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convective instability problem, approximation of these direction relevant terms can introduce false diffusion
error [1]. Therefore, a well-suited multi-dimensional upwinding scheme should effectively dispense with the
crosswind diffusion error without at the sacrifice of scheme destabilization. Splitting of the equation has been
known to be a proper way to solve the multi-dimensional equation by obtaining the solutions more efficiently
and accurately using the analytical one-dimensional model [2]. We propose in this paper, however, a truly two-
dimensional flux discretization scheme to avoid slow convergence in the operator sweeping. To reduce the
afore-mentioned false diffusion error, the general solution of the investigated two-dimensional model trans-
port equation will be taken into account in the approximation of flux terms for velocities.

When simulating the steady incompressible Navier–Stokes equations in co-located (or non-staggered) grids,
node-to-node oscillatory pressure solutions arising from the decoupling of velocity and pressure fields have
been frequently reported [1]. This motivated us to discretize the currently investigated elliptic-type partial dif-
ferential equations within the non-staggered grid context to prevent the oscillatory pressure solutions. When
solving the incompressible Navier–Stokes in non-staggered grids, central approximation of the pressure gra-
dient terms may lead to pressure odd–even decoupling. In order to eliminate this problem, an adequate
amount of artificial dampings can be added to the scheme implicitly or explicitly for the sake of stability
enhancement [3–6].

Linearization of the nonlinear terms in the incompressible Navier–Stokes equations plays another essential
role in the assessment of computational efficiency. Improper linearization of convection terms in the flow
equations may slow down convergence or can even cause the divergent solution to occur. Amongst the meth-
ods reported in the literature for the linearization of nonlinear Navier–Stokes equations, the multi-level
method has gained an increasing acceptance in the past few years. As the name of this class of methods indi-
cates, the multi-level method [7,8] involves calculating the solutions at different levels of the grid system. Take
the two-level method as an example, the differential equation is solved firstly at nodes in the coarse grid sys-
tem, at which the solutions can be computed less expensively. This is followed by a computationally more
intensive calculation of the same differential equation on the fine mesh. Note that the convergent solutions
must be calculated in the coarse mesh. As a result, the linearization method chosen for the convective terms
shown in the momentum equation plays also an essential role. For this reason, the computationally more effi-
cient Oseen-type linearization method will be employed to render the linearized equation cast in the convec-
tion–diffusion–reaction differential form.

The reminder of this paper is organized as follows. In Section 2, the governing equations cast in the prim-
itive variable form are solved along with the prescribed pressure boundary value. This is followed by present-
ing the proposed prolongation operator for effectively mapping the convergent solutions obtained at the
coarse mesh to those obtained at the fine mesh. In Section 4, the underlying five-point convection–diffu-
sion–reaction (CDR) scheme will be presented to accurately solve the linearized momentum transport equa-
tions. Two theoretically derived discrete pressure gradient operators are also presented in Section 4 in order to
save the CPU time without suffering from even–odd oscillations in the non-staggered grids. In Section 5, the
two-level Oseen model implemented with the proposed implicit and explicit compact pressure gradient
approximation schemes is analytically validated by solving the problem which is amenable to the exact solu-
tion. Finally, some conclusions are drawn in Section 6.

2. Governing equations

The incompressible viscous flow motion, which is governed by the following continuity and momentum
equations, will be dealt with in this paper:
r � u ¼ 0; ð1Þ

ðu � rÞu ¼ �rp þ 1

Re
r2uþ f: ð2Þ
The chosen primitive variables ðu; pÞ will be sought subject solely to the specified boundary condition for u [9].
All lengths have been normalized by L, the velocity components by u1, the time by L=u1, and the pressure by
qu2
1, where q denotes the fluid density. The resulting Reynolds number Re ð� qu1L=lÞ represents the measure

of equation nonlinearity.
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Momentum conservation equations can be solved together with the divergence-free constraint equation for
the velocity (or continuity equation) to preserve the fluid flow incompressibility. The eigenvalue distribution of
the resulting coupled system of matrix equations can become, however, fairly ill-conditioned. It is, therefore,
very difficult to calculate the solutions ðu; pÞ from (1) and (2) using some computationally less expensive iter-
ative solvers [10]. Calculation of the matrix equations may exceed the computer power and disk space. The
above two drawbacks make the coupled formulation infeasibly to be applied. One way of overcoming the
afore-mentioned difficulty is to apply the well-known pressure Poisson equation (PPE) approach [11]. By
applying a curl operator on each momentum equation, the Poisson equation for the pressure p can be derived
in lieu of the divergence-free equation (1) as
r2p ¼ r � �ðu � rÞuþ 1

Re
r2uþ f

� �
: ð3Þ
Application of segregated approach should be subject to the integral condition for the pressure [9]. Our cur-
rent aim is to refine the Navier–Stokes solver without the involvement of a computationally more challenging
integral condition. We specify, therefore, in this study the conventional Neumann-type boundary condition
op
on ¼ ½�ðu � rÞuþ 1

Rer
2uþ f� � n [11], where n denotes the unit outward vector normal to the boundary of

the investigated physical domain.

