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SUMMARY

We performed incompressible flow simulation in a square duct with 90◦ bend and a curvature radius
of 2.3 to extend our understanding of the vortical flow development in the bend. The solutions for the
flow investigated at the Reynolds number of Re= 790 are obtained in a tri-quadratic element system,
where velocities stagger the pressure working variable, using the streamline-upwind finite element model
and the BiCGSTAB iterative solver. The simulated results reveal that centrifugal force convects the
quickly moving fluid particles towards the outer wall. The axial velocity, as a result, shows twin peaks
in the curved channel. At about �= 66◦, the secondary flow shows three complex pairs of vortices. Also
noteworthy is the formation of a downstream spiralling flow motion. To better elucidate the dominating
three-dimensional flow nature, the topological study of limiting streamlines was undertaken. Insight into
the longitudinal flow instability is gained by tracking the formation and diminishing of limiting cycles.
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1. INTRODUCTION

Flows in curved ducts can be found in pumps, aircraft intakes, river bends, and cooling coils
in heat exchangers. Their practical importance has motivated considerable research effort in the

∗Correspondence to: Tony W. H. Sheu, Department of Engineering Science and Ocean Engineering, National Taiwan
University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106, Republic of China.

†E-mail: twhsheu@ntu.edu.tw
‡Professor.
§Assistant Professor.

Contract/grant sponsor: National Science Council of the Republic of China; contract/grant number: NSC94-2611-
E-002-021

Copyright q 2006 John Wiley & Sons, Ltd.



FLOW TOPOLOGY AND VORTEX STABILITY IN A CURVED DUCT 565

past. In curved ducts, centrifugal and viscous (Tollmien–Schlichting) instabilities may coexist and
interact strongly [1]. The resulting non-linear interaction between these instabilities can cause the
flow to evolve to exhibit turbulence at a higher Reynolds number. Advancing of knowledge about
this three-dimensional curved flow is, thus, of fundamental importance.

One of the main flow characteristics in curved pipes or channels is the secondary flow, which was
first reported by Eustice [2, 3] in curved pipes and could have a significant influence on the primary
flow development in regions of prevailing centrifugal force. Later on, this experimentally observed
phenomenon was analytically confirmed by Dean [4, 5]. In the presence of secondary flow, the
velocity may be skewed towards the outer wall. Therefore, the hydrodynamic performance, viscous
power loss and heat transfer can be affected significantly. The large pressure drop, enhanced
mixing, and non-uniform wall shear stress are known as the major signatures of this type of
flow. These make the curved channel flows differ significantly from those seen in the straight
channels.

Since 1927, studies of curved flows in rectangular or circular channels have been numerous
owing to its important role in fluid mechanics. One way to obtain the secondary flow insights that
are experimentally impossible is to exploit computational fluid dynamics technique. This problem is
particularly amenable to numerical simulation due to the relative ease of mesh generation. Besides
the excellent paper reviewed by Berger et al. [6], we shall only cite few of the representative articles
such as those by Patankar et al. [7], Humphrey [8], Soh and Berger [9], and Humphrey et al. [10]
because space does not permit a full list of them. Studies of flow development in curved ducts
with square cross-sections have been addressed on the determination of the critical Dean number,
above which the formation-and-disintegration of secondary flow can lead to multiple-vortex-pair
solutions [11, 12]. The effect of the channel curvature on the secondary flow development has also
been the subject of considerable interest, in addition to the study of bifurcation phenomenon due
to centrifugal instability [5, 13].

One way of exploring vortical flow in the currently investigated curved channel is to extract
the physically meaningful insight from the enormous simulated velocity vector field. In this study,
we employ the topological theory to exhibit three-dimensional flow separation and reattachment.
By virtue of the simulated limiting streamlines [14] (or wall streamlines) or skin-friction lines
[15], the kinematics of three-dimensional flow motion can be revealed. We also plot the density
of helicity or its normalized value [16] to reveal the curved duct flow.

The rest of this paper is organized as follows. In the next section, the Navier–Stokes equations,
subject to the divergence-free constraint condition and the well-posed boundary conditions, are
solved using the in-house developed tri-quadratic Petrov–Galerkin finite element model [17]. The
BiCGSTAB iterative solver [18] is used to overcome computational difficulties in association with
the matrix indefiniteness and asymmetry. This is followed by describing the problem in Section 3
and the numerical results in Section 4. The evolving counter-rotating vortices are addressed in the
result section. Finally, some conclusions are drawn in Section 5.

2. TRI-QUADRATIC STREAMLINE UPWIND FINITE ELEMENT MODEL

In this paper, the Navier–Stokes equations for incompressible fluid flows in the curved rectangu-
lar channels are solved under the laminar assumption. In dimensionless form, the conservation
equations within the steady-state context are expressed in terms of the velocity vector u and the
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pressure p:

�ui
�xi

= 0 (1)

�
�xm

(umui ) = − �p
�xi

+ 1

Re

�2ui
�xm �xm

(2)

In the above, Re is denoted as the Reynolds number (≡ �urefL ref/�), where � is the density of
the fluid flow. To close the above elliptic differential system, ui should be prescribed on the entire
boundary ��=�.

Given that w ∈ H1
0 (�) × H1

0 (�) and q ∈ L2
0(�) in a simply connected domain �, the weak

solutions for Equations (1)–(2) are solved subject to u = g on �� from the following equations:∫
�
(u · ∇)u · w d� + 1

Re

∫
�

∇u : ∇w d� −
∫

�
p∇ · w d�

=
∫

�/�n

rw · n d� +
∫

�/��

s · w × n d� (3)

∫
�
(∇ · u)q d�= 0 (4)

In Equation (3), �/�n,r represents the complement of �n,r on �= ��. If � ∈ �/�i (i = n, r) it,
by definition, satisfies � ∈ � but � /∈ �i . The unit vectors n and s are normal and tangent to
�, respectively. The above weak formulation is closed by prescribing the following natural-type
boundary conditions:

−p + 1

Re
∇u · n = r on �/�n (5)

1

Re
n · ∇u × n = s on �/�r (6)

The appropriate finite element spaces for the chosen primitive variables are the key to success
in obtaining the convergent finite element solutions from the mixed analysis of incompressible
viscous fluid flows. For stability reasons, the shape functions chosen for u and p should satisfy
the LBB (or inf–sup) condition [19, 20]. For this reason, we employ the tri-quadratic polynomials
Ni (i = 1 ∼ 27) for u and use the tri-linear polynomials Mi (i = 1 ∼ 9) for p. Another key issue
in simulating the high Reynolds number flow is to properly select the finite element test spaces to
enhance the convective stability. The test function is constructed by adding a biased polynomial
to the shape function. While the convective stability is enhanced, the resulting Petrov–Galerkin
model may introduce considerable false diffusion errors in the multi-dimensional flow simulation.
To avoid accuracy deterioration without sacrificing non-linear stability, it is essential to employ the
weighting functions which can solely yield an artificial diffusivity along the streamline direction
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[21]. Following this thought, �u · ∇Ni is added to the shape function Ni to render the weighting
function given by Wi = Ni + �u · ∇Ni , where the upwind coefficient � is expressed as

� = ��V�h� + �	V	h	 + �
V
h


2VjVj
(7)

In the above, Vyi (= êyi · u · �yi = 1
2Vyi hyi Re�) is derived to obtain the nodally exact solution in

the one-dimensional quadratic element [17], where � is expressed in terms of � (≡ Vyi hyi /2�):

�(�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
cosh

(
�

2
− 1

�

)
, at centre-nodes

cosh(�) − 2

sinh(�) − 4 tanh
( �

2

) − 1

�
, at end-nodes

(8)

The consequence of the resulting indefinite and asymmetric finite element matrix equations is the
indispensable poor eigenvalue distribution. One can employ a Gaussian elimination direct solver to
solve for the matrix equation. The storage requirement is, however, prohibitive for very large-size
problems. For this reason, the Lanczos-type bi-conjugate gradient stabilized (BiCGSTAB) [18]
iterative method will be employed in the present three-dimensional curved flow analysis. This
approach is effective in the sense that it can locally minimize the residual through the generalized
minimized residuals GMRES [22] and can avoid matrix transpose calculations. Nevertheless, the
BiCGSTAB iterative solver still suffers from problems related to pivoting and Lanczos breakdowns.
In order to reduce the matrix bandwidth, the matrix equations were element-by-element compressed
[23].