3. Two-level Navier–Stokes solver

In this section, the linearization method for the convective term ðu � rÞu will be presented in both coarse
and fine meshes. Within the Newton linearization framework, expansion of ST with respect to the two arbi-
trary variables S and T at the iteration level k leads to the following updated expression for ST , namely,
Skþ1T kþ1 ¼ Skþ1T k þ SkT kþ1 � SkT k þ � � � þH:O:T: By virtue of this expansion equation, ðu2Þkþ1

x and ðuvÞkþ1
y

shown in the x- and y-momentum equations can be approximated to render the following two Newton line-
arized momentum equations (2) along the x- and y-directions, respectively:
ukukþ1
x þ vkukþ1

y � 1

Re
r2ukþ1 þ uk

xukþ1 ¼ �pkþ1
x þ ukuk

x þ vkuk
y � uk

yvkþ1; ð4Þ

ukvkþ1
x þ vkvkþ1

y � 1

Re
r2vkþ1 þ vk

yvkþ1 ¼ �pkþ1
y þ ukvk

x þ vkvk
y � vk

xukþ1: ð5Þ
The underlined terms shown above represent the high-order correction terms to the classical frozen-coefficient
linearized equations.

The convective terms in Eqs. (4) and (5) are known to be the origin of scheme instability, which will be
suppressed by applying the upwinding convective scheme described later. The matrix indefiniteness owing
to the reaction (or production) term ruk � ukþ1 may also destabilize the discrete equation [12]. For this reason,
the potentially destabilizing positive-valued reaction terms shown in the Newton linearized equations (4) and
(5) have been omitted for the sake of stability. The resulting modified Picard (or Oseen-type) linearization
method is, therefore, regarded as the simplified Newton linearization method. The enhanced matrix definite-
ness explains why the Oseen-type linearization method is often employed to approximate the nonlinear term
shown in (2).

To improve the prediction accuracy, it is natural to carry out the calculation in a domain involving more
mesh points. The resulting Navier–Stokes solutions become, however, more expensive and difficult to be com-
puted because of the increasingly notorious eigenvalue distribution. For convergence acceleration without
accuracy deterioration, the two-level method, which involves calculations carried out at the coarse mesh level
and the other performed at the finer mesh level, has been proposed. For example, the solutions for (2) are
obtained from a set of comparatively conditioned matrix equations on the coarse mesh. This is followed by
solving the linearized Navier–Stokes equations only once on the fine mesh.

Various two-level methods have been proposed and were successfully applied to solve different classes of
differential equations [8,13–15]. Of the proposed linearization methods for solving the Navier–Stokes equa-
tions, the Newton’s method implemented either on the fixed mesh [16] or on the two successive meshes [17]
has been often referred to. At a higher Reynolds number, implementation of Newton linearization may result
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in a highly asymmetric and indefinite matrix. Both matrix asymmetry and indefiniteness are known to be the
primary sources of yielding numerical instability. The matrix asymmetry arises from the approximation of
convective terms while the matrix indefiniteness is attributed to the reaction term [12].

As a proper means to resolve the problem of indefiniteness, Layton and Lenferink [8] neglected the reaction
term shown in the Newton linearized equation. The resulting Oseen linearized system of equations becomes
computationally more easy to be solved and has been applied extensively in the past to analyze the
Navier–Stokes equations [18]. Since the computational efficiency of the two-level Navier–Stokes methods
depends strongly on the chosen linearization method, in the fine mesh the Oseen linearization [8] will be
employed in this study. More recently, an additional defect correction step has been implemented in the coarse
mesh to improve the prediction accuracy. One typical method of which is the modified Picard method used
along with the correction step [18], which has been proven to be able to accelerate convergence.

The procedures of implementing the two-level Oseen-type Navier–Stokes method are as follows. The non-
linear system of equations for ðuH ; pHÞ is analyzed firstly on a coarse mesh of width H until the specified con-
vergent condition is reached. This is followed by mapping the computed coarse mesh solutions to each point in
the fine mesh with the grid size of h. After mapping the computed solutions, the pressure equation is solved
using the prolongation velocity. The fine mesh solution ðuh; phÞ given below is then calculated from the line-
arized momentum equations and the pressure equation (3)
ðuH � rÞuh ¼ �rph þ
1

Re
r2uh þ f: ð6Þ
In the implementation of two-level methods, the bridge between the calculations performed at two grid levels
is the prolongation matrix. Upon defining the prolongation operator, we are led to approximate the velocity
vector u� shown in the convective term ðu� � rÞu on the fine mesh. Note that the solution for u� obtained from
the coarse mesh should satisfy the full Navier–Stokes equations. An additional note is that the linearized
momentum equations need to be solved only once to obtain ðuh; phÞ in the fine mesh. As a result, the compu-
tational quality of the employed two-level method depends solely on the value of uH , shown in (6), computed
at the nodes marked by ‘‘s” and schematic in Fig. 1 in the fine mesh. This motivated us to develop a theo-
retical mapping strategy so as to accurately prolongate the computed convergent coarse mesh solutions to
those at the fine mesh points.