3. PROBLEM DESCRIPTION AND CODE VALIDATION

In this study, we simulated the duct flow which was studied experimentally by Humphrey
et al. [10]. The duct schematic in Figure 1 has a 90◦ bend with the mean radius of Rc = 2.3.
The non-zero dimensionless length �̄ (≡ ro/ri = 1.556) can affect the balance of inertia, viscous,
and centrifugal forces and, therefore, can play an inegligible role in the flow development. The
elbow of 1× 1 square cross-section has the downstream straight extension with a length 14 times
the hydraulic diameter D (= 1). It is, thus, rational to specify a fully developed flow at the trun-
cated outlet plane EFGH. Since the deflected inlet vorticity may generate a strong transverse
pressure gradient and, in turn, can affect the streamwise pressure gradient, a straight channel of a
length 2 is attached upstream to the elbow. With U as the characteristic velocity (inflow velocity),
D the characteristic length (duct hydraulic diameter) and � the fluid viscosity, the channel flow
will be investigated at Re= 790. In this benchmark exercise, the experimental condition of [10]
was simulated. The fluid kinematic viscosity was � =UD/Re, with the bulk velocity magnitude of
U = 1. The corresponding Dean number De (≡ Re( 12d/Rc)

1/2), which is another key parameter
in the development of secondary flow, was 368.

We performed here the steady-state flow analysis in the full channel to model the Coanda effect
[24]. The present calculations were performed in a non-uniformly discretized domain, with 201 grid
points distributed in the streamwise direction and 41× 41 grid points at each (y, z) cross-section.
The simulated solutions at 337 881 nodal points have been shown to be capable of resolving the
secondary flow according to the grid-independence test.
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Figure 1. Schematic of the investigated curved duct.

To confirm the validity of the present finite element calculation, we have compared the simulated
solutions with both the experimental [10] and numerical [25] data for the streamwise velocity u�(r)
obtained in the curved sections at two planes y = 0.25 and 0.5. In Figure 2 good agreement is
seen except at planes near � = 60◦. The reason for the discrepancy between the experimental and
predicted results remains unclear. Comparison of axial velocities in the radial direction was also
carried out at different angles �. As Figure 3 shows, the agreement between the numerical solutions
is better than that between the numerical and experimental data except at � = 60◦.
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Figure 2. Comparison of the simulated velocity profiles u�(r, y) with other two solutions obtained at
different angles � defined in Figure 1: (a) y = 0.25 plane; and (b) y = 0.5 plane.

4. NUMERICAL RESULTS

Near the inner bend, the axial flow seen in Figure 2 undergoes a rapid decrease in velocity and
is seen to form a step-like profile. Farther downstream, the continuously eroded step-like axial
velocity forms a new local maximum near the inner bend. In between the two local peaks, a
deep valley is, thus, seen. This valley remains deep up to the plane near � = 90◦. Afterwards, a
continuous flatting is observed in the direction towards the exit plane. The axial velocity profile
manifested by the local maxima and the valley present in between was experimentally confirmed
by Humphrey et al. [10] in the curved channels. The step-like axial velocity profile present near
the inner bend was also experimentally reported by [26] and numerically simulated by Soh and
Berger [9] for a circular pipe.

4.1. Curved flow feature and topology

The entry flow plotted in Figure 4 is characterized by the boundary layer type, with the peak axial
velocity found on the plane of symmetry. Upstream of the curved duct, the flow is accelerated in
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Figure 3. Comparison of the simulated u�(r, y) against r with other two solutions obtained at different
angles � defined in Figure 1: (a) �= 30◦; (b) � = 60◦; and (c) � = 90◦.

regions near the inner-radius wall due to the favourable longitudinal pressure gradient. Conversely,
the decelerated flow is observed in regions near the outer-radius wall because of the developed
adverse pressure gradient downstream of 0◦. The peak axial velocity is shifted towards the outer
wall owing to the centrifugal effect. The degree of velocity skewness increases with the increasing
turning angle. Such a skewed axial velocity can persist far downstream. The outer bend is referred
to as the pressure side and the inner bend as the suction side. The evidence is given in Figure 5,
which plots the pressure coefficient Cp along the inner- and outer-radius walls in the vicinity of
the symmetry plane. The difference in Cp at the inner and outer walls is gradually diminished at a
location downstream of the 90◦ plane. The pressure obtained at the inner bend is seen to decrease
gradually and monotonically with �. The dramatic pressure rise along the outer bend results in the
aforementioned adverse pressure gradient in the region close to the entry plane. Such an adverse
pressure gradient developed along the outer bend may cause the streamwise separation to occur.
The longitudinal recirculation, while being weak in vortex strength and small in eddy size, has
been experimentally observed [10].