To develop an effective prolongation operator, the following constant-coefficient equation is considered:
A/x þ B/y ¼ Kr2/: ð7Þ
This equation is amenable to the exact solution given by
/ðx; yÞ ¼ A1eð
Ax
K Þeð

By
K Þ þ A2eð

Ax
K Þ þ A3eð

By
K Þ þ A4: ð8Þ
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Fig. 1. A representative cell for the fine mesh (j) and coarse mesh (s).
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Substitute the coordinates at the four points schematic in Fig. 1 into (8), the coefficients A1 � A4 detailed in the
Appendix can be derived in terms of the coarse mesh solutions /1 � /4. The values of / at the rest of five
nodal points can then be determined by means of (8).
4. Discretization of equation in non-staggered grids

4.1. Five-point convection–diffusion–reaction (CDR) scheme

The original idea of the analytical CDR scheme presented in [2] will be extended to the analysis of two-
dimensional equation. In view of Eqs. (4) or (5), the following model equation for / is considered for the sake
of description of the CDR scheme:
a/x þ b/y � kr2/þ c/ ¼ f : ð9Þ
To eliminate the convective instability problem and to retain the prediction accuracy, the following general
solution of the above model equation is employed:
/ðx; yÞ ¼ A1ek1x þ A2ek2x þ A3ek3y þ A4ek4y þ f
c
; ð10Þffiffiffiffiffiffiffiffiffiffip ffiffiffiffiffiffiffiffiffiffip
where k1;2 ¼ a� a2þ4ck
2k and k3;4 ¼ b� b2þ4ck

2k . The discrete equation at one interior node ði; jÞ is assumed to take
the following five-point stencil form:
� a
2h
� m

h2
þ c

12

� �
/i�1;j þ

a
2h
� m

h2
þ c

12

� �
/iþ1;j þ 4

m

h2
þ 2c

12

� �
/i;j

þ � b
2h
� m

h2
þ c

12

� �
/i;j�1 þ

b
2h
� m

h2
þ c

12

� �
/i;jþ1 ¼ fi;j: ð11Þ
By substituting the exact solutions given by /i;j ¼ A1ek1xi þ A2ek2xi þ A3ek3yj þ A4ek4yj þ f
c, /i�1;j ¼ A1e�k1hek1xiþ

A2e�k2hek2xi þ A3ek3yj þ A4ek4yj þ f
c and /i;j�1 ¼ A1ek1xi þ A2ek2xi þ A3e�k3hek3yj þ A4e�k4hek4yj þ f

c into Eq. (11), m
shown above can be derived as
m ¼ ah
2

sinh k1 cosh k2 þ
bh
2

sinh k3 cosh k4 þ
ch2

12
ðcosh k1 cosh k2

�
þ cosh k3 cosh k4 þ 10Þ

�,

ðcosh k1 cosh k2 þ cosh k3 cosh k4 � 2Þ; ð12Þ� � � �

where ðk1; k2Þ ¼ ah

2k ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðah

2k Þ
2 þ ch2

k

q
and ðk3; k4Þ ¼ bh

2k ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbh

2k Þ
2 þ ch2

k

q
.

4.2. Approximation of rp

We will propose in this study two theoretically relevant schemes to discretize the pressure gradient term
shown in Eq. (2) with an aim to avoid spurious pressure oscillations and prevent accuracy deterioration in
the non-staggered mesh.
4.2.1. Dispersion-relation-preserving implicit pressure gradient scheme

The strategy of eliminating the even–odd solution profile is to take the nodal value of pi;j into account to
calculate the approximated value of op

ox ji;j, for example, from the following implicit compact equation for
F i;jð¼ h op

ox ji;jÞ [19]:
bF iþ1;j þ F i;j þ cF i�1;j ¼ c1piþ2;j þ c2piþ1;j þ c3pi;j þ c4pi�1;j þ c5pi�2;j: ð13Þ

In the above, h denotes the mesh size. On physical grounds, it is legitimate to set b ¼ c since the governing
equation for p is of the elliptic type. This is followed by carrying out the Taylor series expansions for pi�1;j,
pi�2;j with respect to pi;j and, then, eliminating the leading five error terms p, op

ox,
o2p
ox2,

o3p
ox3,

o4p
ox4 from the resulting
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modified equation to derive a system of five algebraic equations. One more algebraic equation needs to be de-
rived so as to be able to uniquely determine the coefficients bð¼ cÞ, c1, c2, c3, c4 and c5 shown in (13).

When approximating the first-order derivative term, it is vital to preserve its dispersion-relation so that the
resulting approximation can accommodate the same dispersion-relation as that of the first-order derivative
term under discretization [20]. This dispersion-relation, which is derived by performing the spatial Fourier
transform of the first derivative term, governs the relationship between the angular frequency and the wave-
number of the spatial variable [21]. The dispersiveness, dissipation, group and phase velocity components for
each wave component supported by the first-order derivative term can be, therefore, well modeled [22]. Any
scheme destabilization arising from the approximation of the first-order derivative term can be effectively sup-
pressed [23].