In Figure 6, p(r) at y = 0, 0.25 and 0.5 planes are plotted to show the presence of inwardly
directed radial pressure gradient in the bend. The force imbalance between this inwardly directed
radial pressure gradient and the centrifugal force causes the secondary flow to develop at the
cross-section planes. The fluid in the core region is seen to move towards the outer wall and
return to the inner wall along the channel wall, thereby resulting in a vortex. In the present full
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Figure 4. The simulated velocity vectors at different y-planes.

channel simulation, the simulated secondary flow has two counter-rotating vortices at the channel
cross-section for 0◦���40◦. Two vortices are symmetric with respect to the plane of symmetry.
The axial flow superimposed over the secondary flow makes the flow pattern a substantially three-
dimensional type in the curved section, as schematically shown in Figures 7 and 8. To assert that
flow separation from the outer wall indeed exists, we plot the three-dimensional separation regions
in Figure 7. Immediately adjacent to the two end walls, there exist some regions of streamwise
flow separation. Along the direction towards the inner wall, the separated flow increasingly reduces
its size and finally shows no separation near the plane of symmetry. The presence of outer-bend
separated flows near the two end walls indicates the necessity of conducting the current three-
dimensional flow analysis in the curved duct.
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Figure 7. The simulated three-dimensional velocity magnitude contours at the five chosen curved sections
for showing the separation region.

Figure 9 plots the streamlines at several chosen cross-sections. The number of vortex pairs is
seen to increase from one to two and then three. Each vortex direction is opposed to its adjacent
one. This physically rational bifurcation phenomenon was firstly predicted by Akiyama [27] and
then experimentally confirmed by Joseph et al. [28] in the curved channels as the Dean number is
larger than 100 [29]. According to Ghia and Sokhey [30], the increased number of vortex pairs at
the cross-flow planes is attributable to the centrifugal instability. As Figure 9 shows, weak vortex is
present in the corner of the inner and end walls. The primary counter-rotating vortex is gradually
distorted with the vanishing corner vortex near the end wall. This is accompanied by another
vortex forming at the inner bend near the plane of symmetry. Farther downstream, this vortex is
strengthened by the primary vortex that has been increasingly distorted and elongated. At about
� = 66◦, the primary vortex becomes distorted and it can be divided into two large corotating
vortices. In between the two vortices of different rotation signs, a topological saddle point is
present. The tendency of dividing the primary vortex into two vortices is deemed to be responsible
for the step-like axial velocity profile [12]. The increased number of vortex pairs is accompanied
by the decreased vorticity strength. This finding is logical since the flow will be fully developed
again at the exit plane.

Due to the formation of secondary flow and the presence of skewed axial velocity, the wall shear
varies circumferentially, with the maximum and minimum helicity magnitudes found, respectively,
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at the outer and the inner walls of the bend. To confirm this, we plot in Figure 10 the wall shear
stresses at the inner and outer walls. It is found that the simulated shear stress contours at the outer
bend are far more complicated than those plotted at the inner bend, with the observed oscillatory
shear stress. An explanation for such stress pattern found near the outer bend is due to the fluid
flowing over the concave wall. This tends to destabilize the curved flow. The degree of instability
increases with the increasing larger Reynolds number. Under the circumstances, the Taylor–Görtler
vortices may be developed in the flow.

Amongst the vector fields that can be chosen in the topological study of three-dimensional
flow field, we employed the limiting streamlines, which are known to be the streamlines present
immediately above the channel wall [14]. By plotting the topologically singular points, the simulated
nodes, foci, and saddles on each curved channel wall in Figure 9 can help us to understand
the kinematic nature of the investigated flow based on the topological rule of Davey [31] and
Lighthill [15]. In Figure 11, it is seen that the simulated limiting streamlines are directed either
towards or away from the topological singular point. The lines of separation are found to originate
from the saddle point and will terminate either at a spiral node in the flow interior or at the
half-node at the intersection line of two adjacent walls. Unlike the lines of separation, the wall-
streamlines adjacent to the line of reattachment are seen to be repelled from this singular line.
We also plot in Figure 11 reattachment lines, which emanate from the node and terminate at the
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saddle. The simulated reattachment lines have two nodes, in between two topological nodes, there
is a half-node located exactly at the intersection of two planes.

4.2. Vortex stability

Although the investigated problem is simple in geometry, the flow complexity is much beyond our
expectation. Especially noteworthy is the formation of spiralling flow. To get additional insight into
the vortical flow development in the curved duct, we plot the vortical coreline, which is regarded
as the global signature of the associated vortical flow. By definition, all three-dimensional foci
span the vortical coreline. The velocity components orthogonal to the vortical coreline are zero at
the spiral focal point. By virtue of this definition, we can plot the vortical coreline in Figure 12.
Hereafter, we refer to us as the velocity component tangential to the vortical coreline. In light
of the non-zero us , we were led to realize that the fluid particles near the vortical coreline will
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continue their spiral journey downwards. To confirm this, the massless markers were seeded near
each vertical end wall so as to enable us to trace their trajectories.

In this paper, we also plot in Figure 13 the value of  ≡ (�us/�s), where s denotes the unit
tangent vector to the vortical coreline. Since ut1 |0 = ut2 |0 = 0 along the vortical coreline passing
through ‘◦’, schematic in Figure 14, the equation of motion along this line can be simplified as

� = 1

�us |0

[
�p
�s

∣∣∣∣
0
− �

(
�2us
�t21

+ �2us
�t22

+ �2us
�s2

)]

where � represents the divergence of the simulated velocity components. In the case of high
Reynolds numbers (or in the case of negligibly small �), the sign of � varies depending on the
value of un and on the pressure gradient �p/�s evaluated at the nodal point ‘◦’. Simple algebra
shows that if us |0>0 and �p/�s|0<0, then �<0 (or >0), thereby resulting in an accelerating
flow (Figure 13). Otherwise, if us |0>0 and �p/�s|0>0, then we have �>0 (or <0). Under the
circumstance, the flow is of the deceleration type (Figure 13). For completeness, we also plot in
Figure 13 the normalized helicity � (≡ u · �/|u||�|) along the vortical coreline for showing the
intensity of the simulated spiralling flow motion.

The secondary flow inside the rectangular curved channel is deemed to be responsible for the
change of sign in . At the upstream side,  is seen to have the negative value. The streamline
at the transverse planes, which are located upstream of  = 0, repels from the spiral node and
the streamwise flow is of the decelerated type. Immediately downstream of  = 0, the simulated
cross-flow start to show two families of spiralling flow to respond the presence of positive . The
flow at the outer part spirals towards the vortical coreline and the flow at the inner part repels
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vortical corelines

seeded massless particles

Figure 12. The simulated three-dimensional vortical corelines and the surrounding
spiralling particle trajectories.

spirally from ‘◦’. Both of them, however, proceed downstream in a clockwise direction. This
inward-and-outward motion results in a ring (or limiting cycle) in the sense that the fluid particles
within the ring cannot spiral towards the vortical core. On the other hand, fluid particles outside
of the ring cannot spiral outwards.

In view of the limiting cycles on the cross-flow planes, it is instructive to reveal the subtle
changes in vortex motion in the vicinity of  = 0. In Figure 15, the inward spiralling flow region is
seen to decrease in size. The flow, as a result, becomes unstable as it proceeds downwards. This is
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Figure 13. The simulated velocity component us , pressure p, normalized helicity and helicity gradient
 (≡ �us/�s) along the vortical coreline having the unit vector s.
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Figure 14. Illustration of the plane which is locally orthogonal to a vortical coreline.
The longitudinal plane is also plotted.

followed by the decreasing value of . The presence of unstable limiting cycle indicates the possible
onset of Hopf bifurcation. Under these circumstances, flow unsteadiness may become increasingly
pronounced in the subsequent flow development. The limiting cycle is seen again as  becomes
negative. As the limiting cycles appear, circles which are stable or unstable alternately show their
presence. It is impossible to find two consecutive cross-flow planes, in which the limiting cycles
are either stable or unstable [32]. Therefore, a vortex can be destabilized under the conditions of
�us/�s<0 and us�0 along the vortical coreline.
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Figure 15. The simulated streamlines at the planes that are locally normal to the vortical coreline.