Within the DRP (dispersion-relation-preserving) compact analysis framework [20,24], the Fourier trans-
form and its inverse for op

ox are defined firstly in the one space dimension x as follows:
~pðaÞ ¼ 1

2p

Z þ1

�1
pðxÞe�iax dx; ð14Þ

pðxÞ ¼
Z þ1

�1
~pðaÞeiax da: ð15Þ
By conducting Fourier transform on each term shown in Eq. (13), we are led to derive the following actual
wavenumber a:
a ’ �i

h
ðc1 ei2ah þ c2 eiah þ c3 þ c4 e�iah þ c5 e�i2ahÞ

1þ bðeiah þ e�iahÞ : ð16Þ
In the approximation sense, the effective wavenumber ~a can be regarded as the right-hand side of Eq. (16) [20].
In other words, we are led to define ~a as follows:
~a ¼ �i

h
ðc1 ei2ah þ c2 eiah þ c3 þ c4 e�iah þ c5 e�i2ahÞ

1þ bðeiah þ e�iahÞ ; ð17Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

. To make a be close to ~a, the magnitude of jah� ~ahj2 should be kept as small as possible in the
following weak sense:
EðaÞ ¼
Z p

2

�p
2

W jah� ~ahj2dðahÞ ¼
Z p

2

�p
2

W jic� ~cj2dc; ð18Þ
where c ¼ ah. Note that Eq. (18) can be analytically integrable provided that the weighting function W shown
above is chosen as [25,26]
W ¼ ½1þ bðeic þ e�icÞ�2: ð19Þ

In Eq. (18), the modified wavenumber range should be sufficient to define a period of sine (or cosine) wave.
This explains why the integral range has been chosen to be � p

2
	 c 	 p

2
[27]. To make E a minimum positive

value, the following equation is enforced to achieve the goal:
oE
oc2

¼ 0: ð20Þ
According to the above extreme condition, we are led to derive one algebraic equation, which will be used
together with the other five equations derived from the modified equation analysis. Having derived the suffi-
cient number of algebraic equations, the six introduced coefficients given below can be derived:
b ¼ c ¼ 4ð3p� 10Þ
3p� 16

; ð21Þ

c1 ¼
3ð5p� 16Þ
4ð3p� 16Þ ; ð22Þ

c2 ¼
6ðp� 4Þ
3p� 16

; ð23Þ
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c3 ¼ 0; ð24Þ
c4 ¼ �

6ðp� 4Þ
3p� 16

; ð25Þ

c5 ¼ �
3ð5p� 16Þ
4ð3p� 16Þ : ð26Þ
The resulting modified equation for op
ox can be easily shown to have the spatial accuracy order of fourth:
op
ox
¼ op

ox

����
exact

þ ð33p� 104Þ
30ð3p� 16Þ h

4 o5p
ox5
þOðh6Þ þ � � � ð27Þ
Note that enforcement of oE
oc4
¼ 0 can also lead to the same result as that given in Eq. (20). To obtain the dis-

crete equations for F i;jð� h op
ox ji;jÞ at the nodes immediately adjacent to the boundary points, it is legitimate to

specify c1 ¼ 0 and c5 ¼ 0 for the nodes located next to the left and right boundaries, respectively.

4.2.2. Dispersion-relation-preserving explicit pressure gradient scheme

Inversion of the matrix equation given by (13) can be computationally very costly for the implicit compact
scheme (with the coefficients given by (21)–(26)) when the matrix size is large. We are therefore motivated to
reformulate the compact scheme by proposing an explicit pressure gradient scheme. It is required that the
property of implicit compact scheme given in Section 4.2.1 be still retained. Calculation of the value for
rp in non-staggered grids can, thus, be accelerated without accuracy deterioration.

In the seven-point solution stencil schematic in Fig. 2, the implicit equation for op
ox can be expressed in the

matrix form given below for the vector Pð� ðp1; p2; . . . ; p7Þ
TÞ:
APx ¼ BP; ð28Þ

where
A ¼

1 4
�8þ3p

2ð3p�10Þ
�224þ69p 1 51p�164

�224þ69p

4ð3p�10Þ
3p�16

1 4ð3p�10Þ
3p�16

4ð3p�10Þ
3p�16

1 4ð3p�10Þ
3p�16

4ð3p�10Þ
3p�16

1 4ð3p�10Þ
3p�16

51p�164
�224þ69p 1 2ð3p�10Þ

�224þ69p

4
�8þ3p 1

2
66666666666664

3
77777777777775
;

B ¼

� 33p�80
6ð�8þ3pÞ

9p�26
�8þ3p � 9p�32

2ð�8þ3pÞ
3p�10

3ð�8þ3pÞ

� 3ð17p�56Þ
2ð�224þ69pÞ �

27ð5p�16Þ
2ð�224þ69pÞ

3ð57p�184Þ
2ð�224þ69pÞ

3ð5p�16Þ
2ð�224þ69pÞ

� 6ðp�4Þ
3p�16

� 6ðp�4Þ
3p�16

0 6ðp�4Þ
3p�16

3ð5p�16Þ
4ð3p�16Þ

� 6ðp�4Þ
3p�16

� 6ðp�4Þ
3p�16

0 6ðp�4Þ
3p�16

3ð5p�16Þ
4ð3p�16Þ

� 6ðp�4Þ
3p�16

� 6ðp�4Þ
3p�16

0 6ðp�4Þ
3p�16

3ð5p�16Þ
4ð3p�16Þ

� 3ð5p�16Þ
2ð�224þ69pÞ �

3ð57p�184Þ
2ð�224þ69pÞ

27ð5p�16Þ
2ð�224þ69pÞ

3ð17p�56Þ
2ð�224þ69pÞ

� 3p�10
3ð�8þ3pÞ

9p�32
2ð�8þ3pÞ � 9p�26

�8þ3p
33p�80

6ð�8þ3pÞ

2
6666666666666664

3
7777777777777775

:

The pressure gradient vector Px ð� ðop
ox j1;

op
ox j2; . . . ; op

ox j7Þ
TÞ in Eq. (28) can be also written as Px ¼ GP, where

G ð� A�1BÞ is expressed as
1,j 3,j 4,j 5,j 7,j2,j ,j6

Fig. 2. Nodal numbering of the interior points 2–6 and the boundary points 1 and 7.
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G ¼

�2:131201 4:306948 �3:781477 2:346956 �0:953555 0:244597 �0:032269

�0:227239 �0:965525 1:812651 �0:883908 0:339651 �0:087124 0:011494

0:054353 �0:507185 �0:360289 1:092619 �0:359561 0:092231 �0:012167

�0:023277 0:176444 �0:783056 0 0:783056 �0:176444 0:023277

0:012167 �0:092231 0:359561 �1:092619 0:360289 0:507185 �0:054353

�0:011494 0:087124 �0:339651 0:883908 �1:812651 0:965525 0:227239

0:032269 �0:244597 0:953555 �2:346956 3:781477 �4:306948 2:131201

2
666666666664

3
777777777775
:

ð29Þ

In G, it is found that the sum of the columns from 2 to n� 1 is zero. The skew-symmetry matrix G can, there-
fore, be classified as the global conservation type [28]. In view of the resulting modified equations given below,
the compact approximation of op

ox, for example, at the three nodes schematic in Fig. 2 introduces different
amounts of the implicit dissipation error to the analytic pressure gradient solution:
op
ox
¼ op

ox

����
exact

þ 0:035382h3 o4p
ox4
� 0:078237h4 o5p

ox5
þOðh5Þ þ � � � ; at node 1; ð30Þ

op
ox
¼ op

ox

����
exact

� 0:006890h3 o4p
ox4
þ 0:024948h4 o5p

ox5
þOðh5Þ þ � � � ; at node 2; ð31Þ

op
ox
¼ op

ox

����
exact

þ 0:002419h3 o4p
ox4
� 0:014102h4 o5p

ox5
þOðh5Þ þ � � � ; at node 3: ð32Þ
We now proceed to refine the above implicit scheme by constructing an explicit pressure gradient scheme so
that the essence of the DRP implicit compact scheme described in Section 4.2.1 can be retained. Examination
of Eq. (29) reveals that the proposed compact scheme given in Eqs. (28) and (29) has the following two prop-
erties for a N 
 N matrix G:

(a) Gðm; n� 1Þ 
Gðmþ 1; nÞ ¼ Gðm; nÞ 
Gðmþ 1; n� 1Þ, where m ¼ 1 � N=2� 1, n ¼ 6 � N ;
(b) Gðm; 1 : NÞ ¼ �GðN � mþ 1;N : 1Þ, m ¼ 1 � N=2.

Referring to Fig. 3(a), at an interior point ði; jÞ in the mesh with the grid size of h, pxji;j is approximated by
the following equation:�
op
ox

���
i;j

¼ a1piþ3;j þ a2piþ2;j þ a3piþ1;j � a3pi�1;j � a2pi�2;j � a1pi�3;j: ð33Þ
i-3,j i-1,j i,j i+1,j i+3,ji-2,j i +2,j

1,j n,j

2,j 4,j 5,j 6,j3,j1,j n,j

i-1,ji-2,j i,j i+1,j i+2,j i+3,j

2,j 4,j 5,j 6,j3,j1,j n,j

i,ji-1,j i+1,j i+2,j i+3,j i+4,j

Fig. 3. Nodal numbering of the interior points in (a) and the boundary points in (b) and (c).
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Table 1
Comparison of the predicted L2-error norms for the calculations carried out at five chosen mesh sizes using the employed different methods

Mesh points Velocity u Pressure p

Direct Oseen (implicit) Oseen (explicit) Direct Oseen (implicit) Oseen (explicit)

21
 21 7.65E�04 9.88E�04 1.07E�03 2.30E�05 3.43E�05 4.37E�05
41
 41 2.22E�04 3.14E�04 3.59E�04 6.88E�06 9.43E�06 1.18E�05
61
 61 1.01E�04 1.57E�04 1.72E�04 3.19E�06 4.57E�06 5.82E�06
81
 81 5.79E�05 8.93E�05 9.12E�05 1.79E�06 2.73E�06 3.31E�06
101
 101 3.68E�05 5.37E�05 5.87E�05 1.00E�06 1.75E�06 2.18E�06
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This is followed by applying the Taylor series expansions for pi�1;j, pi�2;j and pi�3;j with respect to pi;j and, then,
eliminating the leading error terms op

ox and o3p
ox3 shown in the resulting modified equation. One more algebraic

equation needs to be derived for uniquely determining the coefficients a1, a2 and a3 shown in (33). By conduct-
ing the same Fourier transform and the minimization of dispersion error as those described in Section 4.2.1,
the following coefficients ai ði ¼ 1–3Þ can be derived:



Table 2
Comparison of the required CPU times (s) at the same accuracy level and the needed numbers of iterations N and Nc, where N and Nc are
the iteration numbers performed on the respective fine mesh (one-level method) and coarse mesh (two-level method) when solving the
nonlinear momentum equations using the employed three methods at five different mesh sizes

Direct Oseen (implicit)

Mesh points CPU-time (L2-error) N Mesh points CPU-time (L2-error) Nc

21
 21 10.71 (7.65E�04) 158 25
 25 2.84 (7.32E�04) 19
41
 41 28.87 (2.22E�04) 201 51
 51 8.87 (2.13E�04) 68
61
 61 60.45 (1.01E�04) 475 81
 81 20.46 (8.93E�05) 219
81
 81 151.27 (5.79E�05) 1291 101
 101 38.95 (5.37E�05) 335
101
 101 353.56 (3.68E�05) 1965 121
 121 75.54 (3.87E�05) 524
21
 21 10.71 (7.65E�04) 158 25
 25 2.42 (7.88E�04) 19
41
 41 28.87 (2.22E�04) 201 51
 51 6.53 (2.35E�04) 69
61
 61 60.45 (1.01E�04) 475 81
 81 14.69 (9.12E�05) 216
81
 81 151.27 (5.79E�05) 1291 101
 101 29.53 (5.87E�05) 331
101
 101 353.56 (3.68E�05) 1965 121
 121 60.32 (4.23E�05) 528

Note that the values ‘‘�” in ( � ) represent the computed L2-error norms.

Fig. 5.
for ana
metho

P.H. Chiu et al. / Journal of Computational Physics 227 (2008) 4018–4037 4027
a1 ¼ �
2ð�10þ 3pÞ

3ð�32þ 15pÞ ; ð34Þ

a2 ¼
3ð�32þ 9pÞ

4ð�32þ 15pÞ ; ð35Þ

a3 ¼
12

�32þ 15p
: ð36Þ
The corresponding modified equation for the explicit approximation of op
ox can be derived as
op
ox
¼ op

ox
jexact �

9ð5p� 16Þ
10ð�32þ 15pÞ h

4 o5p
ox5
þOðh6Þ þ � � � : ð37Þ
For the points near the boundary, some modifications need to be made for ði ¼ 2; jÞ and ði ¼ 3; jÞ schematic in
Fig. 3(b) and (c) so as to retain property (a):

(i) For i ¼ 3; j
Referring to Fig. 3(b), we can approximate op

ox at node 3 in terms of the nodal pressure values
pi;j; pi�2;j; piþ3;j as
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Fig. 6. Schematic of the predicted eddy centers in the lid-driven cavity.

Table 3
The predicted four eddy centers (primary eddy P, corner eddies BL and BR and the eddy T near the cavity roof) for the cases carried out at
Re = 400, 1000, 3200 and 5000

Symbol Authors Re

400 1000 3200 5000

Primary Present 0.5579, 0.6112 0.5331, 0.5745 0.5235, 0.5357 0.5207, 0.5305
Ghia [29] 0.5547, 0.6055 0.5313, 0.5625 0.5165, 0.5469 0.5117, 0.5352
Erturk [30] – 0.5300, 0.5650 – 0.5150, 0.5350

First T Present – – 0.0561, 0.8951 0.0622, 0.8986
Ghia [29] – – 0.0547, 0.8984 0.0625, 0.9102
Erturk [30] – – – 0.0633, 0.9100

BL1 Present 0.0548, 0.0438 0.0821, 0.0754 0.0835, 0.1097 0.0747, 0.1272
Ghia [29] 0.0508, 0.0469 0.0859, 0.0781 0.0859, 0.1094 0.0703, 0.1367
Erturk [30] – 0.0833, 0.0783 – 0.0733, 0.1367

BR1 Present 0.8807, 0.1261 0.8542, 0.1187 0.9051, 0.0650 0.8048, 0.0726
Ghia [29] 0.8906, 0.1250 0.8594, 0.1094 0.8125, 0.0859 0.8086, 0.0742
Erturk [30] – 0.8633, 0.1117 – 0.8050, 0.0733

Second BL2 Present 0.0036, 0.0037 0.0046, 0.0043 0.0075, 0.0076 0.0107, 0.0076
Ghia [29] 0.0039, 0.0039 – 0.0078, 0.0078 0.0117, 0.0078
Erturk [30] – 0.0050, 0.0050 – 0.0083, 0.0083

BR2 Present 0.9897, 0.0076 0.9897, 0.0076 0.9812, 0.0076 0.9795, 0.0189
Ghia [29] 0.9922, 0.0078 0.9922, 0.0078 0.9844, 0.0078 0.9805, 0.0195
Erturk [30] – 0.9917, 0.0067 – 0.9783, 0.0183

Third BR3 Present – – – –
Ghia [29] – – – –
Erturk [30] – – – –

Grid size Present 81 101 101 129
Ghia [29] 129 129 129 257
Erturk [30] – 601 – 601
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Fig. 7. Comparison of the predicted mid-plane velocity profiles for uðx; 0:5Þ and vð0:5; yÞ. (a) Re ¼ 400; (b) Re ¼ 1000; (c) Re ¼ 3200; (d)
Re ¼ 5000.
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op
ox