5. CONCLUDING REMARKS

In this study, the three-dimensional steady-state Navier–Stokes equations, subject to the incom-
pressibility constraint condition, are solved by employing the streamline upwind finite element
model so as to enhance convective stability and to mininize the false diffusion error. To resolve
the asymmetry and indefiniteness problems in the large-size finite element matrix equations, we
have applied the element-by-element BiCGSTAB iterative solver for improving the convergent
performance. At a streamwise plane that is upstream of the bend with a length of 2, the location
with the peak axial velocity at the plane of symmetry shifts towards the outer wall owing to the
centrifugal force. The skewed axial flow rapidly intensifies up to about � = 30◦. This progres-
sively developing flow is accompanied by an acceleration flow in regions near the inner-radial
wall. In the bend between the 0 and 40◦ streamwise planes, the fluid flows near the outer wall
are seen to be greatly decelerated due to the adverse longitudinal pressure gradient. Conversely,
the favourable pressure gradient observed at the suction side of the bend can cause the flow to
accelerate. This acceleration can be further strengthened by the high-speed fluid transferred by
the secondary flow motion proceeding from the duct centre towards the outer-radius wall. Such a
pronounced profile is clearly observed at the downstream station. The simulated secondary flow
is characterized by having the fluid particles moving towards the side wall along the outer-radius
(pressure) wall and the symmetry plane along the inner-radius (suction) wall. In the simulated
curved channel, the streamlines at cross-sections are seen to spiral towards and away from the
vortical coreline as  (≡ �us/�s) changes sign. The limiting cycle develops as a consequence of
the inward-and-outward particle motion. These evolving limiting cycles have different sizes and
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can be classified as stable or unstable, depending on the sign of �us/�s. The simulated limiting
cycles are stable when  is evolved from the positive value to the negative value. In contrast to
the stable limiting cycle, the cycle is unstable if  changes its sign from the negative to positive.
Once the limiting cycles appear, circles which are stable or unstable will alternately show their
presence. When �us/�s<0 and us>0, it is highly possible that the vortical flow becomes stable.
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19. Babuška I. Error bounds for finite element methods. Numerische Mathematik 1971; 16:322–333.
20. Brezzi F, Douglas J. Stabilized mixed methods for the Stokes problem. Numerische Mathematik 1988; 53:225–235.
21. Hughes TJR. Finite Element Methods for Convection Dominated Flows, AMD, vol. 34. ASME: New York, 1979.
22. Saad Y, Schultz MH. GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear

system. SIAM Journal on Scientific and Statistical Computing 1986; 7:856–869.
23. Wang MT, Sheu WH. An element-by-element BiCGSTAB iterative method for three-dimensional steady Navier–

Stokes equations. Journal of Computational and Applied Mathematics 1997; 79:147–165.
24. Wille R, Fernholz H. Report on the first European Mechanics Colloquium, on the Coanda effect. Journal of

Fluid Mechanics 1965; 23(4):801–819.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:564–582
DOI: 10.1002/nme



582 S. F. TSAI AND T. W. H. SHEU

25. Sotiropoulos F, Kim WJ, Patel VC. A computational comparison of two incompressible Navier–Stokes solvers
in three-dimensional laminar flows. Computers and Fluids 1994; 23(4):627–646.

26. Agrawal Y, Talbot L, Gong K. Laser anemoneter study of flow development in curved circular pipes. Journal of
Fluid Mechanics 1978; 85:497–518.

27. Akiyama M. Laminar forced convection heat transfer in curved rectangular channels. Ph.D. Thesis, Department
of Mechanical Engineering, University of Alberta, Canada, 1969.

28. Joseph B, Smith EP, Adler RJ. Numerical treatment of laminar flow in helically coiled tubes of square cross-
section. AIChE Journal 1975; 21:965–974.

29. Jayanti S, Hewitt GF. A numerical study of bifurcation in laminar flow in curved ducts. International Journal
for Numerical Methods in Fluids 1992; 14:253–266.

30. Ghia KN, Sokhey JS. Laminar incompressible viscous flow in curved ducts of rectangular. Journal of Fluids
Engineering 1977; 99:644–648.

31. Davey A. Boundary-layer flow at a saddle point of attachment. Journal of Fluid Mechanics 1961; 10:593–610.
32. Zhang H. Bifurcation of vortex motion along its axis. ACTA Aerodynamica Sinica 1994; 12(3):243–251.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:564–582
DOI: 10.1002/nme