����
i¼3;j

¼ b1pi�2;j þ b2pi�1;j þ b3pi;j þ b4piþ1;j þ b5piþ2;j þ b6piþ3;j: ð38Þ
4 5
By eliminating the leading error terms to o p
ox4 and enforcing the coefficient of o p

ox5 to be � 9ð5p�16Þ
10ð�32þa5pÞ, we can derive

b1 ¼ �64þ21p
4ð�32þ15pÞ, b2 ¼ 2ð�44þ15pÞ

�32þ15p , b3 ¼ 40ð3p�10Þ
3ð�32þ15pÞ, b4 ¼ 2ð�56þ15pÞ

�32þ15p , b5 ¼ �256þ75p
4ð�32þ15pÞ, b6 ¼ 4ð3p�10Þ

3ð�32þ15pÞ. The resulting modified

equation, given by op
ox ¼

op
ox jexact �

9ð5p�16Þ
10ð�32þ15pÞ h

4 o5p
ox5 � 2ð3p�10Þ

3ð�32þ15pÞ h
5 o6p

ox6 þOðh6Þ þ � � �, implies that the damping term

has been implicitly introduced to the central-type DRP scheme.

(ii) For i ¼ 2; j
Referring to Fig. 3(c) and taking property (a) into account, the approximated expression for op

ox at point 2
is assumed to take the following form:
op
ox

����
i¼2;j

¼ d1pi�1;j þ d2pi;j þ d3piþ1;j þ d4piþ2;j þ d5piþ3;j þ d6piþ4;j: ð39Þ
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By enforcing property (a), we are led to express op
ox jj¼2 given below� � �
Fig.
op
ox

���
j¼2

¼ d1pj�1 þ d2pj þ d3pjþ1 þ d4pjþ2 þ d5pjþ3 þ
c6

c5

d5 P jþ4; ð40Þ
where c6

c5
¼ � 16ð3p�10Þ

3ð�256þ75pÞ. By eliminating the leading error terms prior to o5p
ox5, the six introduced coefficients can be

derived as d1 ¼ � 93p�256
12ð15p�32Þ, d2 ¼ 5ð3p�16Þ

15p�32
, d3 ¼ � 105p�512

6ð15p�32Þ, d4 ¼ 195p�704
6ð15p�32Þ, d5 ¼ �256þ75p

4ð15p�32Þ, d6 ¼ 4ð3p�10Þ
3ð15p�32Þ. The corre-

sponding modified equation can be derived as op
ox ¼

op
ox jexact þ 285p�896

60ð�32þ15pÞ h
4 o5p

ox5 þ 159p�512
24ð�32þ15pÞ h

5 o6p
ox6 þOðh6Þ þ � � �.

The approximated equations for px near the boundary points ði ¼ n� 2; jÞ and ði ¼ n� 1; jÞ schematic in

Fig. 3 can be similarly derived by taking property (b) into account. Based on the above formulation, the proposed

explicit scheme for approximating the pressure gradient term has been shown to have the theoretical spatial accu-

racy order of fourth. Both the compact and DRP properties inherent in the implicit scheme forrp, discussed in

Section 4.2.1, are retained using the proposed computationally less expensive explicit pressure gradient scheme.

5. Numerical results

5.1. Analytic Navier–Stokes problem

We will verify the proposed two-level Navier–Stokes solver by solving the problem, defined in 0 	 x; y 	 1,
amenable to the following exact solutions:
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8. The predicted pressure contours at different Reynolds numbers. (a) Re ¼ 400; (b) Re ¼ 1000; (c) Re ¼ 3200; (d) Re ¼ 5000.
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u ¼ �2ð1þ yÞ
ð1þ xÞ2 þ ð1þ yÞ2

; ð41Þ

v ¼ 2ð1þ xÞ
ð1þ xÞ2 þ ð1þ yÞ2

; ð42Þ

p ¼ � 2

ð1þ xÞ2 þ ð1þ yÞ2
: ð43Þ
We plot the values of logðerr1

err2
Þ against logðh1

h2
Þ, where the L2 error norms err1 and err2 are obtained at two con-

secutively refined mesh sizes h1 and h2, to calculate the scheme’s rate of convergence. In Fig. 4, the predicted
quadratic spatial rates of convergence for u and p, computed from the respective L2-error norms, are the con-
sequence of applying the central scheme to the right-hand side of Eq. (3). In Table 1, the predicted solutions at
Re ¼ 1000 are in good agreement with the exact solutions. The proposed two-level method is, therefore,
verified.

We also assess the one- and two-level methods in terms of the predicted L2-error norms and the elapsed
CPU time needed to reach the user’s specified tolerance set for the nonlinear (or outer) iteration (10�12) at
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cp
u

 t
im

e 
(s

ec
.)

cp
u

 t
im

e 
(s

ec
.)

cp
u

 t
im

e 
(s

ec
.)

cp
u

 t
im

e 
(s

ec
.)

0

400

800

1200

Direct method
Ossen method

41X41 61X61 81X81 101X101
0

400

800

1200

Direct method
Ossen method

41X41 61X61 81X81 101X101

0

1000

2000

3000

4000
Direct method

41X41 61X61 81X81 101X101
0

2000

4000

6000

8000 Ossen method

41X41 61X61 81X81 101X101

mesh point

Ossen method
Direct method

mesh point mesh point

Comparison of the needed CPU times (s) for the calculations carried out at different mesh points. (a) Re ¼ 400; (b) Re ¼ 1000; (c)
200; (d) Re ¼ 5000.



p
er

ce
n

ta
g

e 
o

f 
C

P
U

-t
im

e 
sa

vi
n

g

p
er

ce
n

ta
g

e 
o

f 
C

P
U

-t
im

e 
sa

vi
n

g

p
er

ce
n

ta
g

e 
o

f 
C

P
U

-t
im

e 
sa

vi
n

g

p
er

ce
n

ta
g

e 
o

f 
C

P
U

-t
im

e 
sa

vi
n

g

0

50

100

150

Re = 400

41X41 61X61 81X81 101X101

86.03% 85.38% 84.7% 85.3%

0

50

100

150

41X41 61X61 81X81 101X101

86.52% 86.11% 85.07% 85.23%

0

50

100

150

41X41 61X61 81X81 101X101

86.11% 85.97% 85.06% 85.34%

0

50

100

150

Re = 5000

41X41 61X61 81X81 101X101

84.77% 84.66% 85.28% 85.79%

mesh point

mesh point mesh point

mesh point

Re=1000

Re = 3200

Fig. 10. Comparison of the reduced percentages of the CPU time for the calculations carried out at different mesh points. (a) Re ¼ 400; (b)
Re ¼ 1000; (c) Re ¼ 3200; (d) Re ¼ 5000.

4032 P.H. Chiu et al. / Journal of Computational Physics 227 (2008) 4018–4037
the same accuracy level and, of course, the needed nonlinear iteration numbers. As Table 1 tabulates, the pre-
dicted two-level Navier–Stokes solutions have been slightly deteriorated. Such a negligibly small deterioration
in accuracy can save, however, a large amount of CPU time, as clearly demonstrated in Table 2 and in Fig. 5.
The superiority of accelerating the Navier–Stokes calculation is clearly demonstrated using the proposed two-
level method. In addition, the number of nonlinear iterations has been considerably reduced.

5.2. Lid-driven cavity flow problem

The flow driven by a constant upper lid velocity ulidð¼ 1Þ in the square cavity is then investigated at different
Reynolds numbers. With Lð¼ 1Þ chosen as the characteristic length, ulidð¼ 1Þ the characteristic velocity, and m
the fluid viscosity, the Reynolds numbers under investigation are Re = 400, 1000, 3200 and 5000. For the sake
of completeness, the centers of the three predicted eddies T, BL and BR schematic in Fig. 6 are summarized in
Table 3 for the cases investigated at Re ¼ 400, 1000, 3200 and 5000. The predicted grid-independent mid-plane
velocity profiles for uð0:5; yÞ and vðx; 0:5Þ are plotted in Fig. 7. Good agreement with the benchmark solutions
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of Ghia [29] (j) and Erturk [30] (s) verifies the proposed scheme. To address that the proposed explicit
scheme for approximating the pressure gradient term can suppress the even–odd pressure oscillations, we plot
in Fig. 8 the pressure contours. It can be clearly seen from these figures that the pressure contours have been
smoothly predicted at all investigated Reynolds numbers.

For demonstrating the efficiency of the employed two-level method, the required nonlinear iteration num-
bers for the case carried out at 128
 128 mesh points and for the flow conditions investigated at Re = 400,
1000, 3200 and 5000 will be counted. Note that the nonlinear calculations for the two-level and one-level meth-
ods are performed at 128
 128 and 256
 256 mesh points, respectively. Since the number of nonlinear iter-
ations can be considerably reduced for the calculation carried out in the fine mesh, much of the CPU time can,
therefore, be reduced as well (Fig. 9). The higher the Reynolds number, the larger percentage of the CPU time
can be saved (Fig. 10).

Within the Oseen two-level analysis framework, the effectiveness of applying the implicit and explicit DRP
pressure gradient schemes is also assessed in terms of the needed CPU time. As can be seen from Fig. 11, one
quarter of the CPU time can be saved using the proposed explicit pressure gradient scheme implemented in the
non-staggered grids. Also, the saving of CPU time from the explicit pressure gradient scheme seems to be irrel-
evant to the Reynolds number, as can be clearly seen from Figs. 12 and 13.
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6. Concluding remarks

The main feature of the two-level method proposed for effectively solving the incompressible Navier–
Stokes solutions in non-staggered grids is the derived prolongation operator aimed to accurately commu-
nicate the nodal velocities obtained at the grid points in two mesh levels. Another distinct feature of the
present scheme development is the transformation of the convection–diffusion differential equation into
the convection–diffusion–reaction equation so as to be able to apply the rigorously derived CDR discret-
ization scheme. For the sake of computational efficiency, the pressure gradient term is approximated
explicitly using the scheme which can accommodate the essence of the derived implicit DRP compact
scheme for rp in non-staggered grids without yielding oscillatory pressure solutions. Good agreement
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P.H. Chiu et al. / Journal of Computational Physics 227 (2008) 4018–4037 4035
between the predicted and analytical solutions is demonstrated for the analytic test problem. The pre-
dicted spatial rates of convergence are also shown to be quadratic. In addition, the present study clearly
shows that a slight deterioration of the prediction accuracy owing to the use of Oseen-type two-level
method accompanies, however, a considerable amount of the CPU time saving due to the largely
reduced nonlinear iteration number. The larger the problem size is, the greater amount of the computing
time can be saved.
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The coefficients A1 � A4 shown in Eq. (8) are summarized below:
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